1. (**25 points**)

(a) $9x^{100} + 25x^4 - 15$ is irreducible over **Q** by the Eisenstein Criterion with p = 5 as 5 divides 15, 25, 5 does not divide 9, and 5² does not divide 15. (9).

(b) We can apply the mod 2 test to $11x^4 - 21x + 27$ as it reduces to $f(x) = x^4 + x^2 + 1 \in \mathbb{Z}_2[x]$ of the same degree (4). f(0) = 1 = f(1) means f(x) has no linear factors (4). If f(x) is reducible it is a product of irreducible quadratic factors, hence $f(x) = (x^2 + x + 1)(x^2 + x + 1) = x^4 + x^2 + 1$, contradiction. Thus f(x) is irreducible over \mathbb{Z}_2 (4) and $11x^4 - 21x + 27$ is irreducible over \mathbb{Q} (4).

2. (**25 points**)

(a) Suppose a|b. Then ac = b for some $c \in R$ (4). Since b is irreducible either a or c is a unit. Since a is irreducible, a is not a unit (4). Therefore c is a unit (4). Therefore a and b are associates.

(b) By assumption ab = cd. Suppose that *a* is prime. Then a|cd (4). Thus a|c, in which case *a* and *c* are associates (3) or a|d, in which case *a* and *d* are associates (3), by part (a). Since *a* and *c*, and *a* and *d*, are not associates, $a \not c$ and $a \not d$. Therefore *a* is not prime (3).

3. (25 points)

(a) Suppose r = r'r'', where $r', r'' \in R$. By assumption N(r) = p is a prime integer. Since N(0) = 0 and N(u) = 1 for all $u \in R^{\times}$, r is not zero and not a unit (2). Now N(r')N(r'') = N(r'r'') = N(r) = p (3) implies N(r') = 1, in which case r' is a unit, or N(r'') = 1, in which case r'' is a unit. Therefore r is irreducible. (3)

(b) $r = m + n\sqrt{5}$ for some $m, n \in \mathbb{Z}$. Now $p = N(r) = |m^2 - 5n^2| = |(m + \sqrt{5})(m - \sqrt{5})|$ so $p = (m + \sqrt{5})(m - \sqrt{5})$ or $p = (m + \sqrt{5})(-m + \sqrt{5})$ (4). Since $p = N(m + n\sqrt{5}) = N(m - n\sqrt{5}) = N(-m + n\sqrt{5})$ it follows that p is the product of two irreducibles in either case by part (a). Thus p is reducible. (4) Prime implies irreducible in domains; thus p is not prime in $\mathbb{Z}[\sqrt{5}]$ (4).

(c) $11 = 16 - 5 = N(4 + \sqrt{5})$, or $11 = |9 - 20| = N(3 + 2\sqrt{5})|$, for example (5).

4. (25 points) Let n_p denote the number of Sylow *p*-subgroups of *G*.

(a) Since $|G| = 825 = 3 \cdot 5^2 \cdot 11$ there are Sylow *p*-subgroups for p = 3, 5, 11 by Sylow's First Theorem. By Sylow's Third Theorem it follows n_{11} divides $3 \cdot 5^2$ (3) and $n_{11} \equiv 1 \pmod{11}$ (2). Thus $n_{11} \in \{1, 3, 5, 15, 25, 75\}$. As these integers are congruent to $1, 3, 5, 4, 3, 9 \mod 11$ respectively, $n_{11} = 1$. (3) Let K be the Sylow 11-subgroup of G. Then $K \leq G$ (2) by the corollary to Sylow's Third Theorem.

By Sylow's first Theorem (or Cauchy's Theorem) there exists $H \leq G$ of order 5 (3). $K \leq G$ implies $KH \leq G$. Since $|H \cap K|$ divides |H| and |K| by Lagrange's Theorem, that is 5 and 11, necessarily $|H \cap K| = 1$ (2). Therefore $|HK| = |H||K|/|H \cap K| = 5 \cdot 11/1 = 55$ (2).

(b) Now let H be a Sylow 3-subgroup of G. Then |H| = 3. By the argument for part (b) $HK \subseteq G$ and has order $3 \cdot 11 = 33$ (4). Since 3, 11 are primes and $11 \not\equiv 1 \pmod{3}$, HK is cyclic, and hence has an element of order 33 (4).

