1. Page 449, number 8: (20 points) Let $G=\langle\alpha, \beta\rangle$, where $\alpha=(12)(34)$ and $\beta=(24)$. Then $G=\langle\alpha \beta, \beta\rangle$ and $b=\alpha \beta=(12)(34)(24)=(1234)$. Set $a=\beta$. Then $a^{2}=b^{4}=\mathrm{I}$; indeed the order of a is 2 and the order of b is 4. (6)

The calculation

$$
a b a^{-1}=a b a=(24)(1234)(24)=(1432)=(1234)^{-1}=b^{-1}
$$

shows that $a b=b^{3} a$. Using the last boxed relation one can show that the elements of G, that is the expressions of the form $a^{m_{1}} b^{n_{1}} \cdots a^{m_{r}} b^{n_{r}}$, where $r \geq 1$ and $m_{i}, n_{i} \geq 0$ can be written as $b^{m} a^{n}$ for some $n, m \geq 0$ and hence $b^{m} a^{n}$, where $0 \leq m<4$ and $0 \leq n<2$ by the first boxed relations. Therefore $|G| \leq 4 \cdot 2=8$. (7)

Now $|<b\rangle \mid=4$ so 4 divides $|G|$ by Lagrange's Theorem. Hence $|G|=4 s$ for some $s \geq 1$. Since $|G| \leq 8$ either $s=1$ or $s=2$. Note $a \notin\langle b\rangle$ as a is an odd permutation and cyclic group $$ consists of even permutations. Therefore $|G|>4$ which means $s=2$ and $|G|=8$. We have shown that $G \simeq D_{4}$. (7)
2. Page 449, number 12(a): (20 points) $a^{2}=b^{4}=e, a b=b^{3} a$. Therefore $a b a=b^{3}$ and

$$
a^{3} b^{2} a b a b^{3}=a^{3} b^{2} \underline{a b a b} b^{3}=a^{3} b^{2} \underline{b^{3}} b^{3}=\underline{a^{3}} \underline{b^{8}}=\underline{a} \underline{e}=a .
$$

3. Page 450, number 16: (40 points) Suppose $G \neq(e)$ and $|G| \leq 11$. Then $|G|=8$, in which case G is classified by Theorem 26.4 (5), or for some positive prime p the order of G is (1) $p(5)$, (2) p^{2}, or (3) $2 p$ where $2<p$. If (1) holds then $G \simeq \mathbf{Z}_{p}$. If (2) holds then G is abelian by the corollary to Theorem 24.2. Thus $G \simeq \mathbf{Z}_{p^{2}}$ or $G \simeq \mathbf{Z}_{p} \times \mathbf{Z}_{p}$ by the Fundamental Theorem of Finite Abelian Groups (5). It turns out that (3) is the interesting case.

Suppose that $|G|=2 p$, where $2<p$ and p is prime. By Cauchy's Theorem there are elements $a, b \in G$ with orders 2 and p respectively (5). Let $N=\langle b\rangle$. Then $|N|=p$; thus $[G: N]=2$ which means that N is a normal subgroup of G and if H is a subgroup of G such that $N \subseteq H \subseteq G$ then $H=N$ or $H=G$. Now $a \notin N$ since all elements in N, except e have order $p \neq 2$. Therefore N s a proper subgroup of $\langle a, b\rangle$ which means that $G=\langle a, b\rangle$ (5).

Since N is a normal subgroup of G we have $a b a^{-1}=b^{\ell}$, or equivalently $a b=b^{\ell} a$, for some $0 \leq \ell<p$. As $a b a^{-1}=e$ implies $b=e$ necessarily $1 \leq \ell<p$. Since

$$
b=a^{2} b a^{-2}=a\left(a b a^{-1}\right) a^{-1}=a b^{\ell} a^{-1}=\left(a b a^{-1}\right)^{\ell}=\left(b^{\ell}\right)^{\ell}=b^{\ell^{2}}
$$

it follows that $b^{\ell^{2}-1}=e$, or $p \mid\left(\ell^{2}-1\right)$, or equivalently $p \mid(\ell-1)(\ell+1)$. Since $0 \leq \ell-1<p-1$ and $2 \leq \ell+1 \leq p$ it follows that $\ell=1$ or $\ell=p-1$ (5). In any case there are at most $p \cdot 2$ expressions of the form that is the expressions of the form $a^{m_{1}} b^{n_{1}} \ldots a^{m_{r}} b^{n_{r}}$, where $r \geq 1$ and $m_{i}, n_{i} \geq 0$; see the solution to Problem 1 (5).

Thus G has generators a, b and relations $a^{2}=b^{4}=e$, and $a b=b^{\ell} a$ where $\ell=1$ or $\ell=p-1$. This means there at most two groups of order $2 p$ up to isomorphism. We know of two, namely $\mathbf{Z}_{2 p}$ and D_{p}. These are not isomorphic since the first is abelian and the second not. This for (2) there are two possibilities: $G \simeq \mathbf{Z}_{2 p}$ and $G \simeq D_{p}$ (5).
4. Page 450, number 24: (20 points) First of all we observe that $G=\left\{\left.\left(\begin{array}{ccc}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right) \right\rvert\, a, b, c, \in \mathbf{Z}_{2}\right\}$ is an 8-element subgroup of the group of units (invertible matrices) $\mathrm{M}_{3}\left(\mathbf{Z}_{2}\right)^{\times}$of the ring $\mathrm{M}_{3}\left(\mathbf{Z}_{2}\right)$. Let $\mathbf{b}=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ and $\mathbf{a}=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ (5). The following calculations are omitted: \mathbf{b} has order 4, \mathbf{a} has order $2, \mathbf{a b a}=\mathbf{b}^{3}$, and $\mathbf{a} \neq \mathbf{b}^{2}$. Thus $\mathbf{b}^{4}=\mathbf{a}^{2}=e, \mathbf{a b a}=\mathbf{b}^{3}$ (5). Since $\mathbf{a} \notin<\mathbf{b}>$ as \mathbf{b}^{2} is the only element if $\langle\mathbf{b}\rangle$ of order 2 , and $\langle\mathbf{b}\rangle \subseteq<\mathbf{a}, \mathbf{b}\rangle \subseteq G$ implies $|<\mathbf{a}, \mathbf{b}\rangle \mid=4 m$, where $m=1$ or $m=2$, then $m \neq 1$ and thus $m=2$ and consequently G is generated by a and $\mathbf{b}(5)$. Therefore $G \simeq D_{4}(5)$.

