Notes on Galois Theory

Math 431 04/28/2009 Radford

We outline the foundations of Galois theory. Most proofs are well beyond the scope of the our course and are therefore omitted. The symbols \leq and \leq in the context of groups denote subgroup and normal subgroup respectively.

1 The Galois Group, Roots of Polynomials, and Splitting Fields

For a ring E with unity $\operatorname{Aut}(E)$ denotes the group of ring automorphisms of E under function composition. Observe that $\operatorname{Aut}(E) \leq \operatorname{Sym}(E)$, the group of permutations on the set E under composition.

For the remainder of these notes E is field. $F \subseteq E$ will mean F is a field and E is a field extension of F.

Suppose $F \subseteq E$. The subset of automorphisms $\sigma \in \operatorname{Aut}(E)$ which fix F pointwise, that is satisfy $\sigma(a) = a$ for all $a \in F$, is denoted $\operatorname{Gal}(E/F)$. Observe that $\operatorname{Gal}(E/F) \leq \operatorname{Aut}(E)$. Recall that E is a vector space over F where scalar multiplication is defined by multiplication in E; that is $a \cdot \alpha = a\alpha$ for all $a \in F$ and $\alpha \in E$. For such a, α , and for $\sigma \in \operatorname{Gal}(E/F)$, the calculation

$$\sigma(a{\cdot}\alpha)=\sigma(a\alpha)=\sigma(a)\sigma(\alpha)=a\sigma(\alpha)=a{\cdot}\sigma(\alpha)$$

shows that σ is *F*-linear.

Here is our first important connection between the Galois group and roots of polynomials. The roots of $p(x) \in F[x]$ which are contained in E are permuted by all $\sigma \in \text{Gal}(E/F)$.

Lemma 1 Suppose $F \subseteq E$, $p(x) \in F[x]$, $a \in E$, and $\sigma \in Gal(E/F)$. Then $\sigma(p(a)) = p(\sigma(a))$. In particular p(a) = 0 implies $p(\sigma(a)) = 0$. Thus σ permutes the roots of p(x) in E.

PROOF: Write $p(x) = a_0 + a_1 x + \dots + a_n x^n$, where $n \ge 0$ and $a_0, \dots, a_n \in F$. Then $\sigma(a_i) = a_i$ for all $0 \le i \le n$ since $\sigma \in \text{Gal}(E/F)$. The calculation

$$\sigma(p(a)) = \sigma(a_0 + a_1a + \dots + a_na^n)$$

= $\sigma(a_0) + \sigma(a_1a) + \dots + \sigma(a_na^n)$
= $\sigma(a_0) + \sigma(a_1)\sigma(a) + \dots + \sigma(a_n)\sigma(a^n)$
= $a_0 + a_1\sigma(a) + \dots + a_n\sigma(a)^n$
= $p(\sigma(a))$

establishes $\sigma(p(a)) = p(\sigma(a))$. The remaining details are left to the reader.

If $\sigma, \tau \in \text{Gal}(E/F)$ then $\sigma = \tau$ when σ and τ agree on generators of E as a field extension of F.

Lemma 2 Suppose $F \subseteq E$ and E = F(S), where $S \subseteq E$, and $\sigma, \tau \in Gal(E/F)$ satisfy $\sigma(s) = \tau(s)$ for all $s \in S$. Then $\sigma = \tau$.

PROOF: Since $\sigma, \tau \in Aut(E)$ the set $D = \{a \in E \mid \sigma(a) = \tau(a)\}$ is a subfield of E. We need only show D = E.

By assumption $S \subseteq D$. Now $F \subseteq D$ since σ, τ fix the elements of F. Therefore $F \cup S \subseteq D$ which means the subfield F(S) of E generated by $F \cup S$ is contained in D. Since E = F(S), D = E. \Box

Let $H \subseteq \operatorname{Gal}(E/F)$. Then $E_H = \{a \in E \mid \sigma(a) = a \ \forall \ \sigma \in H\}$ is a subfield of E and $F \subseteq E_H \subseteq E$. In particular $F \subseteq E_{\operatorname{Gal}(E/F)}$. When the latter two fields are equal minimal polynomials over F split into distinct linear factors.

Proposition 1 Suppose that $F \subseteq E$ and $F = E_{\operatorname{Gal}(E/F)}$; that is if $a \in E$ and $\sigma(a) = a$ for all $\sigma \in \operatorname{Gal}(E/F)$ then $a \in F$. Suppose that $a \in E$ is algebraic over and has minimal polynomial $p(x) \in F[x]$. Then $S = \{\sigma(a) \mid \sigma \in \operatorname{Gal}(E/F)\}$ is finite and $p(x) = \prod_{s \in S} (x - s)$.

