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Ordinary Representation Theory (Classical)

G is a finite group.

The character of a representation of G over an algebraically closed

field of characteristic 0 is an ”ordinary” character. The set of

ordinary characters of G is denoted by Irr(G ).

Frobenius computed the character table of PSL(2; p) in 1896.

Frobenius induction takes characters of a subgroup H of G to

characters of G .
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Modular Representation Theory (Classical) Characters

Richard Brauer developed the modular representation theory of finite

groups, starting in the thirties.

G a finite group

p a prime integer

K a sufficiently large field of characteristic 0

O a complete discrete valuation ring with quotient field K

k residue field of O, char k=p

A representation of G over K is equivalent to a representation over

O, and can then be reduced mod p to get a modular representation

of G over k .
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Modular Representation Theory (Classical) Characters

Brauer defined the character of a modular representation: a

complex-valued function on the p-regular elements of G . Then we

can compare ordinary and p-modular (Brauer) characters.

The decomposition map d : K0(KG ) ! K0(kG ), where K0 denotes

the Grothendieck group, basis indexed by simple modules, expresses

an ordinary character in terms of Brauer characters by going mod p.

The decomposition matrix D (over Z) is the transition matrix

between ordinary and Brauer characters. Entries of D are

decomposition numbers.
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Modular Representation Theory (Classical) Blocks

The algebra KG is semisimple, but in the cases of interest, kG is not.

kG = B1 � B2 � : : :� Bn

where the Bi are ”block algebras”, indecomposable ideals of kG .

Leads to:

a partition of the ordinary characters, or KG -modules, into

blocks

a partition of the Brauer characters, or kG -modules, into blocks

a partition of the decomposition matrix into blocks

Bhama Srinivasan (University of Illinois at Chicago) Modular Representations August 2010 5 / 36



Modular Representation Theory (Classical) Blocks

Example: A5, p = 2: Ordinary characters in “Principal Block”

order of element 1 2 3 3 5

classsize 1 15 20 12 12

�1 1 1 1 1 1

�2 5 1 �1 0 0

�3 3 �1 0 1�
p

5
2

� 1 1+
p

5
2

� 1

�4 3 �1 0 1+
p

5
2

� 1 1�
p

5
2

� 1
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Modular Representation Theory (Classical) Blocks

Example: A5, p = 2: Brauer characters in “Principal Block”

order of element 1 3 3 5

classsize 1 20 12 12

 1 1 1 1 1

 2 2 �1 1+
p

5
2

� 1 1�
p

5
2

� 1

 3 2 �1 1�
p

5
2

� 1 1+
p

5
2

� 1
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Modular Representation Theory (Classical) Blocks

Decomposition matrix for Principal Block of A5:

0
BBB@

1 1 1 1

0 0 1 1

0 1 0 1

1
CCCA
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Modular Representation Theory (Classical) Blocks

Example: G = Sn. If � 2 Irr(G ) then � = �� where � is a partition

of n. Then there is a Young diagram corresponding to � and

p-hooks, p-cores are defined. Then:

Theorem (Brauer-Nakayama) ��, �� are in the same p-block if and

only if �, � have the same p-core.
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Modular Representation Theory (Classical) Blocks

Example: Removing 3-hooks to get a 3-core:0
BBBBBB@

� � � �

� � �

� + +

� +

1
CCCCCCA
!

0
BBBBBB@

� � + +

� � +

�

�

1
CCCCCCA
!

0
BBBBBB@

� �

� �

�

�

1
CCCCCCA
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Modular Representation Theory (Classical) Blocks

Some main problems of modular representation theory:

Describe the irreducible modular representations, e.g. their

degrees

Describe the blocks

Find the decomposition matrix D
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Finite Groups of Lie type

G is a connected reductive algebraic group defined over Fq,

F : G ! G a Frobenius morphism,

G = GF is a finite reductive group.

Examples: GL(n; q), U(n; q), Sp(2n; q), SO�(2n; q)

For GL(n; q), F : (xij) ! (xq
ij ).

