For a commutative ring R with unity recall that R^{\times}denotes the multiplicative group of units of R. \mathbf{Z} denotes the ring of integers, \mathbf{Q} and \mathbf{R} denote the field of rational numbers and real numbers respectively.

1. (25 points)

(a) Let $a \in R$. Since $1 \in R^{\times}$and $a=1 a, a \sim a$ (5). Let $a, b \in R$ and suppose $a \sim b$. Then $a=u b$ for some $u \in R^{\times}$. Since R^{\times}is a multiplicative group, $u^{-1} \in R^{\times}$and the calculation $b=1 b=\left(u^{-1} u\right) b=u^{-1}(u b)=u^{-1} a$ shows that $b \sim a(5)$. Let $a, b, c \in R$ and suppose $a \sim b, b \sim c$. Then $a=u b, b=v c$ for some $u, v \in R^{\times}$. Since R^{\times}is a multiplicative group, $u v \in R^{\times}$and the calculation $a=u b=u(v c)=(u v) c$ shows that $a \sim c(5)$.
(b) Let $a, b \in R$ and suppose $a \sim b$. Then $a=u b$ for some $u \in R^{\times}$. We show $R a \subseteq R b$. Let $x \in R a$. Then $x=r a$ for some $r \in R$. Therefore $r a=r(u b)=(r u) b \in R b$. We have shown $a \sim b$ implies $R a \subseteq R b$ (5). Since $b \sim a$ by part (a), $R b \subseteq R a$. Therefore $R a=R b$ (5).

Comment: The conclusions of parts (a) and (b) hold for any ring R with unity and " \sim " defined for a fixed subgroup H of R^{\times}defined by $a \sim b$ if and only if $a=u b$ for some $u \in H$.

2. ($\mathbf{2 5}$ points)

(a) $7 x^{4}+15 x^{3}+12 \in \mathbf{Q}[x]$ is irreducible by the Eisenstein Criterion (5) with $p=3 ; 3 \nmid 7,3 \mid 15$, $3|12,3| 0$ (the other coefficients), and $3^{2} \times 12$ (5).
Comment: $7 x^{4}+15 x^{3}+12 \in \mathbf{Z}[x]$ is primitive and therefore is irreducible in $\mathbf{Z}[x]$ also.
(b) We apply the mod p test to $f(x)=7 x^{4}+15 x^{3}+9 \in \mathbf{Q}[x]$ with $p=2$. Reduction of coefficients yields $g(x)=x^{4}+x^{3}+1 \in \mathbf{Z}_{2}[x]$ which has the same degree as $f(x)$. Thus $f(x) \in \mathbf{Q}[x]$ is irreducible if $g(x) \in \mathbf{Z}_{2}[x]$ is (5).

Now $g(0)=g(1)=1$. Therefore $g(x)$ has no roots in \mathbf{Z}_{2} and hence no linear factors (5). Suppose $g(x)$ is reducible. Then $g(x)$ is the product of quadratic factors which means $g(x)=$ $\left(x^{2}+x+1\right)^{2}=x^{4}+x^{2}+1$ by the hint, contradiction. Therefore $g(x)$ is irreducible (5) which means $f(x)$ is irreducible.
Comment: $f(x)=7 x^{4}+15 x^{3}+9 \in \mathbf{Z}[x]$ is primitive. Since $f(x) \in \mathbf{Q}[x]$ is irreducible $f(x) \in \mathbf{Z}[x]$ is also.

