MATH 425 Hour Exam I Solution Radford 02/22/2009

For a commutative ring R with unity recall that R^{\times} denotes the multiplicative group of units of R. **Z** denotes the ring of integers, **Q** and **R** denote the field of rational numbers and real numbers respectively.

1. (**25 points**)

(a) Let $a \in R$. Since $1 \in R^{\times}$ and a = 1a, $a \sim a$ (5). Let $a, b \in R$ and suppose $a \sim b$. Then a = ub for some $u \in R^{\times}$. Since R^{\times} is a multiplicative group, $u^{-1} \in R^{\times}$ and the calculation $b = 1b = (u^{-1}u)b = u^{-1}(ub) = u^{-1}a$ shows that $b \sim a$ (5). Let $a, b, c \in R$ and suppose $a \sim b, b \sim c$. Then a = ub, b = vc for some $u, v \in R^{\times}$. Since R^{\times} is a multiplicative group, $uv \in R^{\times}$ and the calculation a = ub = u(vc) = (uv)c shows that $a \sim c$ (5).

(b) Let $a, b \in R$ and suppose $a \sim b$. Then a = ub for some $u \in R^{\times}$. We show $Ra \subseteq Rb$. Let $x \in Ra$. Then x = ra for some $r \in R$. Therefore $ra = r(ub) = (ru)b \in Rb$. We have shown $a \sim b$ implies $Ra \subseteq Rb$ (5). Since $b \sim a$ by part (a), $Rb \subseteq Ra$. Therefore Ra = Rb (5).

Comment: The conclusions of parts (a) and (b) hold for any ring R with unity and "~" defined for a fixed subgroup H of R^{\times} defined by $a \sim b$ if and only if a = ub for some $u \in H$.

2. (**25 points**)

(a) $7x^4 + 15x^3 + 12 \in \mathbf{Q}[x]$ is irreducible by the Eisenstein Criterion (5) with p = 3; $3 \not/ 7$, $3 \mid 15$, $3 \mid 12$, $3 \mid 0$ (the other coefficients), and $3^2 \not/ 12$ (5).

Comment: $7x^4 + 15x^3 + 12 \in \mathbb{Z}[x]$ is primitive and therefore is irreducible in $\mathbb{Z}[x]$ also.

(b) We apply the mod p test to $f(x) = 7x^4 + 15x^3 + 9 \in \mathbf{Q}[x]$ with p = 2. Reduction of coefficients yields $g(x) = x^4 + x^3 + 1 \in \mathbf{Z}_2[x]$ which has the same degree as f(x). Thus $f(x) \in \mathbf{Q}[x]$ is irreducible if $g(x) \in \mathbf{Z}_2[x]$ is (5).

Now g(0) = g(1) = 1. Therefore g(x) has no roots in \mathbb{Z}_2 and hence no linear factors (5). Suppose g(x) is reducible. Then g(x) is the product of quadratic factors which means $g(x) = (x^2 + x + 1)^2 = x^4 + x^2 + 1$ by the hint, contradiction. Therefore g(x) is irreducible (5) which means f(x) is irreducible.

Comment: $f(x) = 7x^4 + 15x^3 + 9 \in \mathbb{Z}[x]$ is primitive. Since $f(x) \in \mathbb{Q}[x]$ is irreducible $f(x) \in \mathbb{Z}[x]$ is also.

3. (25 points)

(a) We show that R is an additive subgroup of $M_2(\mathbf{R})$. $R \neq \emptyset$ as $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ d \cdot 0 & 0 \end{pmatrix} \in R$ where m = n = 0 (1). Suppose $\begin{pmatrix} m & n \\ dn & m \end{pmatrix}$, $\begin{pmatrix} m' & n' \\ dn' & m' \end{pmatrix} \in R$. Then $\begin{pmatrix} m & n \\ dn & m \end{pmatrix} + \begin{pmatrix} m' & n' \\ dn' & m' \end{pmatrix} = \begin{pmatrix} m+m' & n+n' \\ dn+dn' & m+m' \end{pmatrix} = \begin{pmatrix} m'' & n'' \\ dn'' & m'' \end{pmatrix} \in R$, (1)

where m'' = m + m', n'' = n + n'. Also $-\begin{pmatrix} m & n \\ dn & m \end{pmatrix} = \begin{pmatrix} -m & -n \\ -dn & -m \end{pmatrix} = \begin{pmatrix} m' & n' \\ dn' & m' \end{pmatrix} \in R$, where m' = -m and n' = -n (4). Thus R is an additive subgroup

The calculation

$$\begin{pmatrix} m & n \\ dn & m \end{pmatrix} \begin{pmatrix} m' & n' \\ dn' & m' \end{pmatrix} = \begin{pmatrix} mm' + dnn' & mn' + nm' \\ dnm' + mdn' & dnn' + mm' \end{pmatrix} = \begin{pmatrix} m'' & n'' \\ dn'' & m'' \end{pmatrix} \in R,$$
(2)

where m'' = mm' + dnn', n'' = mn' + m'n, shows that R is closed under multiplication (5). Therefore R is a subring of $M_2(\mathbf{R})$.

