1. (25 points)

(a) $9 x^{100}+25 x^{4}-15$ is irreducible over \mathbf{Q} by the Eisenstein Criterion with $p=5$ as 5 divides $15,25,5$ does not divide 9 , and 5^{2} does not divide 15. (9).
(b) We can apply the mod 2 test to $11 x^{4}-21 x+27$ as it reduces to $f(x)=x^{4}+x^{2}+1 \in \mathbf{Z}_{2}[x]$ of the same degree (4). $f(0)=1=f(1)$ means $f(x)$ has no linear factors (4). If $f(x)$ is reducible it is a product of irreducible quadratic factors, hence $f(x)=\left(x^{2}+x+1\right)\left(x^{2}+x+1\right)=x^{4}+x^{2}+1$, contradiction. Thus $f(x)$ is irreducible over $\mathbf{Z}_{2}(4)$ and $11 x^{4}-21 x+27$ is irreducible over \mathbf{Q} (4).

2. ($\mathbf{2 5}$ points)

(a) Suppose $a \mid b$. Then $a c=b$ for some $c \in R$ (4). Since b is irreducible either a or c is a unit. Since a is irreducible, a is not a unit (4). Therefore c is a unit (4). Therefore a and b are associates.
(b) By assumption $a b=c d$. Suppose that a is prime. Then $a \mid c d$ (4). Thus $a \mid c$, in which case a and c are associates (3) or $a \mid d$, in which case a and d are associates (3), by part (a). Since a and c, and a and d, are not associates, $a \nmid c$ and $a \nmid d$. Therefore a is not prime (3).
3. ($\mathbf{2 5}$ points)
(a) Suppose $r=r^{\prime} r^{\prime \prime}$, where $r^{\prime}, r^{\prime \prime} \in R$. By assumption $N(r)=p$ is a prime integer. Since $N(0)=0$ and $N(u)=1$ for all $u \in R^{\times}, r$ is not zero and not a unit (2). Now $N\left(r^{\prime}\right) N\left(r^{\prime \prime}\right)=$ $N\left(r^{\prime} r^{\prime \prime}\right)=N(r)=p(\mathbf{3})$ implies $N\left(r^{\prime}\right)=1$, in which case r^{\prime} is a unit, or $N\left(r^{\prime \prime}\right)=1$, in which case $r^{\prime \prime}$ is a unit. Therefore r is irreducible. (3)
(b) $r=m+n \sqrt{5}$ for some $m, n \in \mathbf{Z}$. Now $p=N(r)=\left|m^{2}-5 n^{2}\right|=|(m+\sqrt{5})(m-\sqrt{5})|$ so $p=(m+\sqrt{5})(m-\sqrt{5})$ or $p=(m+\sqrt{5})(-m+\sqrt{5})(4)$. Since $p=N(m+n \sqrt{5})=N(m-n \sqrt{5})=$ $N(-m+n \sqrt{5})$ it follows that p is the product of two irreducibles in either case by part (a). Thus p is reducible. (4) Prime implies irreducible in domains; thus p is not prime in $Z[\sqrt{5}]$ (4).
(c) $11=16-5=N(4+\sqrt{5})$, or $11=|9-20|=N(3+2 \sqrt{5}) \mid$, for example (5).
4. ($\mathbf{2 5}$ points) Let n_{p} denote the number of Sylow p-subgroups of G.
(a) Since $|G|=825=3 \cdot 5^{2} \cdot 11$ there are Sylow p-subgroups for $p=3,5,11$ by Sylow's First Theorem. By Sylow's Third Theorem it follows n_{11} divides $3 \cdot 5^{2}(3)$ and $n_{11} \equiv 1(\bmod 11)$ (2). Thus $n_{11} \in\{1,3,5,15,25,75\}$. As these integers are congruent to $1,3,5,4,3,9 \bmod 11$ respectively, $n_{11}=1$. (3) Let K be the Sylow 11-subgroup of G. Then $K \unlhd G$ (2) by the corollary to Sylow's Third Theorem.