3. (25 points)

(a) We show that R is an additive subgroup of $\mathrm{M}_{2}(\mathbf{R}) . R \neq \emptyset$ as $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{rr}0 & 0 \\ d \cdot 0 & 0\end{array}\right) \in R$ where $m=n=0$ (1). Suppose $\left(\begin{array}{cc}m & n \\ d n & m\end{array}\right),\left(\begin{array}{cc}m^{\prime} & n^{\prime} \\ d n^{\prime} & m^{\prime}\end{array}\right) \in R$. Then

$$
\left(\begin{array}{cc}
m & n \tag{1}\\
d n & m
\end{array}\right)+\left(\begin{array}{cc}
m^{\prime} & n^{\prime} \\
d n^{\prime} & m^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
m+m^{\prime} & n+n^{\prime} \\
d n+d n^{\prime} & m+m^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
m^{\prime \prime} & n^{\prime \prime} \\
d n^{\prime \prime} & m^{\prime \prime}
\end{array}\right) \in R,
$$

where $m^{\prime \prime}=m+m^{\prime}, n^{\prime \prime}=n+n^{\prime}$. Also $-\left(\begin{array}{cc}m & n \\ d n & m\end{array}\right)=\left(\begin{array}{cc}-m & -n \\ -d n & -m\end{array}\right)=\left(\begin{array}{cc}m^{\prime} & n^{\prime} \\ d n^{\prime} & m^{\prime}\end{array}\right) \in R$, where $m^{\prime}=-m$ and $n^{\prime}=-n$ (4). Thus R is an additive subgroup of $\mathrm{M}_{2}(\mathbf{R})$.

The calculation

$$
\left(\begin{array}{cc}
m & n \tag{2}\\
d n & m
\end{array}\right)\left(\begin{array}{cc}
m^{\prime} & n^{\prime} \\
d n^{\prime} & m^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
m m^{\prime}+d n n^{\prime} & m n^{\prime}+n m^{\prime} \\
d n m^{\prime}+m d n^{\prime} & d n n^{\prime}+m m^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
m^{\prime \prime} & n^{\prime \prime} \\
d n^{\prime \prime} & m^{\prime \prime}
\end{array}\right) \in R,
$$

where $m^{\prime \prime}=m m^{\prime}+d n n^{\prime}, n^{\prime \prime}=m n^{\prime}+m^{\prime} n$, shows that R is closed under multiplication (5). Therefore R is a subring of $\mathrm{M}_{2}(\mathbf{R})$.

$$
R=\left\{\left.\left(\begin{array}{cc}
m & n \\
d n & m
\end{array}\right) \right\rvert\, m, n \in \mathbf{Z}\right\} .
$$

(b) Let $m+n \sqrt{d}, m^{\prime}+n^{\prime} \sqrt{d} \in \mathbf{Z}[\sqrt{d}]$, where $m, m^{\prime}, n, n^{\prime} \in \mathbf{Z}$. Using (1) we calculate

$$
\begin{align*}
& f\left((m+n \sqrt{d})+\left(m^{\prime}+n^{\prime} \sqrt{d}\right)\right) \\
& \quad=f\left(\left(m+m^{\prime}\right)+\left(n+n^{\prime}\right) \sqrt{d}\right) \\
& \quad=\left(\begin{array}{cc}
m+m^{\prime} & n+n^{\prime} \\
d\left(n+n^{\prime}\right) & m+m^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
m & n \\
d n & m
\end{array}\right)+\left(\begin{array}{cc}
m^{\prime} & n^{\prime} \\
d n^{\prime} & m^{\prime}
\end{array}\right) \\
& =f(m+n \sqrt{d})+f\left(m^{\prime}+n^{\prime} \sqrt{d}\right) \tag{3}
\end{align*}
$$

and using (2) we calculate

$$
\begin{align*}
& f\left((m+n \sqrt{d})\left(m^{\prime}+n^{\prime} \sqrt{d}\right)\right) \\
& \quad=f\left(\left(m m^{\prime}+d n n^{\prime}\right)+\left(m n^{\prime}+m^{\prime} n\right) \sqrt{d}\right) \\
& \quad=\left(\begin{array}{cc}
m m^{\prime}+d n n^{\prime} & m n^{\prime}+n m^{\prime} \\
d\left(n m^{\prime}+m n^{\prime}\right) & d n n^{\prime}+m m^{\prime}
\end{array}\right) \\
& \quad=\left(\begin{array}{cc}
m & n \\
d n & m
\end{array}\right)\left(\begin{array}{cc}
m^{\prime} & n^{\prime} \\
d n^{\prime} & m^{\prime}
\end{array}\right) \\
& =f(m+n \sqrt{d}) f\left(m^{\prime}+n^{\prime} \sqrt{d}\right)(\mathbf{3}) \tag{3}
\end{align*}
$$