5. (25 points) $E = \mathbf{Q}(3^{1/4}, 19^{1/7}).$

(a) $3^{1/4}, 19^{1/7}$ are roots of $x^4 - 3, x^7 - 19 \in \mathbf{Q}[x]$ respectively (2). These monic polynomials are irreducible by the Eisenstein Criterion with p = 3, 19 respectively (2). Therefore $x^4 - 3$ is the minimal polynomial of $3^{1/4}$ over \mathbf{Q} , so $[\mathbf{Q}(3^{1/4}) : \mathbf{Q}] = 4$ and likewise $[\mathbf{Q}(19^{1/7}) : \mathbf{Q}] = 7$ (2). Thus 4, 7 divide $[E : \mathbf{Q}]$ so 28 divides $[E : \mathbf{Q}]$ (2). Since $[E : \mathbf{Q}] \leq 28, [E : \mathbf{Q}] = 28$ (2).

(b) $f(x) = x^5 + 27x^2 - 21 \in \mathbf{Q}[x]$ is irreducible by the Eisenstein Criterion with p = 3 (4). Suppose $a \in E$ is a root of f(x). Then f(x) is the minimal polynomial of a over \mathbf{Q} and thus $[\mathbf{Q}(a):\mathbf{Q}] = 5$. But then 5 divides 28, a contradiction. Thus f(x) has no root in E. (4).

(c) $3^{1/8}$ is a root of $x^8 - 3 \in \mathbf{Q}[x]$ which is irreducible by the Eisenstein Criterion with p = 3(3). We follow then argument of part (b). If $3^{1/8} \in E$ then $[\mathbf{Q}(3^{1/8}) : \mathbf{Q}] = 8$ divides 28, a contradiction. Thus $3^{1/8} \notin E$. (4)

6. (25 points)

(a) $x^4 - 19 = (x^2 - 19^{1/2})(x^2 + 19^{1/2}) = (x - 19^{1/4})(x + 19^{1/4})(x - i19^{1/4})(x + i19^{1/4})$ (3), hence $E = \mathbf{Q}(19^{1/4}, i)$ (3). Now $[\mathbf{Q}(19^{1/4}) : \mathbf{Q}] = 4$ since $19^{1/4}$ has minimal polynomial $x^4 - 19$ over \mathbf{Q} as $19^{1/4}$ is a root of it, it is monic, and it is irreducible by the Eisenstein Criterion with p = 19 (2). Also $[E : \mathbf{Q}(19^{1/4})] = [\mathbf{Q}(19^{1/4})(i) : \mathbf{Q}(19^{1/4})] \le 2$ since $i^2 + 1 = 0$. Since $\mathbf{Q}(19^{1/4}) \subseteq \mathbf{R}$ and $i \notin \mathbf{R}$, $[E : \mathbf{Q}(19^{1/4})] = 2$. (2). Thus $[E : \mathbf{Q}] = [E : \mathbf{Q}(19^{1/4})][\mathbf{Q}(19^{1/4}) : \mathbf{Q}] = 2 \cdot 4 = 8$ (2).

(b) Since $\{1, 19^{1/4}, 19^{2/4}, 19^{3/4}\}$ is a basis of $\mathbf{Q}(19^{1/4})$ over \mathbf{Q} and $\{1, i\}$ is a basis of $E = \mathbf{Q}(19^{1/4})(i)$ over $\mathbf{Q}(19^{1/4})$, the set of products $\{1, 19^{1/4}, 19^{2/4}, 19^{3/4}, 1i, 19^{1/4}i, 19^{2/4}i, 19^{3/4}i\}$ is a basis for E over \mathbf{Q} (6).

(c) σ and τ generators (2); relations $\sigma^4 = \tau^2 = e$ (2) and $(\tau \sigma)^2 = e$ (3). The last relation could have been expressed as $\tau \sigma \tau = \sigma^3$ or $(\sigma \tau)^2 = e$.

7. (25 points) $E = \mathbf{Q}(\sqrt{3}, i\sqrt{7}) = \mathbf{Q}(\sqrt{3})(i\sqrt{7})$ and $\alpha = 2\sqrt{3} - i\sqrt{7}$. If [F(a) : F] = n and $f(x) \in F[x]$ is monic of degree n and f(a) = 0 then $\min(a, F) = f(x)$.

