Math 516 Fall 2006 Radford

Written Homework # 3 Solution

11/22/06

You may use results form the book in Chapters 1-4 of the text, from
notes found on our course web page, and results of the previous homework.

1. (20 points total) Let G be a group and H, K < G.

(a) (7) Suppose that HK < G and let f : HXxK — HK be defined by
f((h,k)) = hk for all (h,k) € HxK. Show that f is a homomorphism
if and only if hk = kh for all h € H and k € K.

Solution: Let h € H and k € K. First observe that
(h,e)(e, k) = (he,ek) = (h, k) = (eh, ke) = (e, k)(h, e);
in particular (h,e) and (e, k) commute.
Suppose that f is a homomorphism. The last two equations give
hk = f((h,k)) = f((e,k)(h,€)) = f((e,k))f((h,€)) = ekhe = kh.
Therefore hk = kh for all h € H and k € K.
Conversely, suppose that hk = kh for all h € H and k € K. Then for
(h, k), (0, k') € HNK we have
f((hR)(WE)) = (Rl kK))
= (hh) (kK"
= h(WEk)K
= h(kh)K
= (hk)(M'K)
= f((h k) F((R, K)).

Therefore f is a homomorphism.
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Suppose in addition that H, K < G.

(b) (6) Show that HK < G.
Solution: First of all the calculation

HK = |J hK = |J Kh=KH
heH heH

shows that HK < G. Note that we only use H < G and K < G for
this calculation. To show that HK < G we let g € G and note that

9g(HK) = (gH)K = (Hg)K = H(9K) = H(Kg) = (HK)g.

(c) (7) Suppose that HNK = (e). Show that hk = kh for all h € H and
k € K and that the homomorphism of part (b) is an isomorphism.
[Hint: For h € H and k € K consider hkh™ k1]

Solution: Let h € H and k € K. Then hkh k' = (hkh Y)k™! =
h(kh=*k=1Y); thus hkh™'k=! € K, H from which hkh='k~! € HNK =
(e) follows. Multiplying both sides of hkh~'k~! = e on the right by k

and then multiplying both sides of the resulting equation on the right
by h yields hk = kh.

To show that f is an isomorphism we need only show that f is injective
in light of part (a). Suppose (h, k), (h',k') € HNK and f((h,k)) =
f((W,K)). Then hk = h'K from which kk'~' = h™'h’ follows. Thus
kk'' € KNH = (e) which means kk'~! = e = h™'1L'. Therefore k = k'
and h = h'. We have shown (h, k) = (', k’); thus f is injective.

2. (20 points total) Use the theory of finite cyclic groups and induction on
|G| to prove Cauchy’s Theorem for abelian groups:

Theorem 1 Let G be a finite abelian group and suppose that p is a prime
integer which divides |G|. Then G as an element of order p.

[Hint: Let a € G and set H = <a>. Then |G/H||H| = |G|.]

Solution: Our proof uses two facts about finite cyclic groups. If G is cyclic
and p divides |G| then G has an element of order p since G has exactly one



(cyclic) subgroup for every divisor of |G|. If G = <a> has order m and
a" = e then m|n.

We proceed by induction on |G|. The case |G| = 1 is vacuous since p
does not divide |G| in this case. Suppose m > 1 and that the theorem holds
for all abelian groups of order less than or equal to m. Let G be an abelian
group such that |G| < m + 1 and suppose that p divides |G|. Then |G| > 1
so we may chose an a € G with a # e. If p divides |<a>| then <a>, hence
(G, has an element of order p.

Suppose p does not divide |<a>|. Since G is abelian H = <a><(@. Since
|G| = |G/H||H| and |H| > 1 it follows that p divides |G/H| and |G/H| <
|G|. Since G/H is abelian, by our induction hypothesis there is an element
bH € G/H or order p. Let n = |<b>|. Then (bH)" = b"H = eH = H from
which we deduce p|n. Thus <b> has an element of order p.

We have shown the conclusion of the theorem holds when |G| < m + 1.
Thus the theorem follows by induction.

