1. Page 449, number 8: (20 points) Let $G = \langle \alpha, \beta \rangle$, where $\alpha = (12)(34)$ and $\beta = (24)$. Then $G = \langle \alpha\beta, \beta \rangle$ and $b = \alpha\beta = (12)(34)(24) = (1234)$. Set $a = \beta$. Then $\boxed{a^2 = b^4 = I}$; indeed the order of a is 2 and the order of b is 4. (6)

The calculation

$$aba^{-1} = aba = (24)(1234)(24) = (1432) = (1234)^{-1} = b^{-1}$$

shows that $[ab = b^3a]$. Using the last boxed relation one can show that the elements of G, that is the expressions of the form $a^{m_1}b^{n_1}\cdots a^{m_r}b^{n_r}$, where $r \ge 1$ and $m_i, n_i \ge 0$ can be written as $b^m a^n$ for some $n, m \ge 0$ and hence $b^m a^n$, where $0 \le m < 4$ and $0 \le n < 2$ by the first boxed relations. Therefore $|G| \le 4 \cdot 2 = 8$. (7)

Now $|\langle b \rangle| = 4$ so 4 divides |G| by Lagrange's Theorem. Hence |G| = 4s for some $s \ge 1$. Since $|G| \le 8$ either s = 1 or s = 2. Note $a \notin \langle b \rangle$ as a is an odd permutation and cyclic group $\langle b \rangle$ consists of even permutations. Therefore |G| > 4 which means s = 2 and |G| = 8. We have shown that $G \simeq D_4$. (7)

2. Page 449, number 12(a): (20 points) $a^2 = b^4 = e$, $ab = b^3a$. Therefore $aba = b^3$ and

$$a^{3}b^{2}abab^{3} = a^{3}b^{2}\underline{aba}b^{3} = a^{3}b^{2}\underline{b^{3}}b^{3} = \underline{a^{3}}b^{8} = \underline{a}\underline{e} = a.$$

3. Page 450, number 16: (40 points) Suppose $G \neq (e)$ and $|G| \leq 11$. Then |G| = 8, in which case G is classified by Theorem 26.4 (5), or for some positive prime p the order of G is (1) p (5), (2) p^2 , or (3) 2p where 2 < p. If (1) holds then $G \simeq \mathbb{Z}_p$. If (2) holds then G is abelian by the corollary to Theorem 24.2. Thus $G \simeq \mathbb{Z}_{p^2}$ or $G \simeq \mathbb{Z}_p \times \mathbb{Z}_p$ by the Fundamental Theorem of Finite Abelian Groups (5). It turns out that (3) is the interesting case.

Suppose that |G| = 2p, where 2 < p and p is prime. By Cauchy's Theorem there are elements $a, b \in G$ with orders 2 and p respectively (5). Let $N = \langle b \rangle$. Then |N| = p; thus [G : N] = 2 which means that N is a normal subgroup of G and if H is a subgroup of G such that $N \subseteq H \subseteq G$ then H = N or H = G. Now $a \notin N$ since all elements in N, except e have order $p \neq 2$. Therefore N s a proper subgroup of $\langle a, b \rangle$ which means that $G = \langle a, b \rangle$ (5).

Since N is a normal subgroup of G we have $aba^{-1} = b^{\ell}$, or equivalently $ab = b^{\ell}a$, for some $0 \leq \ell < p$. As $aba^{-1} = e$ implies b = e necessarily $1 \leq \ell < p$. Since

$$b = a^{2}ba^{-2} = a(aba^{-1})a^{-1} = ab^{\ell}a^{-1} = (aba^{-1})^{\ell} = (b^{\ell})^{\ell} = b^{\ell^{2}}$$

it follows that $b^{\ell^2-1} = e$, or $p|(\ell^2-1)$, or equivalently $p|(\ell-1)(\ell+1)$. Since $0 \leq \ell-1 < p-1$ and $2 \leq \ell+1 \leq p$ it follows that $\ell = 1$ or $\ell = p-1$ (5). In any case there are at most $p \cdot 2$ expressions of the form that is the expressions of the form $a^{m_1}b^{n_1}\cdots a^{m_r}b^{n_r}$, where $r \geq 1$ and $m_i, n_i \geq 0$; see the solution to Problem 1 (5).

Thus G has generators a, b and relations $a^2 = b^4 = e$, and $ab = b^{\ell}a$ where $\ell = 1$ or $\ell = p - 1$. This means there at most two groups of order 2p up to isomorphism. We know of two, namely \mathbf{Z}_{2p} and D_p . These are not isomorphic since the first is abelian and the second not. This for (2) there are two possibilities: $G \simeq \mathbf{Z}_{2p}$ and $G \simeq D_p$ (5).

4. Page 450, number 24: (20 points) First of all we observe that $G = \{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} | a, b, c, \in \mathbb{Z}_2 \}$

is an 8-element subgroup of the group of units (invertible matrices) $M_3(\mathbf{Z}_2)^{\times}$ of the ring $M_3(\mathbf{Z}_2)$. Let

 $\mathbf{b} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } \mathbf{a} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (5). The following calculations are omitted: **b** has order 4, **a** has order 2, **aba** = **b**³, and **a** \neq **b**². Thus $\mathbf{b}^4 = \mathbf{a}^2 = e$, **aba** = **b**³ (5). Since **a** \neq **cb**> as **b**² is the only element if $\langle \mathbf{b} \rangle$ of order 2, and $\langle \mathbf{b} \rangle \subseteq \langle \mathbf{a}, \mathbf{b} \rangle \subseteq G$ implies $|\langle \mathbf{a}, \mathbf{b} \rangle| = 4m$, where m = 1or m = 2, then $m \neq 1$ and thus m = 2 and consequently G is generated by **a** and **b** (5). Therefore $G \simeq D_4$ (5).