Math 494: Topics in Algebra

Problem Set 4

Due Friday April 4: Do all four of the following problems.

We assume throughout that K is an algebraically closed field.

1) Let C be an affine curve. Suppose $f \in K[X, Y]$ is of minimal degree such that $C=V(f)$. We call f a minimal polynomial for C.
a) Show that if p is irreducible and p divides f, then p^{2} does not divide f.
b) Show that if g is another minimal polynomial for f, then $g=a f$ for some nonzero $a \in K$.
2) Let

$$
\begin{aligned}
& f(X, Y)=X^{3}-3 X^{2} Y+2 X^{2}+3 X Y-9 Y^{2}+9 Y-X-2 \\
& g(X, Y)=2 X^{3}-X^{2} Y+X^{2}+6 X Y-3 Y^{2}+4 Y-2 X-1
\end{aligned}
$$

and

$$
h(X, Y)=X^{2} Y^{2}-2 X^{4}+X^{2} Y-X^{2}+2 X Y^{3}-4 X^{3} Y+2 X Y^{2}-2 X Y
$$

a) Do f and g have a common nonconstant factor?
b) Do f and h have a common nonconstant factor? [Hint: Use resultants in MAPLE.]
3) Suppose $F \in K[X, Y, Z]$ is nonconstant and homogeneous.
a) Show that $V_{\mathbb{P}}(F)$ is irreducible if and only if $F=G^{k}$ for some irreducible $G \in K[X, Y, Z]$.
b) Let C be a projective curve. Show that there are irreducible projective curves C_{1}, \ldots, C_{n} such that $C=C_{1} \cup \ldots \cup C_{n}$ and $C_{i} \nsubseteq C_{j}$ for $i \neq j$. Moreover, if $D \subseteq C$ is an irreducible curve, then $D=C_{i}$ for some i. We call C_{1}, \ldots, C_{n} the irreducible components of C.
4) Suppose $F \in K[X, Y, Z]$ is a nonconstant homogenous polynomial.
a) Suppose $f=F(X, Y, 1)$ and Z does not divide F. Show that if C_{1}, \ldots, C_{n} are the irreducible components of $V_{\mathbb{P}}(F)$, then $C_{1} \cap \mathbb{A}_{2}(K), \ldots, C_{n} \cap \mathbb{A}_{2}(K)$ are the irreducible components of the affine curve $V(f)$.
b) What happens in a) if Z divides F ?
5) Suppose $F \in K[X, Y, Z]$ is nonzero. Consider the polynomial $F(T X, T Y, T Z) \in$ $K[X, Y, Z, T]$. Then F is homogeneous of degree d if and only if

$$
F(T X, T Y, T Z)=T^{d} F(X, Y, Z)
$$

