1. ($\mathbf{2 5}$ points) Important fact about the minimal polynomial are found in Theorems 20.3, 21.2, and 21.3. These can be used without explicit reference.
(a) $\mathbf{Q}(\sqrt{5}+\imath \sqrt{3}) \subseteq \mathbf{Q}(\sqrt{5}, \imath \sqrt{3})(\mathbf{2})$. Since $(\sqrt{5}+\imath \sqrt{3})(\sqrt{5}-\imath \sqrt{3})=5+3=8, \alpha^{-1}=(1 / 8)(\sqrt{5}-\imath \sqrt{3})$, where $\alpha=\sqrt{5}+\imath \sqrt{3}$. Therefore $\sqrt{5}=\alpha / 2+4 \alpha^{-1}$ and $\imath \sqrt{3}=\alpha / 2-4 \alpha^{-1}$ belong to $\mathbf{Q}(\sqrt{5}+\imath \sqrt{3})$ which means $\mathbf{Q}(\sqrt{5}, \imath \sqrt{3}) \subseteq \mathbf{Q}(\sqrt{5}+\imath \sqrt{3})(\mathbf{2})$. Hence the two preceding field are the same (2).

Now $[\mathbf{Q}(\sqrt{5}): \mathbf{Q}]=2$ since $\sqrt{5}$ is a root of $x^{2}-5 \in \mathbf{Q}[x]$, which is irreducible by the Eisenstein Criterion with $p=5$, and $\left[\mathbf{Q}(\sqrt{5})(\imath \sqrt{3}): \mathbf{Q}(\sqrt{5}] \leq 2\right.$ since $\imath \sqrt{3}$ is a root of $x^{2}+3 \in \mathbf{Q}(\sqrt{5})[x]$. As $\imath \sqrt{3} \notin \mathbf{Q}(\sqrt{5})$ the later index is 2 . Therefore $[F: \mathbf{Q}]=[F: \mathbf{Q}(\sqrt{5})][\mathbf{Q}(\sqrt{5}): \mathbf{Q}]=2 \cdot 2=4(\mathbf{3})$.
(b) In light of part (a) we need only find a monic degree 4 polynomial $f(x) \in \mathbf{Q}[x]$ which has α as a root. $\alpha^{2}=(\sqrt{5}+\imath \sqrt{3})^{2}=5+2 \sqrt{5} \imath \sqrt{3}-3=2+2 \imath \sqrt{15}$ and therefore $-60=(2 \imath \sqrt{15})^{2}=$ $\left(\alpha^{2}-2\right)^{2}=\alpha^{4}-4 \alpha^{2}+4$ which means that $\alpha^{4}-4 \alpha^{2}+64=0$. Take $f(x)=x^{4}-4 x^{2}+64$.
(c) We use part (a). $[\mathbf{Q}(\sqrt{5}): \mathbf{Q}]=2$ as $\sqrt{2}$ is a root of $x^{2}-2 \in \mathbf{Q}[x]$ which is irreducible by the Eisenstein Criterion with $p=2$. Since $4=[\mathbf{Q}(\alpha): \mathbf{Q}]=[\mathbf{Q}(\alpha): \mathbf{Q}(\sqrt{5})][\mathbf{Q}(\sqrt{5}): \mathbf{Q}]$ we conclude that $[\mathbf{Q}(\alpha): \mathbf{Q}(\sqrt{5})]=2$. For the reasons cited in part (b) we need only find a monic degree 2 polynomial $g(x) \in \mathbf{Q}(\sqrt{5})[x]$ which has α as a root. Now $-3=(2 \sqrt{3})^{2}=(\alpha-\sqrt{5})^{2}=\alpha^{2}-2 \sqrt{5} \alpha+2$ means that $\alpha^{2}-2 \sqrt{5} \alpha+8=0$. Take $g(x)=x^{2}-2 \sqrt{5} x+8$.
2. ($\mathbf{2 5}$ points) A rather detailed solution is provided. Important principles are involved. This problem is based on Theorem 21.2, Theorem 21.5 and its proof, and Example 2 on page 371.
(a) $3^{1 / 2}, 7^{1 / 3}$ are roots of $x^{2}-3, x^{3}-7 \in \mathbf{Q}[x]$ and as such are irreducible by the Eisenstein Criterion with $p=3,7(\mathbf{3})$. Therefore $x^{2}-3, x^{3}-7$ are the minimal polynomials of $3^{1 / 2}, 7^{1 / 3}$ over \mathbf{Q} which means $\left[\mathbf{Q}\left(3^{1 / 2}\right): \mathbf{Q}\right]=2$ and $\left[\mathbf{Q}\left(7^{1 / 3}\right): \mathbf{Q}\right]=3$. Since $\mathbf{Q} \subseteq \mathbf{Q}\left(3^{1 / 2}\right), \mathbf{Q}\left(7^{1 / 3}\right) \subseteq F$ both 2 and 3 divide $[F: \mathbf{Q}]$ and therefore 6 divides $[F: \mathbf{Q}](\mathbf{2})$.

