The Isomorphism Theorems

09/25/06 Radford

The isomorphism theorems are based on a simple basic result on homomorphisms. For a group G and $N \leq G$ we let $\pi : G \longrightarrow G/N$ be the projection which is the homomorphism defined by $\pi(a) = aN$ for all $a \in G$.

Proposition 1 Let $f : G \longrightarrow G'$ be a group homomorphism and suppose $N \leq G$ which satisfies $N \subseteq \text{Ker } f$. Then there is a unique homomorphism $F : G/N \longrightarrow G'$ which satisfies $F \circ \pi = f$.

PROOF: Uniqueness. Suppose that $F, F': G/N \longrightarrow G'$ are functions which satisfy $F \circ \pi = f$ and $F' \circ \pi = f$. Then $F(\pi(a)) = F'(\pi(a))$ for all $a \in G$. Since π is surjective, any element of G/N has the form $\pi(a)$ for some $a \in G$. Therefore F = F'. We note that F(aN) = f(a) for all $a \in G$.

Existence. We define F as follows. Let $S \in G/N$; that is let S be a left coset of N in G. Choose any $x \in S$ and set F(S) = f(x). We need to show that F(S) does not depend on our choice of x; that is, F is well defined.

We may write S = aN for some $a \in G$. Suppose that $x \in S$. Then x = an for some $n \in N$. Since $N \subseteq \text{Ker } f$ by assumption, the calculation

$$f(x) = f(an) = f(a)f(n) = f(a)e' = f(a)$$

shows that F(S) does not depend on x and F(S) = F(aN) = f(a). That $F \circ \pi = f$ and F is a homomorphism are easy to see at this point. \Box

Our versions of the isomorphism theorems are slight variants of the ones found in in Dummit and Foote.

Theorem 1 (First Isomorphism Theorem) Suppose $f : G \longrightarrow G'$ is a homomorphism. Then Ker $f \leq G$, Im $f \leq G'$, and there is an isomorphism $G/\text{Ker } f \longrightarrow \text{Im } f$ given by $a(\text{Ker } f) \mapsto f(a)$ for all $a \in G$.

PROOF: We have seen that Ker $f \leq G$ and Im $f \leq G'$. Without loss of generality we may assume that G' = Im f; that is f is surjective. With N = Ker f we deduce from Proposition 1 that there is a homomorphism $F: G/N \longrightarrow G'$ given by F(aN) = f(a) for all $a \in G$. Since

$$\operatorname{Ker} F = \{aN \mid f(a) = e'\} = \{aN \mid a \in N\} = \{N\}$$

is the trivial subgroup of G/N, it follows F is injective. Since f is surjective, F is surjective. \Box

The Second Isomorphism Theorem is formulated in terms of subgroups of the normalizer. Suppose that $A, B \leq G$ and $A \leq N_G(B)$. Then $aBa^{-1} = B$, or equivalently aB = Ba, for all $a \in A$. Therefore AB = BA which means $AB \leq G$. From $A, B \leq N_G(B) \leq G$ we deduce $AB \leq N_G(B)$. Since $B \leq N_G(B)$ and $B \leq AB$ the relation

 $B \trianglelefteq AB$

follows. For $a \in A$ the calculation $a(A \cap B)a^{-1} \subseteq A \cap aBa^{-1} = A \cap B$ shows that

 $A \cap B \trianglelefteq A.$

Theorem 2 (Second Isomorphism Theorem) Suppose that G is a group and $A, B \leq G$ satisfy $A \leq N_G(B)$. Then $B \leq AB$, $A \cap B \leq A$, and there is an isomorphism $A/A \cap B \longrightarrow AB/B$ given by $a(A \cap B) \mapsto aB$ for all $a \in A$.

PROOF: We have established the normality assertions. Since the projection $\pi : AB \longrightarrow AB/B$ is a homomorphism, and $A \leq AB$, the restriction $f = \pi|_A : A \longrightarrow AB/B$ is a homomorphism. For all $a \in A$ and $b \in B$ note that abB = a(bB) = aB = f(a). Thus f is surjective. Since

$$Ker f = \{a \in A \mid aB = B\} = \{a \in A \mid a \in B\} = A \cap B$$

the theorem follows by Theorem 1 \square

Theorem 3 (Third Isomorphism Theorem) Suppose that G is a group and suppose that $N, H \leq G$ satisfy $N \leq H$. Then there is an isomorphism $(G/N)/(H/N) \longrightarrow G/H$ given by $(aN)(H/N) \mapsto aH$ for all $a \in G$. PROOF: Since $N \leq \text{Ker }\pi$, where $\pi : G \longrightarrow G/H$ is the projection, by Proposition 1 there is a homomorphism $f : G/N \longrightarrow G/H$ which is given by $f(aN) = \pi(a) = aH$. Note that f is surjective. Since Ker f = H/N the theorem follows by Theorem 1. \Box

The conclusion of the preceding theorem can be remembered by interpreting quotient groups as fractions and applying the usual rules of arithmetic for fractions:

$$\frac{\begin{pmatrix} G\\-\\N\\ \end{pmatrix}}{\begin{pmatrix} H\\-\\N \end{pmatrix}} = \begin{pmatrix} G\\-\\N \end{pmatrix} \begin{pmatrix} N\\-\\H \end{pmatrix} = \begin{pmatrix} G\\-\\H \end{pmatrix}.$$

Suppose that $f: G \longrightarrow G'$ is a surjective homomorphism. The next isomorphism theorem gives a one-one correspondence between the subgroups of G' and a certain subset of subgroups of G.

Theorem 4 (Fourth Isomorphism Theorem) Let $f : G \longrightarrow G'$ be a surjective homomorphism. Then:

(a) There is an inclusion preserving bijection

 $\{A \,|\, \mathrm{Ker}\, f \le A \le G\} \longrightarrow \{B \,|\, B \le G'\}$

given by $A \mapsto f(A)$ with inverse given by $B \mapsto f^{-1}(B)$.

(b) Let Ker $f \leq N \leq G$. Then $N \trianglelefteq G$ if and only if $f(N) \trianglelefteq G'$ in which case there is an isomorphism $G/N \longrightarrow G'/f(N)$ given by $aN \mapsto f(a)f(N)$ for all $a \in G$.

PROOF: We sketch a proof. As for part (a), suppose that $f: G \longrightarrow G'$ is any homomorphism. Then Ker $f \subseteq f^{-1}(B)$ and $B \subseteq f(f^{-1}(B))$ for all $B \leq G'$. If f is surjective then $B = f(f^{-1}(B))$. Let $A \leq G$. Then $A \subseteq f^{-1}(f(A))$. If Ker $f \subseteq A$ then $A = f^{-1}(f(A))$. As for part (b), observe that the composite $G \longrightarrow G' \longrightarrow G'/f(N)$ of f followed by the projection is surjective and has kernel $f^{-1}(f(N)) = N$; apply Theorem 1. \Box