(a) Since $x^2 + 7$ is irreducible over $\mathbf{Q}(\sqrt{3})$ and has root $i\sqrt{7}$, $[\mathbf{Q}(\sqrt{3})(i\sqrt{7}) : \mathbf{Q}(\sqrt{3})] = 2$ (3). $x^2 - 3$ has root $\sqrt{3}$ and is irreducible over \mathbf{Q} by the Eisenstein Criterion with p = 3. Therefore $[\mathbf{Q}(\sqrt{3}) : \mathbf{Q}] = 2$ (2) which means $[E : \mathbf{Q}] = [\mathbf{Q}(\sqrt{3})(i\sqrt{7}) : \mathbf{Q}(\sqrt{3})][\mathbf{Q}(\sqrt{3}) : \mathbf{Q}] = 2 \cdot 2 = 4$ (3). (b) $\sqrt{3}, i\sqrt{7} \in \mathbf{Q}(\sqrt{3}, i\sqrt{7})$. Thus $2\sqrt{3} - i\sqrt{7} \in \mathbf{Q}(\sqrt{3}, i\sqrt{7})$ so $\mathbf{Q}(2\sqrt{3} - i\sqrt{7}) \subseteq \mathbf{Q}(\sqrt{3}, i\sqrt{7})$. To show equality we need only show the reverse inclusion which will follow from $\sqrt{2}, i\sqrt{7}$.

To show equality we need only show the reverse inclusion which will follow from $\sqrt{3}, i\sqrt{7} \in \mathbf{Q}(2\sqrt{3} - i\sqrt{7})$. $(2\sqrt{3} - i\sqrt{7})(\overline{2\sqrt{3} - i\sqrt{7}}) = (2\sqrt{3} - i\sqrt{7})(2\sqrt{3} + i\sqrt{7}) = 4\cdot3 + 7 = 19$ shows that $\alpha^{-1} = (1/19)(2\sqrt{3} + i\sqrt{7})$. Thus $\sqrt{3} = (1/4)(\alpha + 19\alpha^{-1}), i\sqrt{7} = (1/2)(-\alpha + 19\alpha^{-1}) \in \mathbf{Q}(2\sqrt{3} - i\sqrt{7})$. (6)

 $(\alpha - 2\sqrt{3})^2 = (i\sqrt{7})^2 \text{ so } \alpha^2 - 4\sqrt{3}\alpha + 12 = -7, \ \alpha^2 - 4\sqrt{3}\alpha + 19 = 0 \ (\mathbf{3}). \ (\alpha^2 + 19)^2 = (4\sqrt{3}\alpha)^2, \ \alpha^4 + 38\alpha^2 + 361 = 48\alpha^2, \ \text{and} \ \alpha^4 - 10\alpha^2 + 361 = 0 \ (\mathbf{4}). \ \min(\alpha, \mathbf{Q}) = x^4 - 10x^2 + 361 \ (\mathbf{2}).$

(c) From the calculations above $\min(\alpha, \mathbf{Q}(\sqrt{3})) = x^2 - 4\sqrt{3}x + 9$ (2).

8. (**25 points**)

(a) By the commentary $\operatorname{Gal}(E/F) \simeq H \leq \operatorname{Sym}(S) \simeq S_3$; therefore $|\operatorname{Gal}(E/F)|$ divides 6. Since $3 < [E:F] = |\operatorname{Gal}(E/F)|$ necessarily $|H| = |\operatorname{Gal}(E/F)| = 6 = |\operatorname{Sym}(S)|$. Therefore $H = \operatorname{Sym}(S)$ and $\operatorname{Gal}(E/F) \simeq S_3$. (8)

(b) d = [K : F], 6 = [E : K][K : F] and thus |Gal(E/K)| = [E : K] = 6/d. d = 1; 1 (2). d = 2; 1 (3). d = 3; 3 (5). d = 6; 1 (2).

(c) Let $a \in L \setminus F$. Then $2 \leq [F(a) : F] \leq [L : F] = 2$ implies [F(a) : F] = [L : F] = 2 and thus F(a) = L. Let $p(x) \in F[x]$ be the minimal polynomial of a over F. Then Deg p(x) = 2. Since p(a) = 0, p(x) = (x - a)q(x) for some $q(x) \in L[x]$. Thus q(x) is monic and Deg q(x) = 1 which means q(x) = x - b for some $b \in L$. Thus p(x) = (x - a)(x - b) and L = F(a) is a splitting field of p(x) over F. (5)