1. Page 268, number 4: (20 points) Let $S=\{(n, n) \mid n \in \mathbf{Z}\}$ (7). Then $S \neq \emptyset$ as $(0,0) \in S$. Suppose $(m, m),(n, n) \in S$. The calculations

$$
\begin{equation*}
(m, m)-(n, n)=(m-n, m-n) \in S \tag{4}
\end{equation*}
$$

and

$$
(m, m)(n, n)=(m n, m n) \in S
$$

show that S is a subring of $\mathbf{Z} \oplus \mathbf{Z}$. Since $(1,1) \in S$ and $(1,0)(1,1)=(1,0) \notin S$ it follows that S is not an ideal of $\mathbf{Z} \oplus \mathbf{Z}$ (5).
2. Page 269, number 16: (20 points) Let $a \in A$ and $b \in B$. Then $a b \in A$, since $a \in A$ and $a b \in B$ since $b \in B$. Therefore $a b \in A \cap B$. Since $A B$ consists of finite sums of the form ab, and $A \cap B$ is an additive subgroup of R, it follows that $A B \subseteq A \cap B$ (8).

Conversely, let $c \in A \cap B$. Since $A+B=R$, and R is a ring with unity, there are $a \in A$ and $b \in B$ such that $1=a+b(4)$. Thus $c=c 1=c a+c b=a c+c b$. Now $c \in B$ implies $a c \in A B$ and $c \in A$ which implies $c b \in A B$. Therefore $c \in A B$. We have shown $A \cap B \subseteq A B$. Thus $A \cap B=A B$ (8).
3. Page 286 , number 12: ($\mathbf{2 0}$ points) The authors seem to be assuming that $\mathbf{Z}[\sqrt{2}]$ and H are rings which really should be established. We do not require this for the exercise.

Define $f: \mathbf{Z}[\sqrt{2}] \longrightarrow H$ by

$$
f(a+b \sqrt{2})=\left(\begin{array}{cc}
a & 2 b \\
b & a
\end{array}\right)
$$

for all $a+b \sqrt{2} \in \mathbf{Z}[\sqrt{2}]$ (3). The function f is well defined since $\sqrt{2}$ is not rational; that is $a+b \sqrt{2}=a^{\prime}+b^{\prime} \sqrt{2}$ implies $a=a^{\prime}$ and $b=b^{\prime}$ for all $a, a^{\prime}, b, b^{\prime} \in \mathbf{Z}$. This point needs to be mentioned (2).

Let $a, a^{\prime}, b, b^{\prime} \in \mathbf{R}$. The calculations

$$
\begin{align*}
f\left((a+b \sqrt{2})+\left(a^{\prime}+b^{\prime} \sqrt{2}\right)\right) & =f\left(\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) \sqrt{2}\right) \\
& =\left(\begin{array}{cc}
a+a^{\prime} & 2\left(b+b^{\prime}\right) \\
b+b^{\prime} & a+a^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
a & 2 b \\
b & a
\end{array}\right)+\left(\begin{array}{cc}
a^{\prime} & 2 b^{\prime} \\
b^{\prime} & a^{\prime}
\end{array}\right) \\
& =f(a+b \sqrt{2})+f\left(a^{\prime}+b^{\prime} \sqrt{2}\right) \tag{5}
\end{align*}
$$

and

$$
\begin{aligned}
f\left((a+b \sqrt{2})\left(a^{\prime}+b^{\prime} \sqrt{2}\right)\right) & =f\left(\left(a a^{\prime}+2 b b^{\prime}\right)+\left(a b^{\prime}+a^{\prime} b\right) \sqrt{2}\right) \\
& =\left(\begin{array}{cc}
a a^{\prime}+2 b b^{\prime} & 2\left(a b^{\prime}+a^{\prime} b\right) \\
a b^{\prime}+a^{\prime} b & a a^{\prime}+2 b b^{\prime}
\end{array}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\left(\begin{array}{cc}
a & 2 b \\
b & a
\end{array}\right)\left(\begin{array}{cc}
a^{\prime} & 2 b^{\prime} \\
b^{\prime} & a^{\prime}
\end{array}\right) \\
& =f(a+b \sqrt{2}) f\left(a^{\prime}+b^{\prime} \sqrt{2}\right) \tag{5}
\end{align*}
$$

show that f is a ring homomorphism.
By definition f is surjective. Suppose that $f(a+b \sqrt{2})=f\left(a^{\prime}+b^{\prime} \sqrt{2}\right)$. Then $\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)=\left(\begin{array}{cc}a^{\prime} & 2 b^{\prime} \\ b^{\prime} & a^{\prime}\end{array}\right)$ which implies $a=a^{\prime}$ and $b=b^{\prime}$. Therefore $a+b \sqrt{2}=a^{\prime}+b^{\prime} \sqrt{2}$. We have shown that f is injective. Therefore f is bijective (5).
4. Page 299, number 24: (20 points) Let $d(x)=f(x)-g(x)$ (7). If $a \in F$ and $f(a)=g(a)$ then $d(a)=f(a)-g(a)=0$. Thus by assumption $d(x)$ has an infinite number of roots (7). By $\S 16$ Corollary $3 d(x)=0$ which means $f(x)=g(x)(\mathbf{6})$.
5. Page 299, number 24: (20 points) Since $f(a)=0$, by $\S 16$ Corollary $2 f(x)=$ $(x-a) g(x)$ for some $g(x) \in \mathbf{R}[x]$ (5). Write $f(x)=(x-a)^{n} h(x)$, where $n \geq 1$ and $h(x) \in \mathbf{R}[x]$ (5). Then $f^{\prime}(x)=n(x-a)^{n-1} h(x)+(x-a)^{n} h^{\prime}(x)$ (5) means that $0 \neq f^{\prime}(a)=n(a-a)^{n-1} h(a)+(a-a)^{n} h^{\prime}(a)=n(a-a)^{n-1} h(a)$ and thus $n=1(n>1$ implies $\left.(a-a)^{n-1}=0\right)(5)$.

