MATH 431 Written Homework 3 Solution Radford 02/07/09

Let R be a commutative ring with unity. Recall that R^{\times} denotes the multiplicative group of units of R. Let $a \in R$. We have shown that

$$\langle a \rangle = R$$
, that is $Ra = R$, if and only if $a \in R^{\times}$. (1)

Throughout R = D is an integral domain.

1. Page 333, number 2: (20 points) Suppose that $a, b \in D$ are associates. We show that $\langle a \rangle = \langle b \rangle$.

By definition a = ub for some $u \in D^{\times}$. The calculation ra = r(ub) = (ru)b for all $r \in R$ shows that $\langle a \rangle = Ra \subseteq Rb = \subseteq \langle b \rangle$ (4). Now $u^{-1} \in D^{\times}$ and a = ub implies $b = u^{-1}a$. We have shown $\langle b \rangle \subseteq \langle a \rangle$ (4). Therefore $\langle a \rangle = \langle b \rangle$ (2).

Conversely, suppose that $\langle a \rangle = \langle b \rangle$. We show that a and b are associates.

Since $a = 1a \in Ra = \langle a \rangle = \langle b \rangle = Rb$ it follows that a = rb for some $r \in R$ (4). $\langle a \rangle = \langle b \rangle$ implies $\langle b \rangle = \langle a \rangle$. Therefore there is an $s \in D$ such that b = sa. Thus

$$1a = a = rb = r(sa) = (rs)a.$$

If $a \neq 0$ then 1 = rs by cancellation which means $r, s \in D^{\times}$. Therefore a and b are associates (4).

Suppose a = 0. Then b = 0 in which case a, b are associates $(0 = 1 \cdot 0)$ (2). We have shown that a and b are associates in any case.

2. Page 333, number 4: (20 points) Suppose $a \in D$ is irreducible and $u \in D^{\times}$. We show that ua is irreducible.

First of all $ua \neq 0$ since $u, a \neq 0$ and D is an integral domain. Now $ua \notin D^{\times}$; else $ua \in D^{\times}$ and therefore $a = u^{-1}(ua) \in D^{\times}$. We have shown that ua is a non-zero non-unit (3).

Suppose that ua = bc, where $b, c \in D$ (7). Then $a = (u^{-1}b)c$. Since a is irreducible either $u^{-1}b \in D^{\times}$, in which case $b = u(u^{-1}b) \in D^{\times}$, or $c \in D^{\times}$. We have shown that ua is irreducible (10).

3. Page 333, number 6: (20 points) Let $a \in D$. Then $a \sim b$ since a = 1a (6). Suppose $a, b \in D$ and $a \sim b$. Then a = ub for some $u \in D^{\times}$. Since $b = u^{-1}a$ and $u^{-1} \in D^{\times}$, by definition $b \sim a$ (7).

Suppose that $a, b, c \in D$ and $a \sim b, b \sim c$. Then a = ub and b = vc for some $u, v \in D^{\times}$. Since $uv \in D^{\times}$ and a = ub = u(vc) = (uv)c by definition $a \sim c$ (7).

We have shown that " \sim " is an equivalence relation on D.

4. Page 333, number 10: (20 points) We must assume $p \neq 0$ for the conclusion of the problem to be correct. Here D is a PID.

Suppose that $\langle p \rangle$ is a maximal ideal. We show that p is irreducible.

If $p \in D^{\times}$ then $\langle p \rangle = D$. Since maximal ideals are proper by definition, $p \notin D^{\times}$. Thus p is a non-zero non-unit (2).

Let $a, b \in D$ and suppose p = ab. We must show that a or b is a unit, that is $a \in D^{\times}$ or $b \in D^{\times}$ (2).

Now $\langle p \rangle \subseteq \langle a \rangle$. Since $\langle p \rangle$ is maximal, either $\langle a \rangle = D$, in which case $a \in D^{\times}$ by (1) (2), or $\langle a \rangle = \langle p \rangle$, in which case p, a are associates by Exercise 2 (2). In the latter case p = ua for some $u \in D^{\times}$. But then ua = p = ab = ba. Now $a \neq 0$ since $p \neq 0$; thus b = u by cancellation (2). We have shown $a \in D^{\times}$ or $b \in D^{\times}$; thus p is irreducible.

Conversely, suppose that p is irreducible. We will show that $\langle p \rangle$ is a maximal ideal of D.

Since $p \notin D^{\times}$ the ideal $\langle p \rangle$ is proper by (1) (2). Suppose that I is an ideal of Dand $\langle p \rangle \subseteq I$. Since D is a PID, $I = \langle a \rangle$ for some $a \in D$. Now $p \in \langle p \rangle \subseteq I = \langle a \rangle$ implies p = ra = ar for some $r \in D$ (2). Since p is irreducible $a \in D^{\times}$, in which case $I = \langle a \rangle = D$, or $r \in D^{\times}$ (2), in which case p and a are associates and thus $\langle p \rangle = \langle a \rangle = I$ by Exercise 1 (2). We have shown that $\langle p \rangle$ is a maximal ideal of D(2).

5. Page 333, number 12: (20 points) Suppose that I is a non-zero proper ideal of D. Then $I = \langle a \rangle$ for some $a \in D$ since D is a PID. Now $a \notin D^{\times}$ by (1). $a \neq 0$ since $I \neq (0)$. Therefore a is a non-zero non-unit (4).

Now D is a UFD since it is a PID. Therefore a has a factorization into irreducibles (4) which means a = pc for some irreducible $p \in D$ and $c \in D$ (4). Consequently $I = \langle a \rangle = Ra \subseteq Rp = \langle p \rangle$ (4) and the latter is a maximal ideal of D by Exercise 4.

Suppose I = (0). We have shown that if D has a proper non-zero ideal then it has a maximal ideal J and necessarily $I = (0) \subseteq J$. If D has no non-zero proper ideals then I = (0) is maximal (4). (In this case D is a field by (1)).