1. Page 315, number 4: (20 points) Write $r=p / q$, where $p, q \in \mathbf{Z}$ and have no common prime factor. Since r is a root of $f(x)$ we may write $f(x)=(x-r) g(x)$ for some $g(x) \in \mathbf{Q}[x]$. Clearing denominators $a g(x)=b h(x)$ for some non-zero $a, b \in \mathbf{Z}$, where $h(x) \in \mathbf{Z}[x]$ and is primitive. Thus aqf $(x)=(q x-p) a g(x)=b(q x-p) h(x)$ (10). Now $(q x-p) h(x)$ is the product of primitive polynomials and is thus primitive. Therefore $a q= \pm b$ which means $f(x)= \pm(q x-p) h(x)(5)$.

By assumption $f(x)=a_{0}+\cdots+a_{n} x^{n} \in \mathbf{Z}[x]$, where $n \geq 0$ and $a_{n}=1$. Write $h(x)=b_{0}+\cdots+b_{m} x^{m} \in \mathbf{Z}[x]$. Then $1=a_{n}= \pm q b_{m}$ which means $q, b_{m} \in\{-1,1\}$. Therefore $r=p / q \in \mathbf{Z}$ (5).
2. Page 316, number 10: ($\mathbf{2 0}$ points) The polynomials of (a) and (c) are irreducible over \mathbf{Q} by the Eisenstein Criterion with $p=3(\mathbf{7}, \mathbf{7})$. Let $f(x)$ be the polynomial of (c) and $u \in \mathbf{Q}$ be non-zero, that is a unit u of \mathbf{Q}. Then $f(x)$ is irreducible over \mathbf{Q} if and only if $u f(x)$ is irreducible over \mathbf{Q}. Now $14 f(x)$ is irreducible over \mathbf{Q} by the Eisenstein criterion with $p=3$ again. Therefore $f(x)$ is irreducible over $\mathbf{Q}(\mathbf{6})$.

Parts (b) and (d) were not graded; however here are solutions. We apply the mod 2 test in both cases.

Part (b). $x^{4}+x+1 \in \mathbf{Z}[x]$ is primitive. Thus $x^{4}+x+1 \in \mathbf{Q}[x]$ is irreducible if and only if $x^{4}+x+1 \in \mathbf{Z}[x]$ is irreducible.

The $\bmod 2$ reduction of $x^{4}+x+1 \in \mathbf{Z}[x]$ is $f(x)=x^{4}+x+1 \in \mathbf{Z}_{2}[x]$. Since $f(a)=1 \neq 0$ for all $a \in \mathbf{Z} 2$ it follows that $f(x)$ has no linear factors.

Suppose that $f(x)$ is reducible. Then it must be the product of quadratic factors.
There are 3 quadratic reducible polynomials in $\mathbf{Z}_{2}[x]$; see the solution of Exercise 3 below. Thus there is 1 irreducible quadratic in $\mathbf{Z}_{2}[x]$ which is $x^{2}+x+1$ since this polynomial has no roots in $\mathbf{Z}_{2}[x]$. Therefore $f(x)=\left(x^{2}+x+1\right)^{2}=x^{4}+x^{2}+1$ which is not the case.

We have shown $f(x) \in \mathbf{Z}_{2}[x]$ is irreducible. Thus $x^{4}+x+1 \in \mathbf{Z}[x]$ is irreducible which means $x^{4}+x+1 \in \mathbf{Q}[x]$ is also.

Part (d). Note $x^{5}+5 x^{2}+1 \in \mathbf{Q}[x]$ as a polynomial in $\mathbf{Z}[x]$ is primitive and the mod 2 reduction is $f(x)=x^{5}+x^{2}+1 \in \mathbf{Z}_{2}[x]$. This polynomial has no roots in \mathbf{Z} which means $f(x)$ has no linear factors.

Suppose $f(x)$ is reducible. Then it is divisible by an irreducible quadratic which must be $x^{2}+x+1$ from part (b). Since $x^{5}+x^{2}+1=\left(x^{3}+x^{2}\right)\left(x^{2}+x+1\right)+1$, this is not possible by the Division Algorithm. Thus $f(x) \in \mathbf{Z}_{2}[x]$ is irreducible and therefore $x^{5}+5 x^{2}+1 \in \mathbf{Q}[x]$ is as well by the argument of part (b).
3. Page 316, number 16: (20 points) (a) We count the number of reducible polynomials in $\mathbf{Z}_{p}[x]$ of the form $x^{2}+a x+b$. These are of type $(x-d)^{2}$ or $(x-d)(x-e)=(x-e)(x-d)$, where $d \neq e$. There are p of the first type, $\binom{p}{2}$ of the second, and p^{2} of the form
$x^{2}+b x+c$. The number of irreducible polynomials of the form $x^{2}+a x+b$ is therefore $p^{2}-\left(p+\binom{p}{2}\right)=p(p-1)-\frac{p(p-1)}{2}=\frac{p(p-1)}{2}(\mathbf{1 0})$.
(b) Let $f(x) \in \mathbf{Z}_{p}[x]$ and $0 \neq u \in \mathbf{Z}_{p}$. Then $f(x)$ is irreducible if and only if $u f(x)$ is irreducible. Thus the number of irreducible polynomials in $\mathbf{Z}_{p}[x]$ of the form $a x^{2}+b x+c$, where $a \neq 0$, is $p-1$ times the answer in part (a). There are $\frac{(p-1)^{2} p}{2}$ of them (10).
4. Page 316, number 22: ($\mathbf{2 0}$ points) Suppose $\pi^{2}=a \pi+b$, or equivalently $\pi^{2}-a \pi-b=0$ (10), for some $a, b \in \mathbf{Q}$. Then π is a zero, or root, of the polynomial $f(x)=x^{2}-a x-b \in$ $\mathbf{Q}[x]$ which contradicts the given of the problem. Therefore $\pi^{2} \neq a \pi+b$ for all $a, b \in \mathbf{Q}$ (10).
5. Page 316, number 24: ($\mathbf{2 0}$ points) $f(x)=3 x^{2}+x+4 \in \mathbf{Z}_{7}[x]$. By the quadratic formula the roots of $f(x)$ in \mathbf{Z}_{7} are given by

$$
\begin{equation*}
\left((-1) \pm \sqrt{(-1)^{2}-4 \cdot 3 \cdot 4}\right)(2 \cdot 3)^{-1}=((-1) \pm \sqrt{2})(-1)^{-1}=(-1 \pm 3)(-1)=4,-2 \tag{5}
\end{equation*}
$$

or $4,5(5)$. Substitution yields $f(4)=0=f(5)(5)$. The quadratic formula holds if and only if $b^{2}-4 a c$ has a square root in $\mathbf{Z}_{p}(5)$.