Now $\left[F: \mathbf{Q}\left(2^{1 / 2}\right)\right] \leq 3$, since $7^{1 / 3}$ is a root of $x^{3}-7 \in \mathbf{Q}\left(2^{1 / 2}\right)[x]$, and from the degree calculation $[F: \mathbf{Q}]=\left[F: \mathbf{Q}\left(2^{1 / 2}\right)\right]\left[\mathbf{Q}\left(2^{1 / 2}\right): \mathbf{Q}\right] \leq 3 \cdot 2=6$ the equation $[F: \mathbf{Q}]=6$ follows $(\mathbf{2})$.
(b) From part (a) $3=\left[F: \mathbf{Q}\left(2^{1 / 2}\right)\right]=\left[\mathbf{Q}\left(7^{1 / 3}\right)\left(2^{1 / 2}\right): \mathbf{Q}\left(3^{1 / 2}\right)\right]$ and thus $x^{3}-7$ is the minimal polynomial of $7^{1 / 3}$ over $\mathbf{Q}\left(2^{1 / 2}\right)(\mathbf{3})$. A basis for $\mathbf{Q}\left(2^{1 / 2}\right)$ over \mathbf{Q} is $\left\{1,2^{1 / 2}\right\}$ and a basis for $F=$ $\mathbf{Q}\left(2^{1 / 2}\right)\left(7^{1 / 3}\right)$ over $\mathbf{Q}\left(2^{1 / 2}\right)$ is $\left\{1,7^{1 / 3}, 7^{2 / 3}\right\}$. Thus a basis for F over \mathbf{Q} is obtained by multiplying these two which yields $\left\{1,7^{1 / 3}, 7^{2 / 3}, 2^{1 / 2} \cdot 1,2^{1 / 2} \cdot 7^{1 / 3}, 2^{1 / 2} \cdot 7^{2 / 3}\right\}(\mathbf{9})$.
(c) $f(x)$ is an irreducible polynomial in $\mathbf{Q}[x]$ by the Eisenstein Criterion with $p=2$ (2). Suppose that $a \in F$ is a root of $f(x)$. Since $f(x) \in \mathbf{Q}[x]$ is monic and irreducible it is the minimal polynomial of a over \mathbf{Q}. Therefore $4=\operatorname{Deg} f(x)=[\mathbf{Q}(a): \mathbf{Q}]$ divides $6=[F: \mathbf{Q}]$, a contradiction (2). Thus $f(x)$ has no root in $F(\mathbf{2})$.
3. ($\mathbf{2 5}$ points) The bracketed comments are explicit justifications. These were not necessary to write down.
(a) $|G|=3^{3} .5$ so there is unique Sylow 5-subgroup of G since the number of them n_{5} divides 3^{3}, and thus $n_{5}=1,3,9$, or 27 and $n_{5}=1+5 \ell$ for some $\ell \geq 0$, and $2=3-1,8=9-1$ and $26=27-11$ are not divisible by 5 [Theorem 24.5, Sylow's Third Theorem] (3). N is a normal subgroup of G [Corollary to Theorem 24.5] (3).

Since 3^{2} divides $|G|$ there is a subgroup H of G of order 3^{2} [Theorem 24.3, Sylow's First Theorem] (3). Since N is a normal subgroup of $G, H N$ is a subgroup of $G(\mathbf{3})$ and $|H N|=|H||N| /|H \cap N|=$ $|H||N|=3^{2} \cdot 5 ;|H \cap N|=1$ as $|H \cap N|$ divides $|H|=3^{2}$ and $|N|=5(\mathbf{3})$
(b) Since 3 divides $|G|$ there is a subgroup L of G of order 3 [Theorem 24.3] (2). Now $L N$ is a subgroup of G of order $|L N|=3 \cdot 5=15$ by the argument establishing $|H N|$ in part (a) (2).
(c) $|L N|=3.5$ and 3 does not divide $4=5-1$. Therefore $L N$ is cyclic [Theorem 24.6] (3). Let a be a generator of $L N$. Then a has order 15 (3).

4. (25 points)

(a) Let $7^{1 / 4}$ be a real $4^{\text {th }}$ root of 7 . Then

$$
\begin{align*}
x^{4}-7 & =\left(x^{2}-7^{1 / 2}\right)\left(x^{2}+7^{1 / 2}\right) \\
& =\left(x^{2}-7^{1 / 2}\right)\left(x^{2}-(-1) 7^{1 / 2}\right) \\
& =\left(x-7^{1 / 4}\right)\left(x+7^{1 / 4}\right)\left(x-\imath 7^{1 / 4}\right)\left(x+\imath 7^{1 / 4}\right) \tag{6}
\end{align*}
$$

and thus $F=\mathbf{Q}\left(7^{1 / 4}, \imath\right)$ is a splitting field of $x^{4}-7$ over $\mathbf{Q}(7)$.
(b) $<a, b \mid a^{2}=b^{n}=a b a^{-1} b^{-1}=e>$. (4) for correct notation; (2), (2), (4) respectively for relations.

Comment: The last relation could be informally written as $a b=b a$. The presentation is based on the following calculations: $G=\left\{\left(a^{i}, b^{j}\right) \mid 0 \leq i<1,0 \leq j<n\right\},\left(a^{i}, b^{j}\right)=\left(a^{i}, e\right)\left(e, b^{j}\right)=(a, e)^{i}(e, b)^{j}$, and $(a, e)(e, b)=(e, b)(a, e)$.