By Sylow's first Theorem (or Cauchy's Theorem) there exists $H \leq G$ of order 5 (3). $K \unlhd G$ implies $K H \leq G$. Since $|H \cap K|$ divides $|H|$ and $|K|$ by Lagrange's Theorem, that is 5 and 11, necessarily $|H \cap K|=1$ (2). Therefore $|H K|=|H||K| /|H \cap K|=5 \cdot 11 / 1=55$ (2).
(b) Now let H be a Sylow 3 -subgroup of G. Then $|H|=3$. By the argument for part (b) $H K \subseteq G$ and has order $3 \cdot 11=33(4)$. Since 3,11 are primes and $11 \not \equiv 1(\bmod 3)$, $H K$ is cyclic, and hence has an element of order 33 (4).
5. (25 points) $E=\mathbf{Q}\left(3^{1 / 4}, 19^{1 / 7}\right)$.
(a) $3^{1 / 4}, 19^{1 / 7}$ are roots of $x^{4}-3, x^{7}-19 \in \mathbf{Q}[x]$ respectively (2). These monic polynomials are irreducible by the Eisenstein Criterion with $p=3,19$ respectively (2). Therefore $x^{4}-3$ is the minimal polynomial of $3^{1 / 4}$ over \mathbf{Q}, so $\left[\mathbf{Q}\left(3^{1 / 4}\right): \mathbf{Q}\right]=4$ and likewise $\left[\mathbf{Q}\left(19^{1 / 7}\right): \mathbf{Q}\right]=7(\mathbf{2})$. Thus 4,7 divide $[E: \mathbf{Q}]$ so 28 divides $[E: \mathbf{Q}](\mathbf{2})$. Since $[E: \mathbf{Q}] \leq 28,[E: \mathbf{Q}]=28$ (2).
(b) $f(x)=x^{5}+27 x^{2}-21 \in \mathbf{Q}[x]$ is irreducible by the Eisenstein Criterion with $p=3$ (4). Suppose $a \in E$ is a root of $f(x)$. Then $f(x)$ is the minimal polynomial of a over \mathbf{Q} and thus $[\mathbf{Q}(a): \mathbf{Q}]=5$. But then 5 divides 28 , a contradiction. Thus $f(x)$ has no root in E. (4).
(c) $3^{1 / 8}$ is a root of $x^{8}-3 \in \mathbf{Q}[x]$ which is irreducible by the Eisenstein Criterion with $p=3$ (3). We follow then argument of part (b). If $3^{1 / 8} \in E$ then $\left[\mathbf{Q}\left(3^{1 / 8}\right): \mathbf{Q}\right]=8$ divides 28 , a contradiction. Thus $3^{1 / 8} \notin E$. (4)
6. ($\mathbf{2 5}$ points)
(a) $x^{4}-19=\left(x^{2}-19^{1 / 2}\right)\left(x^{2}+19^{1 / 2}\right)=\left(x-19^{1 / 4}\right)\left(x+19^{1 / 4}\right)\left(x-\imath 19^{1 / 4}\right)\left(x+\imath 19^{1 / 4}\right)(\mathbf{3})$, hence $E=\mathbf{Q}\left(19^{1 / 4}, \imath\right)(\mathbf{3})$. Now $\left[\mathbf{Q}\left(19^{1 / 4}\right): \mathbf{Q}\right]=4$ since $19^{1 / 4}$ has minimal polynomial $x^{4}-19$ over \mathbf{Q} as $19^{1 / 4}$ is a root of it, it is monic, and it is irreducible by the Eisenstein Criterion with $p=19$ (2). Also $\left[E: \mathbf{Q}\left(19^{1 / 4}\right)\right]=\left[\mathbf{Q}\left(19^{1 / 4}\right)(\imath): \mathbf{Q}\left(19^{1 / 4}\right)\right] \leq 2$ since $\imath^{2}+1=0$. Since $\mathbf{Q}\left(19^{1 / 4}\right) \subseteq \mathbf{R}$ and $\imath \notin \mathbf{R},\left[E: \mathbf{Q}\left(19^{1 / 4}\right)\right]=2$. (2). Thus $[E: \mathbf{Q}]=\left[E: \mathbf{Q}\left(19^{1 / 4}\right)\right]\left[\mathbf{Q}\left(19^{1 / 4}\right): \mathbf{Q}\right]=2 \cdot 4=8$ (2).
(b) Since $\left\{1,19^{1 / 4}, 19^{2 / 4}, 19^{3 / 4}\right\}$ is a basis of $\mathbf{Q}\left(19^{1 / 4}\right)$ over \mathbf{Q} and $\{1, \imath\}$ is a basis of $E=$ $\mathbf{Q}\left(19^{1 / 4}\right)(\imath)$ over $\mathbf{Q}\left(19^{1 / 4}\right)$, the set of products $\left\{1,19^{1 / 4}, 19^{2 / 4}, 19^{3 / 4}, 1 \imath, 19^{1 / 4} \imath, 19^{2 / 4} \imath, 19^{3 / 4} \imath\right\}$ is a basis for E over $\mathbf{Q}(\mathbf{6})$.
(c) σ and τ generators (2); relations $\sigma^{4}=\tau^{2}=e(\mathbf{2})$ and $(\tau \sigma)^{2}=e(\mathbf{3})$. The last relation could have been expressed as $\tau \sigma \tau=\sigma^{3}$ or $(\sigma \tau)^{2}=e$.
7. (25 points) $E=\mathbf{Q}(\sqrt{3}, \imath \sqrt{7})=\mathbf{Q}(\sqrt{3})(\imath \sqrt{7})$ and $\alpha=2 \sqrt{3}-\imath \sqrt{7}$. If $[F(a): F]=n$ and $f(x) \in F[x]$ is monic of degree n and $f(a)=0$ then $\min (a, F)=f(x)$.
(a) Since $x^{2}+7$ is irreducible over $\mathbf{Q}(\sqrt{3})$ and has root $\imath \sqrt{7},[\mathbf{Q}(\sqrt{3})(\imath \sqrt{7}): \mathbf{Q}(\sqrt{3})]=2(\mathbf{3})$. $x^{2}-3$ has root $\sqrt{3}$ and is irreducible over \mathbf{Q} by the Eisenstein Criterion with $p=3$. Therefore $[\mathbf{Q}(\sqrt{3}): \mathbf{Q}]=2(\mathbf{2})$ which means $[E: \mathbf{Q}]=[\mathbf{Q}(\sqrt{3})(\imath \sqrt{7}): \mathbf{Q}(\sqrt{3})][\mathbf{Q}(\sqrt{3}): \mathbf{Q}]=2 \cdot 2=4(\mathbf{3})$.
(b) $\sqrt{3}, \imath \sqrt{7} \in \mathbf{Q}(\sqrt{3}, \imath \sqrt{7})$. Thus $2 \sqrt{3}-\imath \sqrt{7} \in \mathbf{Q}(\sqrt{3}, \imath \sqrt{7})$ so $\mathbf{Q}(2 \sqrt{3}-\imath \sqrt{7}) \subseteq \mathbf{Q}(\sqrt{3}, \imath \sqrt{7})$. To show equality we need only show the reverse inclusion which will follow from $\sqrt{3}, \imath \sqrt{7} \in$ $\mathbf{Q}(2 \sqrt{3}-\imath \sqrt{7}) .(2 \sqrt{3}-\imath \sqrt{7})(\overline{2 \sqrt{3}-\imath \sqrt{7}})=(2 \sqrt{3}-\imath \sqrt{7})(2 \sqrt{3}+\imath \sqrt{7})=4 \cdot 3+7=19$ shows that $\alpha^{-1}=(1 / 19)(2 \sqrt{3}+\imath \sqrt{7})$. Thus $\sqrt{3}=(1 / 4)\left(\alpha+19 \alpha^{-1}\right), \imath \sqrt{7}=(1 / 2)\left(-\alpha+19 \alpha^{-1}\right) \in$ $\mathbf{Q}(2 \sqrt{3}-\imath \sqrt{7}) .(6)$

