1. Page 560 , number 4: ($\mathbf{2 0}$ points) set $E=\mathbf{Q}(\sqrt{2}, \sqrt{5}, \sqrt{7})$. Then E is a splitting field of $\left(x^{2}-2\right)\left(x^{2}-5\right)\left(x^{2}-7\right)$ over \mathbf{Q}. By the Fundamental Theorem of Galois Theory $K \mapsto \operatorname{Gal}(E / \mathbf{Q})$ describes a bijective correspondence between the subfields of F which contain \mathbf{Q} (any subfield of E must contain $\mathbf{Q})$ and $[K: \mathbf{Q}]=[\operatorname{Gal}(E / \mathbf{Q}): \operatorname{Gal}(E / K)]$. Since $|\operatorname{Gal}(E / \mathbf{Q})|=8$ we conclude that $4=[K: \mathbf{Q}]$ if and only if $|\operatorname{Gal}(K / \mathbf{Q})|=2(\mathbf{1 0})$.

We are given that $\operatorname{Gal}\left(E / \mathbf{Q} \simeq \mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2}\right.$. Writing $G=\operatorname{Gal}(E / \mathbf{Q})$ in multiplicative notation we have $a^{2}=e$ for all $a \in G$. Therefore there are 7 subgroups of G of order 2 which means there are 7 subfields of E of degree 4 over \mathbf{Q} (10).
2. Page 560 , number 10: ($\mathbf{2 0}$ points) $E=\mathbf{Q}(\sqrt{2}, \sqrt{5})$ is a splitting field of $\left(x^{2}-2\right)\left(x^{2}-5\right)$ over $\mathbf{Q}(5)$. Now $[E: \mathbf{Q}]=4$ by (C). Therefore $4=[E: \mathbf{Q}]=|\operatorname{Gal}(E / \mathbf{Q})|$ by the Fundamental Theorem of Galois Theory (5).

Note $2=[\mathbf{Q}(\sqrt{10}): \mathbf{Q}]$ since $\sqrt{10}$ is a root of $x^{2}-10 \in \mathbf{Q}[x]$ which is irreducible by the Eisenstein Criterion with $p=2$ or $p=5(\mathbf{5})$. Therefore $2=[\mathbf{Q}(\sqrt{10}): \mathbf{Q}]=|\operatorname{Gal}(\mathbf{Q}(\sqrt{10}) / \mathbf{Q})|$ by the Fundamental Theorem of Galois Theory (5).
3. Page 561, number 12: ($\mathbf{4 0}$ points) $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$. Let

$$
\omega=e^{2 \pi \imath / 3}=\cos \left(\frac{2 \pi \imath}{3}\right)+\imath \sin \left(\frac{2 \pi \imath}{3}\right)=-\frac{1}{2}+\frac{\sqrt{3}}{2} \imath
$$

be a primitive $3^{r d}$ root of unity. Then $x^{3}-1=(x-1)(x-\omega)\left(x-\omega^{2}\right)$ which means that $\mathbf{Q}(\omega)$ is a splitting field of $x^{3}-1$ over \mathbf{Q} and ω is a root of $(x-\omega)\left(x-\omega^{2}\right)=x^{2}+x+1 \in \mathbf{Q}[x]$. The latter implies that $[\mathbf{Q}(\omega): \mathbf{Q}] \leq 2$. Since $\omega \notin \mathbf{R}$ it follows that $[\mathbf{Q}(\omega): \mathbf{Q}]=2$ (5).

Let $E=\mathbf{Q}(\omega)$. By definition $\operatorname{Gal}(E / F)$ is the Galois group of $x^{3}-1$ over \mathbf{Q}. By the Fundamental Theorem of Galois Theory $|\operatorname{Gal}(E / \mathbf{Q})|=[E: \mathbf{Q}]=2$ which means $\operatorname{Gal}(E / \mathbf{Q}) \simeq$ Z_{2} (5).

Observe that $x^{3}-2=\left(x-2^{1 / 3}\right)\left(x-\omega 2^{1 / 3}\right)\left(x-\omega^{2} 2^{1 / 3}\right)$. Therefore a splitting field of $x^{3}-2$ over \mathbf{Q} is $E=\mathbf{Q}\left(2^{1 / 3}, \omega 2^{1 / 3}, \omega^{2} 2^{1 / 3}\right)=\mathbf{Q}\left(2^{1 / 3}, \omega\right)$. The last equation holds since $\omega=$ $\left(\omega 2^{1 / 3}\right)\left(2^{1 / 3}\right)^{-1} \in E$. By definition the Galois group of $x^{3}-2$ over \mathbf{Q} is $\operatorname{Gal}(E / \mathbf{Q})$.