G has subgroups maximal tori, Levi subgroups (centralizers of tori),

parabolic subgroups
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Finite Groups of Lie type

G = GL(n; q) has subgroups:

Tori, abelian subgroups (e.g. diagonal matrices)

Levi subgroups, products of subgroups of the form GL(m; qd)

Borel subgroups, isomorphic to “upper triangular matrices”

Parabolic subgroups of the form P = LV , L a product of

subgroups of the form GL(m; q), V / P
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Finite Groups of Lie type

Parabolic subgroup P is of the form0
BBBBBB@

| � � : : : �

0 | � : : : �

: : : : :

0 0 0 0 |

1
CCCCCCA
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Finite Groups of Lie type

Then L is of the form0
BBBBBB@

| 0 0 : : : 0

0 | 0 : : : 0

: : : : :

0 0 0 0 |

1
CCCCCCA
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Finite Groups of Lie type

And V is of the form

0
BBBBBB@

I � � : : : �

0 I � : : : �

: : : : :

0 0 0 0 I

1
CCCCCCA
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Ordinary Representation Theory (Modern) Harish-Chandra Theory

Let P = LV as before.

Harish-Chandra induction is the following map:

RG
L : K0(KL) ! K0(KG ).

If  2 Irr(L) then RG
L ( ) = IndG

P ( ̃) where  ̃ is the character of P

obtained by inflating  to P .
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Ordinary Representation Theory (Modern) Deligne-Lusztig Theory

Now let ` be a prime not dividing q.

Suppose L is a Levi subgroup, not necessarily in a parabolic subgroup

P of G .

The Deligne-Lusztig linear operator:

RG
L : K0(QlL) ! K0(QlG ).

If L 6 P 6 G , where P is a parabolic subgroup, RG
L is just

Harish-Chandra induction.
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Ordinary Representation Theory (Modern) Deligne-Lusztig Theory

Example: G = GL(n; q). If L is the subgroup of diagonal matrices

contained in the (Borel) subgroup B of upper triangular matrices, we

can do Harish-Chandra induction. But if L is a torus (Coxeter torus)

of order qn � 1, we must do Deligne-Lusztig induction to obtain

generalized characters from characters of L.
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Blocks

G is a finite reductive group.

A unipotent character is a constituent of RG
T (1).

Example:

Let G = GL(n; q). The unipotent characters of G are constituents of

Ind
G
B and are indexed by partitions of n. Denoted by ��, � a

partition of n.
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Blocks

` a prime not dividing q, e the order of q mod `

Theorem (Fong-Srinivasan) ��, �� are in the same `-block if and

only if �, � have the same e-core.

Example: n = 5, ` divides q + 1, e = 2. Then �� for

5; 32; 312; 221; 15 are in a block. Same for S5, p = 2.

Example: n = 4, ` divides q2 + 1, e = 4. Then �� for 4; 31; 212; 14

are in a block.0
@� �

� �

1
A has no 4-hooks.
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Blocks

G = GL(n; q), B upper triangular matrices, E the G -module induced

from the trivial character of B .

The endomorphism algebra Hn of E is a Hecke algebra of type A over

C with generators fT1;T2; : : :Tn�1g and some relations, e.g.

T 2
i = (q � 1)Ti + qTi .

For certain values of q, Hn is not semisimple and we can talk of its

modular representations, decomposition numbers, etc.
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Decomposition numbers

Work done on blocks and decomposition matrices by methods

described above: Dipper-James, Geck, Gruber, Hiss, Kessar ...

Problems: If G = Sn, p a prime, describe the p-modular

decomposition matrix of G .

If G = GL(n; q), ` a prime not dividing q, describe the `-modular

decomposition matrix of G .
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Modular Representation Theory (New) Lie Theory

New modular representation theory connects decomposition numbers

for symmetric groups, Hecke algebras, with Lie theory.

Idea of “Categorification”:

Replace the action of a group or algebra on a vector space by the

action of functors on the Grothendieck group of a suitable abelian

category.