Therefore f is a ring homomorphism.
Suppose $\left(\begin{array}{cc}m & n \\ d n & m\end{array}\right) \in R$. Then $m, n \in \mathbf{Z}$; thus $m+n \sqrt{d} \in \mathbf{Z}[\sqrt{d}]$ and $f(m+n \sqrt{d})=$ $\left(\begin{array}{cc}m & n \\ d n & m\end{array}\right)$. Therefore f is surjective (2).

Suppose $m+n \sqrt{d}, m^{\prime}+n^{\prime} \sqrt{d} \in \mathbf{Z}[\sqrt{d}]$, where $m, m^{\prime}, n, n^{\prime} \in \mathbf{Z}$, and $f(m+n \sqrt{d})=f\left(m^{\prime}+n^{\prime} \sqrt{d}\right)$. Then $\left(\begin{array}{cc}m & n \\ d n & m\end{array}\right)=\left(\begin{array}{cc}m^{\prime} & n^{\prime} \\ d n^{\prime} & m^{\prime}\end{array}\right)$ which means $m=m^{\prime}$ and $n=n^{\prime}$. Therefore $m+n \sqrt{d}=m^{\prime}+n^{\prime} \sqrt{d}$. We have shown that f is injective (2) and thus f is a ring isomorphism.
(c) $N(m+n \sqrt{d})=\left|m^{2}-d n^{2}\right|=\left|\operatorname{Det}\left(\begin{array}{cc}m & n \\ d n & m\end{array}\right)\right|=|\operatorname{Det} f(m+n \sqrt{d})|$ (5).

4. ($\mathbf{2 5}$ points)

(a) Let $x \in R$ and suppose that $N(x)$ is a prime integer. Note $N(0)=0$. Since $N(x) \neq 0,1$ it follows $x \neq 0, x \notin R^{\times}(\mathbf{1})$. Suppose $x=y z$, where $y, z \in R$. Since $N(y) N(z)=N(y z)=N(x)$ is a prime integer, and the values of N are non-negative integers, either $N(y)=1$, in which case $y \in R^{\times}$, or $N(z)=1$, in which case $z \in R^{\times}$. Therefore x is irreducible (4).
(b) $N(\sqrt{5})=N(0+1 \sqrt{5})=\left|0^{2}-5 \cdot 1^{2}\right|=5$. Thus $\sqrt{5} \in R$ is irreducible by part (a) (3).

Let $x=1 \pm \sqrt{5}$. Then $N(x)=N(1+(\pm 1) \sqrt{5})=\left|1^{2}-5(\pm 1)^{2}\right|=4 \neq 0,1$. Thus $x \neq 0, x \notin R^{\times}$.
Suppose $x=y z$, where $y, z \in R$. By the reasons cited in part (a), $N(y)=1,2$, or 4 . $N(y) \neq 2$ by our given. Thus $N(y)=1$, in which case $y \in R^{\times}$, or $N(y)=4$, in which case $N(z)=1$ and thus $z \in R^{\times}$. Thus x is irreducible (4).
(c) Observe $5=\sqrt{5} \sqrt{5}$ is the product of irreducibles by part (c) and is therefore reducible (2). $19=(2 \sqrt{5}+1)(2 \sqrt{5}-1)(3)$. Since $N(2 \sqrt{5} \pm 1)=19$ neither factor is unit. Thus $19 \in R$ is reducible (3).
(d) Since prime implies irreducible in an integral domain, neither 5 nor 9 are prime elements of $\mathbf{Z}[\sqrt{5}]$ by part (c) (5).

Comment: There were other nice factorizations of 19 into two irreducibles which students came up with:

$$
19=(8+3 \sqrt{5})(8-3 \sqrt{5})=(12+5 \sqrt{5})(12-5 \sqrt{5}) .
$$