We have shown that $[\mathbf{Q}(\omega): \mathbf{Q}]=2$. Now $\left[\mathbf{Q}\left(2^{1 / 3}\right): \mathbf{Q}\right]=3$ since $2^{1 / 3}$ is a root of $x^{3}-2 \in \mathbf{Q}[x]$ and the latter is irreducible by the Eisenstein Criterion with $p=2$. Therefore $[E:$ $\mathbf{Q}]=\left[\mathbf{Q}\left(\omega, 2^{1 / 3}\right): \mathbf{Q}\right]=6$ by (D). By the Fundamental Theorem of Galois Theory $|\operatorname{Gal}(E / \mathbf{Q})|=$ $[E: \mathbf{Q}]=6(5)$.

Let $\sigma \in \operatorname{Gal}(E / \mathbf{Q})$. Then $\sigma\left(2^{1 / 3}\right) \in\left\{2^{1 / 3}, \omega 2^{1 / 3}, \omega^{2} 2^{1 / 3}\right\}=R_{1}$, the set of roots of $x^{3}-2$ in E, by (A). Likewise $\sigma(\omega) \in\left\{\omega, \omega^{2}\right\}=R_{2}$, the set of roots of $x^{2}+x+1$ in E. Thus there are $\left|R_{1}\right|\left|R_{2}\right|=3 \times 2=6$ possible choices for the pair $\left(\sigma\left(2^{1 / 3}\right), \sigma(\omega)\right)$. Since $\operatorname{Gal}(E / \mathbf{Q}) \mid=6$, given $r_{1} \in R_{1}$ and $r_{2} \in R_{2}$ there exists a $\sigma \in \operatorname{Gal}(E / \mathbf{Q})$ such that $\sigma\left(2^{1 / 3}\right)=r_{1}$ and $\sigma(\omega)=r_{2}$ by (B).

Let $\tau, \sigma \in \operatorname{Gal}(E / \mathbf{Q})$ satisfy

$$
\begin{equation*}
\tau(\omega)=\omega^{2} \text { and } \tau\left(2^{1 / 3}\right)=2^{1 / 3} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma(\omega)=\omega \text { and } \sigma\left(2^{1 / 3}\right)=\omega 2^{1 / 3} \tag{5}
\end{equation*}
$$

Then $\tau, \sigma \neq$ Id. Note

$$
\tau^{2}(\omega)=\tau(\tau(\omega))=\tau\left(\omega^{2}\right)=\tau(\omega)^{2}=\left(\omega^{2}\right)^{2}=\omega^{4}=\omega
$$

as $\omega^{3}=1$, and

$$
\tau^{2}\left(2^{1 / 3}\right)=\tau\left(\tau\left(2^{1 / 3}\right)\right)=\tau\left(2^{1 / 3}\right)=2^{1 / 3}
$$

Therefore $\tau^{2}=\mathrm{Id}$ by (B) which means τ has order 2 .
Likewise

$$
\sigma^{3}(\omega)=\omega
$$

and, since by induction $\sigma^{n}\left(2^{1 / 3}\right)=\omega^{n} 2^{1 / 3}$ for all $n \geq 0$, we have

$$
\sigma^{3}\left(2^{1 / 3}\right)=\omega^{3} 2^{1 / 3}=2^{1 / 3} .
$$

Therefore $\sigma^{3}=\mathrm{Id}$ by (B) again and thus has order 3. Since $\tau^{-1}=\tau$,

$$
\tau \sigma \tau^{-1}(\omega)=\tau(\sigma(\tau(\omega)))=\tau\left(\sigma\left(\omega^{2}\right)\right)=\tau\left(\sigma(\omega)^{2}\right)=\tau\left(\omega^{2}\right)=\tau(\omega)^{2}=\left(\omega^{2}\right)^{2}=\omega^{4}=\omega=\sigma^{-1}(\omega),
$$

as $\sigma(\omega)=\omega$ implies $\omega=\sigma^{-1}(\omega)$, and

$$
\tau \sigma \tau^{-1}\left(2^{1 / 3}\right)=\tau\left(\sigma\left(\tau\left(2^{1 / 3}\right)\right)\right)=\tau\left(\sigma\left(2^{1 / 3}\right)\right)=\tau\left(\omega 2^{1 / 3}\right)=\tau(\omega) \tau\left(2^{1 / 3}\right)=\omega^{2} 2^{1 / 3}=\sigma^{2}\left(2^{1 / 3}\right)
$$

Therefore $\tau \sigma \tau^{-1}=\sigma^{2}$ by (B) again, and thus $\tau \sigma \tau^{-1}=\sigma^{-1}$ as σ has order 3 (5). Thus $\operatorname{Gal}(E / \mathbf{Q}) \simeq \mathrm{D}_{3}(5)$.
4. Page 561, number 16: (20 points) By the Fundamental Theorem of Galois Theory $|\operatorname{Gal}(E / F)|=$ $[E: F]$ is finite and the subgroups of $G=\operatorname{Gal}(E / F)$ are in one-one correspondence with the subfields of E which contain $F(\mathbf{1 0})$. Since G is finite it has only finitely subgroups; thus E has only finitely many subfields K which contain $F(\mathbf{1 0})$.