3. (20 points total) Let GG be a finite group. For every positive divisor d of
|G| let ng denote the number of cyclic subgroup of G of order d. Show that

G| = Z o(d)na,

d |G|

where ¢ is the Euler phi-function. [Hint: Consider the equivalence relation
on G defined by a ~ b if and only if <a> = <b>.]

w__»

Solution: Since is an equivalence relation “~” is also. Let C be the
set of cyclic subgroups of GG. Then the set of equivalence classes £ of ~ is in
bijective correspondence with C via

[x] — <x>

for all z € G. (Indeed, if f : G — C is the surjective function given by
f(x) = <z> then [z] = f~}(<x>).) Let F = [z] and C = <z>. Since E
consists of the generators of C' it follows that |E| = ¢(|C|). By Lagrange’s
Theorem |C| divides |G|. Thus

Gl = > |E]

Ec€

= > o))

cec



= Z( > <p(ICI))

|G| \cec.d=|C|

= Z( > w(d))

|G| \CeC,d=|C|

= Z nap(d).

d)|G|

Comment: When G is cyclic of order n observe that the formula is

n=> ¢(d)

din

since G has exactly one subgroup (which is cyclic) of order d for all divisors
of n.

4. (20 points total) Let G be a finite group of order pqr, where p, ¢, r are
primes and p < ¢ < 7.

(a) (10) Show that G is not simple.
(b) (10) Show that G has a subgroup of prime index.

[Hint: See the text’s discussion of groups of order 30 = 2-3-5. If needed, you
may use the formula of Exercise 3.]

Solution: Let ng be the number of Sylow-s subgroups of G, where s = p, ¢, r.
For each s, by the Sylow Theorems n;| divides |G| and ns = 1 + ks for some
integer k. In particular s does not divide n.

Suppose that no Sylow-s subgroup is normal. Then ny > 1+ s for s =
p,q,r. Since n, is among ¢,r,qr and ¢ < r we conclude n, > ¢. Since n,
is among p,r,pr and p < ¢, r < gr we conclude n, > r. Since n, is among
p,q,pq and p,q < r we have n, = pq. Since each Sylow-s subgroup of G is
cyclic of prime order, each of these subgroups has s — 1 elements of order s.
Counting the elements of order p, g, and r respectively gives the estimate

q(p—1)+7r(g—1) +pg(r —1) < pgr

or
—q—1+qr<0
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which means
qr < qg+r < 2r.

From the last inequality we have gr < 2r or ¢ < 2, a contradiction. Therefore
some Sylow s-subgroup of GG is normal. We have shown G is not simple and
part (a) is established.

As for part (b), by part (a) there exists N < G or prime order. Let
H < G be a Sylow-s subgroup, where s # |N|. Then |H| = s and HN < G
since H < G = Ng(N). Now HNN < H, K; thus |[HNN| divides |H|, | N| by
Lagrange’s Theorem. Thus since |H| and |N| are relatively prime |[HNN| = 1.
Therefore |H||N| = |[HN||HNN| = |HN|. Now |G| is the product of three
primes, two of which are |H| and |N|. Thus

|G| Gl

|G:HN| = =
|[HN|  |H|[N|

is the third prime.

5. (20 points total) Let G be a finite group of order pgr, where p, q,r are
primes, p < ¢ < r, and r # 1 (mod ¢). Show that G has a subgroup of index
.

Solution: The solution to Problem 4 suffices when H and N are Sylow-q
and Sylow-r subgroups, or vice versa. Thus we need only show that G has a
normal Sylow-g subgroup or a normal Sylow-r subgroup.

Suppose that G has neither a normal Sylow-¢ subgroup nor a normal
Sylow-r subgroup. Then n, = pg and n, is among p,r,pr. Since p < ¢ and
r # 1(modq) necessarily n, = pr. Estimating the number of elements of
order g or r we derive

pr(qg—1) +pq(r —1) < pgr
or
—pr —pq+pgr <0
Therefore
qr <r—4q < 2r

from which ¢ < 2 follows. This contradiction shows that one of the Sylow-¢
subgroups of GG or one of the Sylow-r subgroups of G is normal.



Comment: The counting arguments for Problems 4 and 5 involved a few
types of elements. By taking into account more, a common solution can be
given for both. Several of you did this. In particular the special condition in
Problem 5 does not have to be used and thus it is not necessary. Here is a
sketch.

Suppose that no Sylow g-subgroup of G an no Sylow r-subgroup of G is
normal. Then ng,n, > 1 which means n, > r and n, = pg. Since n, > 1 in
any case, the number of element of G of orders p, ¢, or r account for at least
1(p—1)+7r(qg—1) 4 pg(r — 1) elements of the prq elements of G. But

Ilp—1)+r(g—1)4+pg(r—1) = p—r+qr—pg—1-+pgr
= (=11 —q) —1+pgr
= (r=p)(g—=1) = 1+pgr
> prq

since (r—p)(g—1) > 2. This contradiction shows that G has a normal Sylow
g-subgroup of a normal Sylow ¢-subgroup.