PROOF: S consists of roots of p(x) by Lemma 1. Now S is finite since $p(x) \neq 0$. Set $g(x) = \prod_{s \in S} (x - s)$. Then g(x) divides p(x) in E[x] as each factor does.

Let $\tau \in \operatorname{Gal}(E/F)$. Since S is finite $\tau(S) = S$. Since $\tau \in \operatorname{Aut}(E)$ it induces a ring automorphism $\overline{\tau} : E[x] \longrightarrow E[x]$ defined by

$$\overline{\tau}(a_0 + a_1x + \dots + a_nx^n) = \tau(a_0) + \tau(a_1)x + \dots + \tau(a_n)x^n$$

for all $h(x) = a_0 + a_1 x + \dots + a_n x^n \in E[x]$. Observe that $\overline{\tau}(h(x)) = h(x)$ for all $\tau \in \operatorname{Gal}(E/F)$ if and only if $h(x) \in F[x]$ since $F = E_{\operatorname{Gal}(E/F)}$.

For all $\tau \in \operatorname{Gal}(E/F)$ the calculation

$$\overline{\tau}(g(x)) = \overline{\tau}(\prod_{s \in S} (x-s)) = \prod_{s \in S} \overline{\tau}(x-s) = \prod_{s \in S} (x-\tau(s)) = \prod_{s \in S} (x-s) = g(x)$$

shows that $g(x) \in F[x]$. Since g(a) = 0 it follows that p(x) divides g(x) in F[x]. Therefore the monic polynomials p(x) and g(x) divide each other in E[x] which means that p(x) = g(x). \Box

Theorem 1 Suppose $F \subseteq E$ and E is a finite extension of F. Then $\operatorname{Gal}(E/F)$ is a finite group and $[E:F] = |\operatorname{Gal}(E/F)|[E_{\operatorname{Gal}(E/F)}:F]$. \Box

Let *E* be a finite extension of *F*. Then *E* is a *Galois extension* if [E : F] = |Gal(E/F)| or equivalently $F = E_{\text{Gal}(E/F)}$. Thus *E* is a Galois extension of *F* if for $a \in E$, $\sigma(a) = a$ for all $\sigma \in \text{Gal}(E/F)$ implies $a \in F$. As a result of Theorem 1 and Proposition 1:

Corollary 1 Suppose $F \subseteq E$ is finite extension which is Galois. Then E is a splitting field of some polynomial $f(x) \in F[x]$ over F. \Box

In characteristic zero the converse is true.

Theorem 2 Suppose that F is a field of characteristic zero, $F \subseteq E$ and [E:F] is finite. If E is a splitting field of some non-zero $f(x) \in F[x]$ over F then E is a Galois extension of F. \Box

2 The Galois Correspondence

Suppose $F \subseteq K \subseteq E$. Then $\operatorname{Gal}(E/K) \leq \operatorname{Gal}(E/F)$. Thus there is an inclusion reversing map

$$K \mapsto \operatorname{Gal}(E/K)$$

from extensions $F \subseteq K \subseteq E$ to subgroups of $\operatorname{Gal}(E/F)$. Likewise

 $H \mapsto E_H$

is an inclusion reversing map from subgroups of $\operatorname{Gal}(E/F)$ to extensions of F which are subfields of E. If $F \subseteq E$ is a finite Galois extension then these are inverses.

3 The Fundamental Theorem of Galois Theory

Theorem 3 Suppose that F is a field of characteristic zero and $F \subseteq E$ is a finite Galois extension. Then:

(a) There is an inclusion reversing bijection

{subgroups of $\operatorname{Gal}(E/F)$ } \longrightarrow { $K \mid F \subseteq K \subseteq E$ }

described by $H \mapsto E_H$ whose inverse is given by $K \mapsto \operatorname{Gal}(E/K)$.

Suppose $F \subseteq K \subseteq E$.

(b) E is a Galois extension of K. Thus

 $[E:K] = \operatorname{Gal}(E/K) | \quad and \quad [K:F] = [\operatorname{Gal}(E/F) : \operatorname{Gal}(E/K)].$

(c) K is a Galois extension of F if and only if $\sigma(K) = K$ for all $\sigma \in \operatorname{Gal}(E/F)$ if and only if $\operatorname{Gal}(E/K) \trianglelefteq \operatorname{Gal}(E/K)$. In this case

$$\operatorname{Gal}(E/F)/\operatorname{Gal}(E/K) \simeq \operatorname{Gal}(K/F).$$

PROOF: Part (a), which we will assume, is the heart of the theorem. Let $F \subseteq K \subseteq E$.