For example, the sum of Grothendieck groups �n>0K0(mod � kSn),

or �n>0K0(mod � Hn), basis indexed by partitions of n.
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Modular Representation Theory (New) Lie Theory

The quantized Kac-Moody algebra Uq(csle) over Q(q) is generated by

ei ; fi ; ki ; k
�1
i ; : : :, (0 6 i 6 e � 1) with some relations.

Consider the Fock space �n>0K0(mod � FHn), (Hn the Hecke

algebra as before), F a field of characteristic 0. Then Uq(csle) acts on

this space!

ei ; fi are functors on the Fock space, called i -induction, i -restriction.

Work of Ariki, Grojnowski, Vazirani, Lascoux-Leclerc-Thibon,

Varagnolo-Vasserot, ...
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Modular Representation Theory (New) Lie Theory

Decomposition matrix D for Hn with q a e-th root of unity, appears

as transition between two bases of the Fock space.

Blocks appear as weight spaces for the subalgebra generated by the

ki .
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Modular Representation Theory (New) Lie Theory

Recent results (BS):

The quantized Kac-Moody algebra Uq(cgle) has generators

ei ; fi ; ki ; k
�1
i as before for Uq(csle), and vk , k a positive integer. The

vk are described combinatorially by Leclerc-Thibon, in terms of

horizontal ribbons.
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Modular Representation Theory (New) Lie Theory

Let An be the category of unipotent representations of GL(n; q). Let

A = (�n>0K0(An))
Z Ql(q);

sum of Grothendieck groups of the categories of unipotent

representations of GL(n; q) for all n. Then Uq(cgle) acts on this space.

The operators vk are quantized Lusztig maps on the Grothendieck

group.
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Modular Representation Theory (New) Lie Theory

Theorem If Gn = GL(n; q), let L = Gn � GL(k ; qe). Define maps

Lk : A ! A by: �� ! [R
Gn+ke

L (�� � 1] .

Then Lk coincides with the operator vk specialized at q = 1. (More

generally: L�where � is a partition of k .)

Thus we connect Uq(cgle) (quantum gl) with finite GL. (cf

Dipper-James)
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Modular Representation Theory (New) Lie Theory

An example of a decomposition matrix D for n = 4, e = 4:0
BBBBBB@

4jj 1 0 0 0

31jj 1 1 0 0

211jj 0 1 1 0

1111jj 0 0 1 1

1
CCCCCCA
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Modular Representation Theory (New) Lie Theory

From this matrix we can read:

(Part of) transition between two bases of the Fock space as

csle-module (e = 4)

Decomposition numbers for Hn (also cyclotomic) over

characteristic 0 (n = 4)

(conjecturally) part of decomposition matrix of GL(n; q), `

dividing q2 + 1 (n = 4; e = 4)

Bhama Srinivasan (University of Illinois at Chicago) Modular Representations August 2010 31 / 36



Modular Representation Theory (New) Lie Theory

Summary

Known: Decomposition numbers for Hn (also cyclotomic) over

characteristic 0

Known: Decomposition numbers for GLn(q), ` large

Not known: Decomposition numbers for Sn, GLn(q), all `
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Modular Representation Theory (New) Lie Theory

An example of a decomposition matrix D for n = 4, e = 4:0
BBBBBB@

4jj 1 0 0 0

31jj q 1 0 0

211jj 0 q 1 0

1111jj 0 0 q 1

1
CCCCCCA
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Modular Representation Theory (New) Lie Theory

Interpret this matrix as a matrix of ”q-decomposition numbers”.

Leads to: Graded representation theory of Sn, Hn, ...

See A.Kleshchev, Bulletin of AMS 47 (2010), 419-481.
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Modular Representation Theory (New) Lie Theory

Summary

Groups of Lie type: reps constructed by induction, H-C

induction, D- L induction

Look for: Blocks, Decomposition Numbers in Modular Rep

Theory of Sn, GL(n; q), (cyclotomic) Hecke algebras

Now linked with affine Kac-Moody algebras in type A.

Leads to: Graded Representation Theory of symmetric groups, ...
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Modular Representation Theory (New) Lie Theory

End of story? We know there is no end.
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