Final Examination 05/07/2009

Name (PRINT)

(1) Return this exam copy. (2) Write your solutions in your exam booklet. (3) Show your work; justification is required for credit. (4) There are eight questions on this exam. (5) Each question counts 25 points. (6) Problems 4-7 constitute a version of Hour Test II. (7) You are expected to abide by the University's rules concerning academic honesty.

1. Determine whether or not the following polynomials are irreducible over \mathbf{Q} :
(a) $9 x^{100}+25 x^{4}-15$;
(b) $11 x^{4}-21 x+27$.

For part (b) you may assume $x^{2}+x+1$ is the only irreducible quadratic in $\mathbf{Z}_{2}[x]$.]
2. Let R be an integral domain.
(a) Suppose $a, b \in R$ are irreducible. Show that $a \mid b$ implies that a and b are associates.
(b) Suppose that $a, b, c, d \in R$ are distinct irreducibles and no two are associates. If $a b=c d$, show that a is not prime.
3. Let $R=\mathbf{Z}[\sqrt{5}]=\{m+n \sqrt{5} \mid m, n \in \mathbf{Z}\}$. Recall that $N: R \longrightarrow\{0,1,2,3, \ldots\}$ defined by $N(m+n \sqrt{5})=\left|m^{2}-5 n^{2}\right|=|(m+n \sqrt{5})(m-n \sqrt{5})|$ satisfies $N\left(r r^{\prime}\right)=N(r) N\left(r^{\prime}\right)$ for all $r, r^{\prime} \in R$ and $N(r)=1$ if and only if r is a unit of R. You may assume these properties of the function N.
(a) Suppose $r \in R$ and $N(r)=p$ is a prime integer. Show that r is irreducible.
(b) Suppose $r \in R$ and $N(r)=p$ is a prime integer. Show that p is not an irreducible element, and also not a prime element, of R.
(c) Use part (b) to show that 11 is not a prime element of R.
4. Suppose that G is a finite group and $|G|=825=3 \cdot 5^{2} \cdot 11$.
(a) Show that G has a subgroup of order 55 .
(b) Show that G has an element of order 33.

You may assume the following from group theory. Let $H, K \leq G$. Then $|H K|=|H| K|/|H \cap K|$ and $H \unlhd G$ implies $H K \leq G$.
5. Let $E=\mathbf{Q}\left(3^{1 / 4}, 19^{1 / 7}\right)$.
(a) Given that $[E: \mathbf{Q}] \leq 28$ find $[E: \mathbf{Q}]$.
(b) Show that $f(x)=x^{5}+27 x^{2}-21$ has no root in E.
(c) Show that $3^{1 / 8} \notin E$.
6. Let E be a splitting field of $x^{4}-19$ over \mathbf{Q}.
(a) Show that $[E: \mathbf{Q}]=8$.
(b) Find a basis for E as a vector space over \mathbf{Q}.
(c) The Galois group $\operatorname{Gal}(E / \mathbf{Q}) \simeq D_{4}$. Describe generators and relations for $\operatorname{Gal}(E / \mathbf{Q})$. (Justification not needed.)
7. Let $E=\mathbf{Q}(\sqrt{3}, \imath \sqrt{7})=\mathbf{Q}(\sqrt{3})(\imath \sqrt{7})$.
(a) Use the fact that $x^{2}+7$ is irreducible over $\mathbf{Q}(\sqrt{3})$ to find $[E: \mathbf{Q}]$.
(b) Show that $E=\mathbf{Q}(2 \sqrt{3}-\imath \sqrt{7})$ and find the minimal polynomial of $\alpha=2 \sqrt{3}-\imath \sqrt{7}$ over \mathbf{Q}.
(c) Find the minimal polynomial of $\alpha=2 \sqrt{3}-\imath \sqrt{7}$ over $\mathbf{Q}(\sqrt{3})$.
8. Let F be a field of characteristic 0 .
(a) Suppose E is a splitting field of an irreducible $p(x) \in F[x]$ of degree 3 and $[E: F]>3$. Show $[E: F]=6$ and $\operatorname{Gal}(E / F) \simeq S_{3}$.
(b) For the field E of part (a) and each positive divisor d of 6 find the number of subfields K of E which satisfy $F \subseteq K \subseteq E$ and $[K: F]=d$.
(c) Suppose that L is a field extension of F and $[L: F]=2$. Show that L is a Galois extension of F; that is a splitting field of some $f(x) \in F[x]$ over F.
For part (a) you may use the fact that $\sigma \in \operatorname{Gal}(E / F)$ permutes the set S of roots of $p(x)$ in E and the restriction map $\pi: \operatorname{Gal}(E / F) \longrightarrow \operatorname{Sym}(S)$ given by $\pi(\sigma)=\left.\sigma\right|_{S}$ is an injective group homomorphism, where $\operatorname{Sym}(S)$ is the group of permutations of S under composition.

