MATH 431 Written Homework 1 Solution Radford 02/01/09

1. Page 268, number 4: (20 points) Let $S = \{(n,n) | n \in \mathbb{Z}\}$ (7). Then $S \neq \emptyset$ as $(0,0) \in S$. Suppose $(m,m), (n,n) \in S$. The calculations

$$(m,m) - (n,n) = (m-n,m-n) \in S$$
 (4)

and

$$(m,m)(n,n) = (mn,mn) \in S$$
 (4)

show that S is a subring of $\mathbb{Z} \oplus \mathbb{Z}$. Since $(1,1) \in S$ and $(1,0)(1,1) = (1,0) \notin S$ it follows that S is not an ideal of $\mathbb{Z} \oplus \mathbb{Z}$ (5).

2. Page 269, number 16: (20 points) Let $a \in A$ and $b \in B$. Then $ab \in A$, since $a \in A$ and $ab \in B$ since $b \in B$. Therefore $ab \in A \cap B$. Since AB consists of finite sums of the form ab, and $A \cap B$ is an additive subgroup of R, it follows that $AB \subseteq A \cap B$ (8).

Conversely, let $c \in A \cap B$. Since A + B = R, and R is a ring with unity, there are $a \in A$ and $b \in B$ such that 1 = a + b (4). Thus c = c1 = ca + cb = ac + cb. Now $c \in B$ implies $ac \in AB$ and $c \in A$ which implies $cb \in AB$. Therefore $c \in AB$. We have shown $A \cap B \subseteq AB$. Thus $A \cap B = AB$ (8).

3. Page 286, number 12: (20 points) The authors seem to be assuming that $\mathbf{Z}[\sqrt{2}]$ and

H are rings which really should be established. We do not require this for the exercise. Define $f: \mathbb{Z}[\sqrt{2}] \longrightarrow H$ by

$$f(a+b\sqrt{2}) = \left(\begin{array}{cc} a & 2b\\ b & a \end{array}\right)$$

for all $a + b\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ (3). The function f is well defined since $\sqrt{2}$ is not rational; that is $a + b\sqrt{2} = a' + b'\sqrt{2}$ implies a = a' and b = b' for all $a, a', b, b' \in \mathbb{Z}$. This point needs to be mentioned (2).

Let $a, a', b, b' \in \mathbf{R}$. The calculations

$$f((a + b\sqrt{2}) + (a' + b'\sqrt{2})) = f((a + a') + (b + b')\sqrt{2})$$

= $\begin{pmatrix} a + a' & 2(b + b') \\ b + b' & a + a' \end{pmatrix}$
= $\begin{pmatrix} a & 2b \\ b & a \end{pmatrix} + \begin{pmatrix} a' & 2b' \\ b' & a' \end{pmatrix}$
= $f(a + b\sqrt{2}) + f(a' + b'\sqrt{2})$ (5)

and

$$\begin{aligned} f((a+b\sqrt{2})(a'+b'\sqrt{2})) &= f((aa'+2bb')+(ab'+a'b)\sqrt{2}) \\ &= \begin{pmatrix} aa'+2bb' & 2(ab'+a'b) \\ ab'+a'b & aa'+2bb' \end{pmatrix} \end{aligned}$$

$$= \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} \begin{pmatrix} a' & 2b' \\ b' & a' \end{pmatrix}$$
$$= f(a+b\sqrt{2})f(a'+b'\sqrt{2}) \quad (5)$$

show that f is a ring homomorphism.

By definition f is surjective. Suppose that $f(a + b\sqrt{2}) = f(a' + b'\sqrt{2})$. Then $\begin{pmatrix} a & 2b \\ b & a \end{pmatrix} = \begin{pmatrix} a' & 2b' \\ b' & a' \end{pmatrix}$ which implies a = a' and b = b'. Therefore $a + b\sqrt{2} = a' + b'\sqrt{2}$. We have shown that f is injective. Therefore f is bijective (5).

4. Page 299, number 24: (20 points) Let d(x) = f(x) - g(x) (7). If $a \in F$ and f(a) = g(a) then d(a) = f(a) - g(a) = 0. Thus by assumption d(x) has an infinite number of roots (7). By §16 Corollary 3 d(x) = 0 which means f(x) = g(x) (6).

5. Page 299, number 24: (20 points) Since f(a) = 0, by §16 Corollary 2 f(x) = (x - a)g(x) for some $g(x) \in \mathbf{R}[x]$ (5). Write $f(x) = (x - a)^n h(x)$, where $n \ge 1$ and $h(x) \in \mathbf{R}[x]$ (5). Then $f'(x) = n(x - a)^{n-1}h(x) + (x - a)^n h'(x)$ (5) means that $0 \ne f'(a) = n(a - a)^{n-1}h(a) + (a - a)^n h'(a) = n(a - a)^{n-1}h(a)$ and thus n = 1 (n > 1) implies $(a - a)^{n-1} = 0$ (5).