MATH 431 Written Homework 2 Solution Radford 02/05/09

1. Page 315, number 4: (20 points) Write r = p/q, where $p, q \in \mathbb{Z}$ and have no common prime factor. Since r is a root of f(x) we may write f(x) = (x - r)g(x) for some $g(x) \in \mathbb{Q}[x]$. Clearing denominators ag(x) = bh(x) for some non-zero $a, b \in \mathbb{Z}$, where $h(x) \in \mathbb{Z}[x]$ and is primitive. Thus aqf(x) = (qx - p)ag(x) = b(qx - p)h(x) (10). Now (qx - p)h(x) is the product of primitive polynomials and is thus primitive. Therefore $aq = \pm b$ which means $f(x) = \pm (qx - p)h(x)$ (5).

By assumption $f(x) = a_0 + \cdots + a_n x^n \in \mathbf{Z}[x]$, where $n \ge 0$ and $a_n = 1$. Write $h(x) = b_0 + \cdots + b_m x^m \in \mathbf{Z}[x]$. Then $1 = a_n = \pm q b_m$ which means $q, b_m \in \{-1, 1\}$. Therefore $r = p/q \in \mathbf{Z}$ (5).

2. Page 316, number 10: (20 points) The polynomials of (a) and (c) are irreducible over \mathbf{Q} by the Eisenstein Criterion with p = 3 (7, 7). Let f(x) be the polynomial of (c) and $u \in \mathbf{Q}$ be non-zero, that is a unit u of \mathbf{Q} . Then f(x) is irreducible over \mathbf{Q} if and only if uf(x) is irreducible over \mathbf{Q} . Now 14f(x) is irreducible over \mathbf{Q} by the Eisenstein criterion with p = 3 again. Therefore f(x) is irreducible over \mathbf{Q} (6).

Parts (b) and (d) were not graded; however here are solutions. We apply the mod 2 test in both cases.

Part (b). $x^4 + x + 1 \in \mathbb{Z}[x]$ is primitive. Thus $x^4 + x + 1 \in \mathbb{Q}[x]$ is irreducible if and only if $x^4 + x + 1 \in \mathbb{Z}[x]$ is irreducible.

The mod 2 reduction of $x^4 + x + 1 \in \mathbf{Z}[x]$ is $f(x) = x^4 + x + 1 \in \mathbf{Z}_2[x]$. Since $f(a) = 1 \neq 0$ for all $a \in \mathbf{Z}_2$ it follows that f(x) has no linear factors.

Suppose that f(x) is reducible. Then it must be the product of quadratic factors.

There are 3 quadratic *reducible* polynomials in $\mathbf{Z}_2[x]$; see the solution of Exercise 3 below. Thus there is 1 irreducible quadratic in $\mathbf{Z}_2[x]$ which is $x^2 + x + 1$ since this polynomial has no roots in $\mathbf{Z}_2[x]$. Therefore $f(x) = (x^2 + x + 1)^2 = x^4 + x^2 + 1$ which is not the case.

We have shown $f(x) \in \mathbf{Z}_2[x]$ is irreducible. Thus $x^4 + x + 1 \in \mathbf{Z}[x]$ is irreducible which means $x^4 + x + 1 \in \mathbf{Q}[x]$ is also.

Part (d). Note $x^5 + 5x^2 + 1 \in \mathbf{Q}[x]$ as a polynomial in $\mathbf{Z}[x]$ is primitive and the mod 2 reduction is $f(x) = x^5 + x^2 + 1 \in \mathbf{Z}_2[x]$. This polynomial has no roots in \mathbf{Z} which means f(x) has no linear factors.

Suppose f(x) is reducible. Then it is divisible by an irreducible quadratic which must be $x^2 + x + 1$ from part (b). Since $x^5 + x^2 + 1 = (x^3 + x^2)(x^2 + x + 1) + 1$, this is not possible by the Division Algorithm. Thus $f(x) \in \mathbf{Z}_2[x]$ is irreducible and therefore $x^5 + 5x^2 + 1 \in \mathbf{Q}[x]$ is as well by the argument of part (b).

3. Page 316, number 16: (20 points) (a) We count the number of *reducible* polynomials in $\mathbf{Z}_p[x]$ of the form $x^2 + ax + b$. These are of type $(x-d)^2$ or (x-d)(x-e) = (x-e)(x-d), where $d \neq e$. There are p of the first type, $\begin{pmatrix} p \\ 2 \end{pmatrix}$ of the second, and p^2 of the form $x^{2} + bx + c$. The number of *irreducible* polynomials of the form $x^{2} + ax + b$ is therefore $p^{2} - (p + {p \choose 2}) = p(p-1) - \frac{p(p-1)}{2} = \frac{p(p-1)}{2}$ (10).

(b) Let $f(x) \in \mathbf{Z}_p[x]$ and $0 \neq u \in \mathbf{Z}_p$. Then f(x) is irreducible if and only if uf(x) is irreducible. Thus the number of irreducible polynomials in $\mathbf{Z}_p[x]$ of the form $ax^2 + bx + c$, where $a \neq 0$, is p-1 times the answer in part (a). There are $\frac{(p-1)^2 p}{2}$ of them (10).

4. Page 316, number 22: (**20 points**) Suppose $\pi^2 = a\pi + b$, or equivalently $\pi^2 - a\pi - b = 0$ (**10**), for some $a, b \in \mathbf{Q}$. Then π is a zero, or root, of the polynomial $f(x) = x^2 - ax - b \in \mathbf{Q}[x]$ which contradicts the given of the problem. Therefore $\pi^2 \neq a\pi + b$ for all $a, b \in \mathbf{Q}$ (**10**).

5. Page 316, number 24: (20 points) $f(x) = 3x^2 + x + 4 \in \mathbb{Z}_7[x]$. By the quadratic formula the roots of f(x) in \mathbb{Z}_7 are given by

$$((-1) \pm \sqrt{(-1)^2 - 4 \cdot 3 \cdot 4})(2 \cdot 3)^{-1} = ((-1) \pm \sqrt{2})(-1)^{-1} = (-1 \pm 3)(-1) = 4, -2$$
(5)

or 4, 5 (5). Substitution yields f(4) = 0 = f(5) (5). The quadratic formula holds if and only if $b^2 - 4ac$ has a square root in \mathbf{Z}_p (5).