Spring 2009

Math 431

Final Examination 05/07/2009

Name (PRINT) _____

(1) Return this exam copy. (2) Write your solutions in your exam booklet. (3) Show your work; justification is required for credit. (4) There are eight questions on this exam. (5) Each question counts 25 points. (6) Problems 4–7 constitute a version of Hour Test II. (7) You are expected to abide by the University's rules concerning academic honesty.

- 1. Determine whether or not the following polynomials are irreducible over **Q**:
 - (a) $9x^{100} + 25x^4 15;$
 - (b) $11x^4 21x + 27$.

For part (b) you may assume $x^2 + x + 1$ is the only irreducible quadratic in $\mathbf{Z}_2[x]$.]

2. Let R be an integral domain.

- (a) Suppose $a, b \in R$ are irreducible. Show that a|b implies that a and b are associates.
- (b) Suppose that $a, b, c, d \in R$ are distinct irreducibles and no two are associates. If ab = cd, show that a is not prime.

3. Let $R = \mathbb{Z}[\sqrt{5}] = \{m + n\sqrt{5} \mid m, n \in \mathbb{Z}\}$. Recall that $N : R \longrightarrow \{0, 1, 2, 3, ...\}$ defined by $N(m+n\sqrt{5}) = |m^2 - 5n^2| = |(m+n\sqrt{5})(m-n\sqrt{5})|$ satisfies N(rr') = N(r)N(r') for all $r, r' \in R$ and N(r) = 1 if and only if r is a unit of R. You may assume these properties of the function N.

- (a) Suppose $r \in R$ and N(r) = p is a prime integer. Show that r is irreducible.
- (b) Suppose $r \in R$ and N(r) = p is a prime integer. Show that p is not an irreducible element, and also not a prime element, of R.
- (c) Use part (b) to show that 11 is not a prime element of R.

- 4. Suppose that G is a finite group and $|G| = 825 = 3 \cdot 5^2 \cdot 11$.
 - (a) Show that G has a subgroup of order 55.
 - (b) Show that G has an element of order 33.

You may assume the following from group theory. Let $H, K \leq G$. Then $|HK| = |H|K|/|H \cap K|$ and $H \leq G$ implies $HK \leq G$.

5. Let $E = \mathbf{Q}(3^{1/4}, 19^{1/7}).$

- (a) Given that $[E : \mathbf{Q}] \leq 28$ find $[E : \mathbf{Q}]$.
- (b) Show that $f(x) = x^5 + 27x^2 21$ has no root in E.
- (c) Show that $3^{1/8} \notin E$.

6. Let *E* be a splitting field of $x^4 - 19$ over **Q**.

- (a) Show that $[E : \mathbf{Q}] = 8$.
- (b) Find a basis for E as a vector space over \mathbf{Q} .
- (c) The Galois group $\operatorname{Gal}(E/\mathbf{Q}) \simeq D_4$. Describe generators and relations for $\operatorname{Gal}(E/\mathbf{Q})$. (Justification not needed.)
- 7. Let $E = \mathbf{Q}(\sqrt{3}, i\sqrt{7}) = \mathbf{Q}(\sqrt{3})(i\sqrt{7}).$
 - (a) Use the fact that $x^2 + 7$ is irreducible over $\mathbf{Q}(\sqrt{3})$ to find $[E:\mathbf{Q}]$.
 - (b) Show that $E = \mathbf{Q}(2\sqrt{3} i\sqrt{7})$ and find the minimal polynomial of $\alpha = 2\sqrt{3} i\sqrt{7}$ over \mathbf{Q} .
 - (c) Find the minimal polynomial of $\alpha = 2\sqrt{3} i\sqrt{7}$ over $\mathbf{Q}(\sqrt{3})$.

8. Let F be a field of characteristic 0.

- (a) Suppose E is a splitting field of an irreducible $p(x) \in F[x]$ of degree 3 and [E:F] > 3. Show [E:F] = 6 and $\operatorname{Gal}(E/F) \simeq S_3$.
- (b) For the field E of part (a) and each positive divisor d of 6 find the number of subfields K of E which satisfy $F \subseteq K \subseteq E$ and [K : F] = d.
- (c) Suppose that L is a field extension of F and [L:F] = 2. Show that L is a Galois extension of F; that is a splitting field of some $f(x) \in F[x]$ over F.

For part (a) you may use the fact that $\sigma \in \operatorname{Gal}(E/F)$ permutes the set S of roots of p(x) in E and the restriction map $\pi : \operatorname{Gal}(E/F) \longrightarrow \operatorname{Sym}(S)$ given by $\pi(\sigma) = \sigma|_S$ is an injective group homomorphism, where $\operatorname{Sym}(S)$ is the group of permutations of S under composition.