$$R = \{ \begin{pmatrix} m & n \\ dn & m \end{pmatrix} \mid m, n \in \mathbf{Z} \}.$$

(b) Let $m + n\sqrt{d}, m' + n'\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$, where $m, m', n, n' \in \mathbb{Z}$. Using (1) we calculate

$$f((m + n\sqrt{d}) + (m' + n'\sqrt{d}))$$

$$= f((m + m') + (n + n')\sqrt{d})$$

$$= \begin{pmatrix} m + m' & n + n' \\ d(n + n') & m + m' \end{pmatrix}$$

$$= \begin{pmatrix} m & n \\ dn & m \end{pmatrix} + \begin{pmatrix} m' & n' \\ dn' & m' \end{pmatrix}$$

$$= f(m + n\sqrt{d}) + f(m' + n'\sqrt{d}) \quad (3)$$

and using (2) we calculate

$$f((m + n\sqrt{d})(m' + n'\sqrt{d}))$$

$$= f((mm' + dnn') + (mn' + m'n)\sqrt{d})$$

$$= \begin{pmatrix} mm' + dnn' & mn' + nm' \\ d(nm' + mn') & dnn' + mm' \end{pmatrix}$$

$$= \begin{pmatrix} m & n \\ dn & m \end{pmatrix} \begin{pmatrix} m' & n' \\ dn' & m' \end{pmatrix}$$

$$= f(m + n\sqrt{d})f(m' + n'\sqrt{d}) \quad (3)$$

Therefore f is a ring homomorphism.

erefore f is a ring homomorphism. Suppose $\begin{pmatrix} m & n \\ dn & m \end{pmatrix} \in R$. Then $m, n \in \mathbb{Z}$; thus $m + n\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$ and $f(m + n\sqrt{d}) = \frac{1}{2}$ $\begin{pmatrix} m & n \\ dn & m \end{pmatrix}$. Therefore f is surjective (2). Suppose $m + n\sqrt{d}$, $m' + n'\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$, where $m, m', n, n' \in \mathbb{Z}$, and $f(m + n\sqrt{d}) = f(m' + n'\sqrt{d})$. Then $\begin{pmatrix} m & n \\ dn & m \end{pmatrix} = \begin{pmatrix} m' & n' \\ dn' & m' \end{pmatrix}$ which means m = m' and n = n'. Therefore $m + n\sqrt{d} = m' + n'\sqrt{d}$. We have shown that f is injective (2) and thus f is a ring isomorphism.

(c)
$$N(m+n\sqrt{d}) = |m^2 - dn^2| = |\operatorname{Det}\begin{pmatrix} m & n \\ dn & m \end{pmatrix}| = |\operatorname{Det}f(m+n\sqrt{d})|$$
 (5).

4. (25 points)

(a) Let $x \in R$ and suppose that N(x) is a prime integer. Note N(0) = 0. Since $N(x) \neq 0, 1$ it follows $x \neq 0, x \notin R^{\times}$ (1). Suppose x = yz, where $y, z \in R$. Since N(y)N(z) = N(yz) = N(x) is a prime integer, and the values of N are non-negative integers, either N(y) = 1, in which case $y \in R^{\times}$, or N(z) = 1, in which case $z \in R^{\times}$. Therefore x is irreducible (4).

(b) $N(\sqrt{5}) = N(0 + 1\sqrt{5}) = |0^2 - 5 \cdot 1^2| = 5$. Thus $\sqrt{5} \in R$ is irreducible by part (a) (3). Let $x = 1 \pm \sqrt{5}$. Then $N(x) = N(1 + (\pm 1)\sqrt{5}) = |1^2 - 5(\pm 1)^2| = 4 \neq 0, 1$. Thus $x \neq 0, x \notin R^{\times}$.

Suppose x = yz, where $y, z \in R$. By the reasons cited in part (a), N(y) = 1, 2, or 4. $N(y) \neq 2$ by our given. Thus N(y) = 1, in which case $y \in R^{\times}$, or N(y) = 4, in which case N(z) = 1 and thus $z \in R^{\times}$. Thus x is irreducible (4).

(c) Observe $5 = \sqrt{5}\sqrt{5}$ is the product of irreducibles by part (c) and is therefore reducible (2). $19 = (2\sqrt{5} + 1)(2\sqrt{5} - 1)$ (3). Since $N(2\sqrt{5} \pm 1) = 19$ neither factor is unit. Thus $19 \in R$ is reducible (3).

(d) Since prime implies irreducible in an integral domain, neither 5 nor 9 are prime elements of $\mathbf{Z}[\sqrt{5}]$ by part (c) (5).

Comment: There were other nice factorizations of 19 into two irreducibles which students came up with:

 $19 = (8 + 3\sqrt{5})(8 - 3\sqrt{5}) = (12 + 5\sqrt{5})(12 - 5\sqrt{5}).$