1. (25 points) Important fact about the minimal polynomial are found in Theorems 20.3, 21.2, and 21.3. These can be used without explicit reference.

(a) $\mathbf{Q}(\sqrt{5}+i\sqrt{3}) \subseteq \mathbf{Q}(\sqrt{5},i\sqrt{3})$ (2). Since $(\sqrt{5}+i\sqrt{3})(\sqrt{5}-i\sqrt{3}) = 5+3 = 8$, $\alpha^{-1} = (1/8)(\sqrt{5}-i\sqrt{3})$, where $\alpha = \sqrt{5}+i\sqrt{3}$. Therefore $\sqrt{5} = \alpha/2 + 4\alpha^{-1}$ and $i\sqrt{3} = \alpha/2 - 4\alpha^{-1}$ belong to $\mathbf{Q}(\sqrt{5}+i\sqrt{3})$ which means $\mathbf{Q}(\sqrt{5},i\sqrt{3}) \subseteq \mathbf{Q}(\sqrt{5}+i\sqrt{3})$ (2). Hence the two preceding field are the same (2).

Now $[\mathbf{Q}(\sqrt{5}): \mathbf{Q}] = 2$ since $\sqrt{5}$ is a root of $x^2 - 5 \in \mathbf{Q}[x]$, which is irreducible by the Eisenstein Criterion with p = 5, and $[\mathbf{Q}(\sqrt{5})(i\sqrt{3}): \mathbf{Q}(\sqrt{5}] \le 2$ since $i\sqrt{3}$ is a root of $x^2 + 3 \in \mathbf{Q}(\sqrt{5})[x]$. As $i\sqrt{3} \notin \mathbf{Q}(\sqrt{5})$ the later index is 2. Therefore $[F:\mathbf{Q}] = [F:\mathbf{Q}(\sqrt{5})][\mathbf{Q}(\sqrt{5}):\mathbf{Q}] = 2 \cdot 2 = 4$ (3).

(b) In light of part (a) we need only find a monic degree 4 polynomial $f(x) \in \mathbf{Q}[x]$ which has α as a root. $\alpha^2 = (\sqrt{5} + i\sqrt{3})^2 = 5 + 2\sqrt{5}i\sqrt{3} - 3 = 2 + 2i\sqrt{15}$ and therefore $-60 = (2i\sqrt{15})^2 = (\alpha^2 - 2)^2 = \alpha^4 - 4\alpha^2 + 4$ which means that $\alpha^4 - 4\alpha^2 + 64 = 0$. Take $f(x) = x^4 - 4x^2 + 64$.

(c) We use part (a). $[\mathbf{Q}(\sqrt{5}): \mathbf{Q}] = 2$ as $\sqrt{2}$ is a root of $x^2 - 2 \in \mathbf{Q}[x]$ which is irreducible by the Eisenstein Criterion with p = 2. Since $4 = [\mathbf{Q}(\alpha): \mathbf{Q}] = [\mathbf{Q}(\alpha): \mathbf{Q}(\sqrt{5})][\mathbf{Q}(\sqrt{5}): \mathbf{Q}]$ we conclude that $[\mathbf{Q}(\alpha): \mathbf{Q}(\sqrt{5})] = 2$. For the reasons cited in part (b) we need only find a monic degree 2 polynomial $g(x) \in \mathbf{Q}(\sqrt{5})[x]$ which has α as a root. Now $-3 = (i\sqrt{3})^2 = (\alpha - \sqrt{5})^2 = \alpha^2 - 2\sqrt{5}\alpha + 2$ means that $\alpha^2 - 2\sqrt{5}\alpha + 8 = 0$. Take $g(x) = x^2 - 2\sqrt{5}x + 8$.

2. (25 points) A rather detailed solution is provided. Important principles are involved. This problem is based on Theorem 21.2, Theorem 21.5 and its proof, and Example 2 on page 371.

(a) $3^{1/2}$, $7^{1/3}$ are roots of $x^2 - 3$, $x^3 - 7 \in \mathbf{Q}[x]$ and as such are irreducible by the Eisenstein Criterion with p = 3, 7 (3). Therefore $x^2 - 3$, $x^3 - 7$ are the minimal polynomials of $3^{1/2}$, $7^{1/3}$ over \mathbf{Q} which means $[\mathbf{Q}(3^{1/2}) : \mathbf{Q}] = 2$ and $[\mathbf{Q}(7^{1/3}) : \mathbf{Q}] = 3$. Since $\mathbf{Q} \subseteq \mathbf{Q}(3^{1/2}), \mathbf{Q}(7^{1/3}) \subseteq F$ both 2 and 3 divide $[F : \mathbf{Q}]$ and therefore 6 divides $[F : \mathbf{Q}]$ (2).

