Math 494: Topics in Algebra

Problem Set 3

Due Wednesday March 26: Do 5 of the following problems.

1) Let $L \subseteq \mathbb{P}_{2}(k)$ be a projective line. Show that there are homogeneous polynomials $f, g, h \in k[X, Y]$ of degree one such that

$$
[(x, y)] \mapsto[(f(x, y), g(x, y), h(x, y))]
$$

is a well-defined bijection between $\mathbb{P}_{1}(k)$ and L.
2) Let $p \in \mathbb{P}_{2}(k)$. Let \mathcal{L}_{p} be the set of all lines $L \subseteq \mathbb{P}_{2}(k)$ with $p \in L$. Find a natural bijection between $\mathbb{P}_{1}(k)$ and \mathcal{L}_{p}.
3) Let $C \subseteq \mathbb{P}_{2}(\mathbb{C})$ be the curve

$$
Y^{3}=X^{3}+X^{2} Z-Z^{3}
$$

and let $L \subseteq \mathbb{P}_{2}(k)$ be the line $X-Y=0$. Find all points of $C \cap L$.
4) a) Suppose $p_{1}, \ldots, p_{N} \in \mathbb{P}_{2}(k)$ where $N \leq \frac{d^{2}+3 d}{2}$. Then there is a curve C of degree d with $p_{1}, \ldots, p_{N} \in C$.
b) Find 6 points p_{1}, \ldots, p_{6} in $\mathbb{P}_{2}(\mathbb{C})$ such that there is no conic C with $p_{1}, \ldots, p_{6} \in C$.
5) Suppose K is an algebraically closed field and $f \in K[X, Y]$ is a nonconstant polynomial. Prove that $V(f)$ is infinite.
6) Prove Theorem 4.19 from $\S 4$ of the notes.

Bonus Problem: Suppose $f(X, Y, Z)=X^{2}+a Y^{2}+b Z^{2}$ where $a, b \in \mathbb{Q}$.
Prove that either
i) $\left|C \cap \mathbb{P}_{2}(\mathbb{Q})\right|=\emptyset$ or
ii) $\left|C \cap \mathbb{P}_{2}(\mathbb{Q})\right|$ is infinite.

Show by example that both i) and ii) are possible.