We show part (b). By Corollary 1 E is a splitting field of some $f(x) \in F[x]$ over F. Thus $f(x) \in K[x]$ and E is a splitting field of f(x) over K. This means E is a Galois extension of K by Theorem 2 and therefore [E : K] =|Gal(E/K)|. The second equation of part (b) follows from the first and the equation |Gal(E/F)| = [E : F] = [E : K][K : F]. To show part (c), assume that K is a Galois extension of F. Then K is a splitting field of some $g(x) \in F[x]$ over F. Let $\sigma \in \text{Gal}(E/F)$. Then σ fixes $a \in F$ and by Lemma 1 permutes the roots of g(x). Therefore $\sigma(K) \subseteq K$. Now σ is injective and a F-linear map. Since K is a finite-dimensional vector space over F it follows that $\sigma(K) = K$.

Assume that $\sigma(K) = K$ for all $\sigma \in \operatorname{Gal}(E/F)$. Then the restriction map $\pi : \operatorname{Gal}(E/F) \longrightarrow \operatorname{Gal}(K/F)$ given by $\pi(\sigma) = \sigma|_K$ is well-defined and a group homomorphism. Note $\operatorname{Ker} \pi = \operatorname{Gal}(E/K)$. Since π induces an injection $\operatorname{Gal}(E/F)/\operatorname{Gal}(E/K) \hookrightarrow \operatorname{Gal}(K/F)$, by part (b) and Theorem 1 it follows that $[K : F] = |\operatorname{Gal}(K/F)|$. Therefore K is a Galois extension of F. To complete the proof of part (c) we use part (a) and note that $\sigma(E_H) = E_{\sigma H \sigma^{-1}}$ for all $\sigma \in \operatorname{Gal}(E/F)$ and $H \leq \operatorname{Gal}(E/F)$. \Box

4 Solvability of Polynomials by Radicals

The goal of this section is to prove:

Proposition 2 Let F be a field of characteristic zero, $F \subseteq E \subseteq F(a_1, \ldots, a_r)$, where E is a finite Galois extension of F, $r \geq 1$, and there are $n_1, \ldots, n_r > 0$ such that $a_1^{n_1} \in F$ and $a_i^{n_i} \in F(a_1, \ldots, a_{i-1})$ for all $1 < i \leq r$. Then Gal(E/F) is solvable.

First commentary on splitting fields of $x^n - 1$ and $x^n - a$ over F, where $a \in F$.

Let E' be a splitting field of $f(x) = x^n - 1$ over F. We may assume n > 1. Now f(x) has no multiple zeros since $f'(a) = na^{n-1} \neq 0$ for all non-zero $a \in E$. Therefore the set of roots G of f(x) in E' has *n*-elements. Since G is a finite subgroup of the group of units of E' it follows that G is cyclic. Thus $G = (\omega)$, ω is a primitive n^{th} root of unity since it generates G, and $E' = F(\omega)$.

A splitting field of $x^n - a$ over F has the form $F(\omega, a^{1/n})$, where $(a^{1/n})^n = a$. Note that $x^n - a$ has n distinct roots $a^{1/n}, \omega a^{1/n}, \dots, \omega^{n-1}a^{1/n}$. Thus

$$x^{n} - a = \prod_{i=0}^{n-1} (x - \omega^{i} a^{1/n}).$$

Lemma 3 Let $n \ge 1$. Then $\operatorname{Gal}(F(\omega)/F)$ is abelian, hence solvable, where ω is a primitive n^{th} root of unity.

PROOF: Let $\sigma \in \operatorname{Gal}(F(\omega)/F)$. Then $\sigma(G) = G$ by Lemma 1. Thus the restriction map $\pi : \operatorname{Gal}(F(\omega)/F) \longrightarrow \operatorname{Aut}(G)$ given by $\pi(\sigma) = \sigma|_G$ is a group homomorphism. Since ω generates $F(\omega)$ as a field extension of F necessarily π is injective by Lemma 2. Since G is a finite-cyclic group $\operatorname{Aut}(G)$ is abelian. Therefore $\operatorname{Gal}(F(\omega)/F)$ is abelian. \Box

Lemma 4 Let $n \ge 1$. Suppose F contains a primitive n^{th} root of unity and $0 \ne a \in F$. Then $\operatorname{Gal}(F(a^{1/n})/F)$ is abelian, hence solvable, where $a^{1/n}$ is a root of $x^n - a$.