Now $[F : \mathbf{Q}(2^{1/2})] \leq 3$, since $7^{1/3}$ is a root of $x^3 - 7 \in \mathbf{Q}(2^{1/2})[x]$, and from the degree calculation $[F : \mathbf{Q}] = [F : \mathbf{Q}(2^{1/2})][\mathbf{Q}(2^{1/2}) : \mathbf{Q}] \leq 3 \cdot 2 = 6$ the equation $[F : \mathbf{Q}] = 6$ follows (2).

(b) From part (a) $3 = [F : \mathbf{Q}(2^{1/2})] = [\mathbf{Q}(7^{1/3})(2^{1/2}) : \mathbf{Q}(3^{1/2})]$ and thus $x^3 - 7$ is the minimal polynomial of $7^{1/3}$ over $\mathbf{Q}(2^{1/2})$ (3). A basis for $\mathbf{Q}(2^{1/2})$ over \mathbf{Q} is $\{1, 2^{1/2}\}$ and a basis for $F = \mathbf{Q}(2^{1/2})(7^{1/3})$ over $\mathbf{Q}(2^{1/2})$ is $\{1, 7^{1/3}, 7^{2/3}\}$. Thus a basis for F over \mathbf{Q} is obtained by multiplying these two which yields $\{1, 7^{1/3}, 7^{2/3}, 2^{1/2} \cdot 1, 2^{1/2} \cdot 7^{1/3}, 2^{1/2} \cdot 7^{2/3}\}$ (9).

(c) f(x) is an irreducible polynomial in $\mathbf{Q}[x]$ by the Eisenstein Criterion with p = 2 (2). Suppose that $a \in F$ is a root of f(x). Since $f(x) \in \mathbf{Q}[x]$ is monic and irreducible it is the minimal polynomial of a over \mathbf{Q} . Therefore $4 = \text{Deg } f(x) = [\mathbf{Q}(a) : \mathbf{Q}]$ divides $6 = [F : \mathbf{Q}]$, a contradiction (2). Thus f(x) has no root in F(2).

3. (25 points) The bracketed comments are *explicit* justifications. These were not necessary to write down.

(a) $|G| = 3^3 \cdot 5$ so there is unique Sylow 5-subgroup of G since the number of them n_5 divides 3^3 , and thus $n_5 = 1, 3, 9$, or 27 and $n_5 = 1 + 5\ell$ for some $\ell \ge 0$, and 2 = 3 - 1, 8 = 9 - 1 and 26 = 27 - 11 are not divisible by 5 [Theorem 24.5, Sylow's Third Theorem] (3). N is a normal subgroup of G [Corollary to Theorem 24.5] (3).

Since 3^2 divides |G| there is a subgroup H of G of order 3^2 [Theorem 24.3, Sylow's First Theorem] (3). Since N is a normal subgroup of G, HN is a subgroup of G (3) and $|HN| = |H||N|/|H \cap N| = |H||N|/|H \cap N| = |H||N| = 3^2 \cdot 5$; $|H \cap N| = 1$ as $|H \cap N|$ divides $|H| = 3^2$ and |N| = 5 (3)

(b) Since 3 divides |G| there is a subgroup L of G of order 3 [Theorem 24.3] (2). Now LN is a subgroup of G of order |LN| = 3.5 = 15 by the argument establishing |HN| in part (a) (2).

(c) |LN| = 3.5 and 3 does not divide 4 = 5 - 1. Therefore LN is cyclic [Theorem 24.6] (3). Let a be a generator of LN. Then a has order 15 (3).

4. (**25 points**)

(a) Let $7^{1/4}$ be a real 4^{th} root of 7. Then

$$\begin{aligned} x^4 - 7 &= (x^2 - 7^{1/2})(x^2 + 7^{1/2}) \\ &= (x^2 - 7^{1/2})(x^2 - (-1)7^{1/2}) \\ &= (x - 7^{1/4})(x + 7^{1/4})(x - i7^{1/4})(x + i7^{1/4}) \quad (6) \end{aligned}$$

and thus $F = \mathbf{Q}(7^{1/4}, i)$ is a splitting field of $x^4 - 7$ over \mathbf{Q} (7). (b) $\langle a, b | a^2 = b^n = aba^{-1}b^{-1} = e \rangle$. (4) for correct notation; (2), (2), (4) respectively for relations.

Comment: The last relation could be informally written as ab = ba. The presentation is based on the following calculations: $G = \{(a^i, b^j) | 0 \le i < 1, 0 \le j < n\}, (a^i, b^j) = (a^i, e)(e, b^j) = (a, e)^i(e, b)^j,$ and (a, e)(e, b) = (e, b)(a, e).