Let R be a commutative ring with unity. Recall that R^{\times}denotes the multiplicative group of units of R. Let $a \in R$. We have shown that

$$
\begin{equation*}
<a>=R \text {, that is } R a=R \text {, if and only if } a \in R^{\times} . \tag{1}
\end{equation*}
$$

Throughout $R=D$ is an integral domain.

1. Page 333, number 2: ($\mathbf{2 0}$ points) Suppose that $a, b \in D$ are associates. We show that $\langle a\rangle=\langle b\rangle$.

By definition $a=u b$ for some $u \in D^{\times}$. The calculation $r a=r(u b)=(r u) b$ for all $r \in R$ shows that $\langle a\rangle=R a \subseteq R b=\subseteq<b\rangle$ (4). Now $u^{-1} \in D^{\times}$and $a=u b$ implies $b=u^{-1} a$. We have shown $\langle b\rangle \subseteq\langle a\rangle$ (4). Therefore $\langle a\rangle=\langle b\rangle$ (2).

Conversely, suppose that $\langle a\rangle=\langle b\rangle$. We show that a and b are associates.
Since $a=1 a \in R a=\langle a\rangle=\langle b\rangle=R b$ it follows that $a=r b$ for some $r \in R$ (4). $\langle a\rangle=\langle b\rangle$ implies $\langle b\rangle=\langle a\rangle$. Therefore there is an $s \in D$ such that $b=s a$. Thus

$$
1 a=a=r b=r(s a)=(r s) a .
$$

If $a \neq 0$ then $1=r s$ by cancellation which means $r, s \in D^{\times}$. Therefore a and b are associates (4).

Suppose $a=0$. Then $b=0$ in which case a, b are associates $(0=1 \cdot 0)(\mathbf{2})$. We have shown that a and b are associates in any case.
2. Page 333, number 4: ($\mathbf{2 0}$ points) Suppose $a \in D$ is irreducible and $u \in D^{\times}$. We show that $u a$ is irreducible.

First of all $u a \neq 0$ since $u, a \neq 0$ and D is an integral domain. Now $u a \notin D^{\times}$; else $u a \in D^{\times}$and therefore $a=u^{-1}(u a) \in D^{\times}$. We have shown that $u a$ is a non-zero non-unit (3).

Suppose that $u a=b c$, where $b, c \in D(7)$. Then $a=\left(u^{-1} b\right) c$. Since a is irreducible either $u^{-1} b \in D^{\times}$, in which case $b=u\left(u^{-1} b\right) \in D^{\times}$, or $c \in D^{\times}$. We have shown that ua is irreducible (10).
3. Page 333, number 6: (20 points) Let $a \in D$. Then $a \sim b$ since $a=1 a$ (6). Suppose $a, b \in D$ and $a \sim b$. Then $a=u b$ for some $u \in D^{\times}$. Since $b=u^{-1} a$ and $u^{-1} \in D^{\times}$, by definition $b \sim a(7)$.

Suppose that $a, b, c \in D$ and $a \sim b, b \sim c$. Then $a=u b$ and $b=v c$ for some $u, v \in D^{\times}$. Since $u v \in D^{\times}$and $a=u b=u(v c)=(u v) c$ by definition $a \sim c(7)$.

We have shown that " \sim " is an equivalence relation on D.
4. Page 333, number 10: (20 points) We must assume $p \neq 0$ for the conclusion of the problem to be correct. Here D is a PID.

Suppose that $\langle p\rangle$ is a maximal ideal. We show that p is irreducible.

If $p \in D^{\times}$then $\langle p\rangle=D$. Since maximal ideals are proper by definition, $p \notin D^{\times}$. Thus p is a non-zero non-unit (2).

Let $a, b \in D$ and suppose $p=a b$. We must show that a or b is a unit, that is $a \in D^{\times}$ or $b \in D^{\times}(2)$.

Now $\langle p\rangle \subseteq\langle a\rangle$. Since $\langle p\rangle$ is maximal, either $\langle a\rangle=D$, in which case $a \in D^{\times}$ by (1) (2), or $\langle a\rangle=\langle p\rangle$, in which case p, a are associates by Exercise $2(2)$. In the latter case $p=u a$ for some $u \in D^{\times}$. But then $u a=p=a b=b a$. Now $a \neq 0$ since $p \neq 0$; thus $b=u$ by cancellation (2). We have shown $a \in D^{\times}$or $b \in D^{\times}$; thus p is irreducible.

Conversely, suppose that p is irreducible. We will show that $\langle p\rangle$ is a maximal ideal of D.

Since $p \notin D^{\times}$the ideal $\langle p\rangle$ is proper by (1) (2). Suppose that I is an ideal of D and $\langle p\rangle \subseteq I$. Since D is a PID, $I=\langle a\rangle$ for some $a \in D$. Now $p \in\langle p\rangle \subseteq I=<a\rangle$ implies $p=r a=a r$ for some $r \in D(\mathbf{2})$. Since p is irreducible $a \in D^{\times}$, in which case $I=\langle a\rangle=D$, or $r \in D^{\times}(\mathbf{2})$, in which case p and a are associates and thus $\langle p\rangle=\langle a\rangle=I$ by Exercise 1 (2). We have shown that $\langle p\rangle$ is a maximal ideal of D (2).
5. Page 333, number 12: ($\mathbf{2 0}$ points) Suppose that I is a non-zero proper ideal of D. Then $I=\langle a\rangle$ for some $a \in D$ since D is a PID. Now $a \notin D^{\times}$by (1). $a \neq 0$ since $I \neq(0)$. Therefore a is a non-zero non-unit (4).

Now D is a UFD since it is a PID. Therefore a has a factorization into irreducibles (4) which means $a=p c$ for some irreducible $p \in D$ and $c \in D$ (4). Consequently $I=\langle a\rangle=R a \subseteq R p=\langle p\rangle(4)$ and the latter is a maximal ideal of D by Exercise 4 .

Suppose $I=(0)$. We have shown that if D has a proper non-zero ideal then it has a maximal ideal J and necessarily $I=(0) \subseteq J$. If D has no non-zero proper ideals then $I=(0)$ is maximal (4). (In this case D is a field by (1)).