$$
(\alpha-2 \sqrt{3})^{2}=(2 \sqrt{7})^{2} \text { so } \alpha^{2}-4 \sqrt{3} \alpha+12=-7, \alpha^{2}-4 \sqrt{3} \alpha+19=0(3) \cdot\left(\alpha^{2}+19\right)^{2}=(4 \sqrt{3} \alpha)^{2}
$$ $\alpha^{4}+38 \alpha^{2}+361=48 \alpha^{2}$, and $\alpha^{4}-10 \alpha^{2}+361=0(\mathbf{4}) . \min (\alpha, \mathbf{Q})=x^{4}-10 x^{2}+361(\mathbf{2})$.

(c) From the calculations above $\min (\alpha, \mathbf{Q}(\sqrt{3}))=x^{2}-4 \sqrt{3} x+9(\mathbf{2})$.

8. (25 points)

(a) By the commentary $\operatorname{Gal}(E / F) \simeq H \leq \operatorname{Sym}(S) \simeq S_{3} ;$ therefore $|\operatorname{Gal}(E / F)|$ divides 6 . Since $3<[E: F]=|\operatorname{Gal}(E / F)|$ necessarily $|H|=|\operatorname{Gal}(E / F)|=6=|\operatorname{Sym}(S)|$. Therefore $H=\operatorname{Sym}(S)$ and $\operatorname{Gal}(E / F) \simeq S_{3}$. (8)
(b) $d=[K: F], 6=[E: K][K: F]$ and thus $|\operatorname{Gal}(E / K)|=[E: K]=6 / d . d=1 ; 1$ (2). $d=2$; 1 (3). $d=3$; 3 (5). $d=6$; 1 (2).
(c) Let $a \in L \backslash F$. Then $2 \leq[F(a): F] \leq[L: F]=2$ implies $[F(a): F]=[L: F]=2$ and thus $F(a)=L$. Let $p(x) \in F[x]$ be the minimal polynomial of a over F. Then $\operatorname{Deg} p(x)=2$. Since $p(a)=0, p(x)=(x-a) q(x)$ for some $q(x) \in L[x]$. Thus $q(x)$ is monic and $\operatorname{Deg} q(x)=1$ which means $q(x)=x-b$ for some $b \in L$. Thus $p(x)=(x-a)(x-b)$ and $L=F(a)$ is a splitting field of $p(x)$ over F. (5)

