Math 494: Topics in Algebra

Problem Set 2

Due Wednesday March 5: Turn in five of the following problems.

1) Let $A G_{n}(k)$ be the set of all invertible affine transformations of $\mathbb{A}_{n}(k)$.
a) Prove that $A G_{n}(k)$ is a group under composition.
b) We say that $T \in A G_{n}(k)$ is a translation if there is \vec{b} such that

$$
T(\vec{x})=\vec{x}+\vec{b}
$$

for all $\vec{x} \in \mathbb{A}_{n}(k)$. Let N be the set of all translations of $\mathbb{A}_{n}(k)$. Prove that N is a normal subgroup of $A G_{n}(k)$.
c) Prove that $A G_{n}(k) / N$ is isomorphic to $\mathrm{GL}_{n}(k)$.
d) Prove that $A G_{1}(k)$ is isomorphic to the group of matricies

$$
\left\{\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right): a, b \in k, a \neq 0\right\}
$$

2) Let $P G_{n}(k)$ be the set of all projective transformations of $\mathbb{P}_{n}(k)$. For $A \in \mathrm{GL}_{n+1}(k)$ we let $T_{A}: \mathbb{P}_{n}(k) \rightarrow \mathbb{P}_{n}(k)$ be the transformation

$$
T_{A}([\vec{x}])=[A \vec{x}] .
$$

a) Show that $P G_{n}(k)$ is a group under composition.
b) Show that $A \mapsto T_{A}$ is a homomorphism from $\mathrm{GL}_{n+1}(k)$ to $P G_{n}(k)$.
c) What is the kernel of this homomorphism?
d) Recall that $\mathrm{SL}_{n}(k)=\{A \in k: \operatorname{det}(A)=1\}$. Let I be the identity matix. Prove that $P G_{2}(\mathbb{C}) \cong \mathrm{SL}_{2}(\mathbb{C}) /\{ \pm I\}$.
3) a) Suppose $a \neq b \in k$. Prove that there is a unique $T \in A G_{1}(k)$ with $T(0)=a$ and $T(1)=b$. Conclude that for any $x \neq y$ and any $a \neq b$ there is a unique $T \in A G_{1}(k)$ with $T(x)=a$ and $T(y)=b$.
b) Suppose $a, b, c \in \mathbb{P}_{1}(k)$ are distinct. Prove that there is a unique T in $P G_{1}(k)$ such that $T(0)=a, T(1)=b$ and $T(\infty)=c$. Conclude that for any distinct $x, y, z \in \mathbb{P}_{1}(k)$, and any distinct $a, b, c \in \mathbb{P}_{1}(k)$ there is a unique $T \in P G_{1}(k)$ with $T(x)=a, T(y)=b$ and $T(z)=c$.
4) Let K be an algebraically closed field of characteristic 2 and let C be the curve $X^{2}+Y^{2}=1$. Show that C is a line.

This shows one reason why when we study conics we exclude the characteristic 2 case.
5) Give a classification of conics in $\mathbb{P}_{2}(\mathbb{R})$ similar to the one given in Corollary 3.19.
6) Let C be the ellipse $X^{2}+2 Y^{2}=6$.
a) Find rational functions $f(t), g(t) \in \mathbb{Q}(t)$ such that $(f(t), g(t)) \in C$ for all $t \in \mathbb{R}$.
b) Find all $(a, b, c) \in \mathbb{Z}^{3}$ such that $a^{2}+2 b^{2}=6 c^{2}$.