PROOF: Note that $F(a^{1/n})$ is a splitting field of $x^n - a$ over Fv since F contains a primitive n^{th} root of unity ω . Let $\sigma \in \operatorname{Gal}(F(a^{1/n}/F))$. Then $\sigma(a^{1/n})$ is a root of $x^n - a$. Therefore $\sigma(a^{1/n}) = \omega^i a^{1/n}$ for a unique $0 \leq i < n$. Define $\pi : \operatorname{Gal}(F(a^{1/n}/F) \longrightarrow \mathbb{Z}_n$ by $\pi(\sigma) = i$. Then π is a homomorphism to the additive group \mathbb{Z}_n which is injective since $a^{1/n}$ generates $F(a^{1/n})$ as a field extension of F. Thus $\operatorname{Gal}(F(a^{1/n}/F))$ is cyclic. \Box

Suppose that $F \subseteq K \subseteq L$, where K and L are finite Galois extensions of F. Then $\operatorname{Gal}(L/K) \trianglelefteq \operatorname{Gal}(L/F)$ and $\operatorname{Gal}(L/F)/\operatorname{Gal}(L/K) \simeq \operatorname{Gal}(K/F)$ by part (c) of Theorem 3. Therefore

Lemma 5 Suppose that $F \subseteq K \subseteq L$, where K and L are finite Galois extensions of F. Then $\operatorname{Gal}(L/F)$ is solvable if and only if $\operatorname{Gal}(L/K)$ and $\operatorname{Gal}(K/F)$ are solvable. \Box

We will establish Proposition 2 by a series of reductions to Lemmas 3 and 4. Let n be the least common multiple of n_1, \ldots, n_r . Since E is a finite Galois extension of F it is a splitting field over F by Proposition 1. Let $f(x) \in F[x]$ be a polynomial such that E is a splitting field of f(x) in $F(a_1, \ldots, a_r)$.

Lemma 6 If Proposition 2 holds whenever F contains a primitive n^{th} root of unity then it holds in general.

PROOF: Let L be a splitting field of $x^n - 1$ over $F(a_1, \ldots, a_r)$. Then L contains a primitive n^{th} root of unity ω . Regard $F(\omega)$ as the base field and consider the extensions $F(\omega) \subseteq E(\omega) \subseteq F(\omega)(a_1, \ldots, a_r) \subseteq L$. Since E is a splitting field of f(x) over F and $f(x) \in F(\omega)[x]$, it follows that $E(\omega)$ is a splitting field of f(x) over $F(\omega)$ in $F(\omega)(a_1, \ldots, a_r)$.

Observe that $F(\omega) \subseteq E(\omega) \subseteq F(\omega)(a_1, \ldots, a_r)$ satisfies the hypothesis of Proposition 2 and $F(\omega)$ contains a primitive n^{th} root of unity. Assume that $\operatorname{Gal}(E(\omega)/F(\omega))$ is solvable. The sequence $F \subseteq F(\omega) \subseteq E(\omega)$ satisfies the hypothesis of Lemma 5 since $F(\omega)$ and $E(\omega)$ are splitting fields of $x^n 1, f(x)(x^n - 1) \in F[x]$ respectively over F. Since $\operatorname{Gal}(F(\omega)/F)$ is solvable by Lemma 3, $\operatorname{Gal}(E(\omega)/F)$ is solvable by Lemma 5. Applying the same to $F \subseteq E \subseteq E(\omega)$ we conclude that $\operatorname{Gal}(E/F)$ is solvable. \Box

Lemma 7 Suppose F contains a primitive n^{th} root of unity ω . Then Proposition 2 holds then it holds when r = 1.

PROOF: The sequence of Proposition 2 is $F \subseteq E \subseteq F(a_1)$. Since ω^{n/n_1} is a primitive n_1^{th} root of unity $F(a_1)$ is a splitting field of $x^{n_1} - a_1^{n_1}$ over F. Thus $\operatorname{Gal}(F(a_1)/F)$ is solvable by Lemma 4 and hence $\operatorname{Gal}(E/F)$ is solvable by Lemma 5. \Box

We now complete the proof of Proposition 2. By virtue of Lemmas 6 and 7 we may assume F contains a primitive n^{th} root of unity and r > 1. Consider the sequence $F(a_1) \subseteq E(a_1) \subseteq F(a_1)(a_2, \ldots, a_r)$. Note that $E(a_1)$ is a Galois extension of $F(a_1)$ since it is a splitting field of $f(x)(x^{n_1} - a_1^{n_1})$ over F, hence over $F(a_1)$. The hypothesis of Proposition 2 applies to this sequence with base field $F(a_1)$. Thus by induction in r we conclude that $\operatorname{Gal}(E(a_1)/F(a_1))$ is solvable. Now $F(a_1)$ is a splitting field of $x^{n_1} - a_1^{n_1}$ over F. We can apply Lemma 5 to $F \subseteq F(a_1) \subseteq E(a_1)$ and $F \subseteq E \subseteq E(a_1)$ to conclude that $\operatorname{Gal}(E/F)$ is solvable. \Box