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1. Page 560, number 4: (20 points) set £ = Q(v/2,v5,/7). Then E is a splitting field of
(22 —2)(2*—5)(2*> —7) over Q. By the Fundamental Theorem of Galois Theory K +— Gal(E/Q)
describes a bijective correspondence between the subfields of F' which contain Q(any subfield of
E must contain Q) and [K : Q] = [Gal(E/Q) : Gal(FE/K)]. Since |Gal(E/Q)| = 8 we conclude
that 4 = [K : Q] if and only if |Gal(K/Q)| = 2 (10).

We are given that Gal(E/Q ~ ZyxZyxZs. Writing G = Gal(E/Q) in multiplicative nota-
tion we have a? = e for all @ € G. Therefore there are 7 subgroups of G of order 2 which means
there are 7 subfields of E of degree 4 over Q (10).

2. Page 560, number 10: (20 points) E = Q(v/2,v/5) is a splitting field of (z? — 2)(z* — 5)
over Q (5). Now [E : Q] =4 by (C). Therefore 4 = [E': Q] = |Gal(E/Q)| by the Fundamental
Theorem of Galois Theory (5).

Note 2 = [Q(+/10) : Q] since v/10 is a root of x> — 10 € Q[x] which is irreducible by the
Eisenstein Criterion with p = 2 or p = 5 (5). Therefore 2 = [Q(v/10) : Q] = |Gal(Q(+/10)/Q)|
by the Fundamental Theorem of Galois Theory (5).

3. Page 561, number 12: (40 points) z° — 1 = (x — 1)(2* + x + 1). Let

be a primitive 37 root of unity. Then 23 — 1 = (z — 1)(z — w)(x — w?) which means that Q(w)
is a splitting field of 2° — 1 over Q and w is a root of (r —w)(z —w?) =22+ x+ 1 € Q[z]. The
latter implies that [Q(w) : Q] < 2. Since w ¢ R it follows that [Q(w) : Q] =2 (5).

Let £ = Q(w). By definition Gal(E/F) is the Galois group of z® — 1 over Q. By the
Fundamental Theorem of Galois Theory |Gal(E/Q)| = [E : Q] = 2 which means Gal(E/Q) ~
Z, (5).

Observe that % — 2 = (z — 2Y3)(z — w2'/?)(z — wW?2Y?). Therefore a splitting field of
23 —2over Qis B = Q(2'/3, w23 w?21/3) = Q(2'/3,w). The last equation holds since w =
(w2!/3)(21/3)~1 € E. By definition the Galois group of z° — 2 over Q is Gal(E/Q).

We have shown that [Q(w) : Q] = 2. Now [Q(2'3) : Q] = 3 since 2'/3 is a root of
23 —2 € Q] and the latter is irreducible by the Eisenstein Criterion with p = 2. Therefore [E :
Q] = [Q(w,2'3) : Q] = 6 by (D). By the Fundamental Theorem of Galois Theory |Gal(E/Q)| =
[E: Q] =6 (5).

Let 0 € Gal(E/Q). Then o(2'/3) € {2'/3 w2'/3 w223} = R, the set of roots of 2° — 2 in
E, by (A). Likewise o(w) € {w,w?} = Ry, the set of roots of 2 + x + 1 in E. Thus there are
|R1||R2| = 3x2 = 6 possible choices for the pair ((2'/3),0(w)). Since Gal(E/Q)| = 6, given
r1 € Ry and ry € R, there exists a o0 € Gal(F/Q) such that o(2'/3) = r; and o(w) = ry by (B).

Let 7,0 € Gal(E/Q) satisfy

T(w) =w? and 7(2Y3) =23 (5)



and
o(w) =w and o(2'3) = w23 (5).

Then 7,0 # Id. Note

as w? =1, and
72(21/3) = 7(7(21/3)) = 7'(21/3) — 2l/3,

Therefore 72 = Id by (B) which means 7 has order 2.
Likewise
(W) =w

and, since by induction ¢™(2'/3) = w"2'/3 for all n > 0, we have

03(21/3) — W391/3 — 91/3

as 0(w) = w implies w = 07! (w), and

7'07'*1(21/3) = 7(0(7(21/3))) = 7(0(21/3)) = T(w21/3) = T(w)7(21/3) = W23 = 02(21/3).

Therefore To77! = ¢% by (B) again, and thus 7o77! = 07! as ¢ has order 3 (5). Thus

Gal(E/Q) ~ D3 (5).
4. Page 561, number 16: (20 points) By the Fundamental Theorem of Galois Theory |Gal(E/F)| =
[E : F] is finite and the subgroups of G = Gal(E/F') are in one-one correspondence with the

subfields of E which contain F' (10). Since G is finite it has only finitely subgroups; thus E has
only finitely many subfields K which contain F' (10).



