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Let F be a field and suppose f1, . . . , fm ∈ F [X1, . . . , Xn]. A central problems
of mathematics is to study the solutions to systems of polynomial equations:

f1(X1, . . . , Xn) = 0

f2(X1, . . . , Xn) = 0

...

fm(X1, . . . , Xn) = 0

where f1, . . . , fm ∈ F [X1, . . . , Xn]. Of particular interest are the cases when F
is the field Q of rational numbers, R of real numbers, C of complex numbers or
a finite field like Zp. For example Fermat’s Last Theorem, is the assertion that
if x, y, z ∈ Q, n > 2 and

xn + yn = zn,

then at least one of x, y, z is zero.
When we look at the solution to systems of polynomials over R (or C), we

can consider the geometry of the solution set in Rn (or Cn). For example the
solutions to

X2 − Y 2 = 1

is a hyperbola. There are many questions we can ask about the solution space.
For example:

i) The circle X2 + Y 2 = 1 is smooth, while the curve Y 2 = X3 has a cusp
at (0, 0). How can we tell if the solution set is smooth?

ii) If f, g ∈ C[X,Y ] how many solutions are there to the system

f(X,Y ) = 0

g(X,Y ) = 0?

The main theme of the course will be that there are deep connections between
the geometry of the solution sets and algebraic properties of the polynomial
rings.

1 Algebraically Closed Fields

We will primarily be considering solutions to f(X,Y ) = 0 where f is a polyno-
mial in two variables, but we start by looking at equations f(X) = 0 in a single
variable. In general if f ∈ F [X ] there is no reason to believe that f(X) = 0 has
a solution in F . For example, X2 − 2 = 0 has no solution in Q and X2 + 1 = 0
has no solution in R. The fields where every nonconstant polynomial has a
solution play an important role.

Definition 1.1 We say that a field F is algebraically closed if every nonconstant
polynomial has a zero in F .
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The Complex Numbers

Theorem 1.2 (Fundamental Theorem of Algebra) The field C of com-
plex numbers is algebraically closed.

Although this is a purely algebraic statement. Most proofs of the Funda-
mental Theorem of Algebra use ideas from other areas of mathematics, such as
Complex Analysis or Algebraic Topology. We will sketch one proof that relies
on a central theorem of Complex Analysis.

Recall that if z ∈ C and z = a+ bi where a, b ∈ R, we let |z| =
√
a2 + b2.

Theorem 1.3 (Liouville’s Theorem) Suppose g : C → C is a differentiable
function and there is an M such that |g(z)| < M for all z ∈ C, then g is
constant.

Proof of Fundamental Theorem of Algebra
Let f ∈ C[X ]. Suppose f(z) 6= 0 for all z ∈ C. We must show f is constant.
Let g(z) = 1

f(z) . Then g : C → C is differentiable. Suppose f has degree n

and

f(X) =

n
∑

i=0

aiX
i = anX

n

(

1 +
an−1

an

1

X
+ . . .+

a0

an

1

Xn

)

.

Then |f(z)| → ∞ as |z| → ∞ and |g(z)| → 0 as |z| → ∞. Thus we can find r
such that |g(z)| < 1 for |z| > r. The set {z : z ≤ r} is compact. Thus there is
M > 0 such that |g(z)| ≤M if |z| ≤ r. Thus |g| is bounded on C. By Liouville’s
Theorem, g is constant and hence f is constant.

Existence of Algebraically Closed Fields

While the complex numbers is the most natural algebraically closed field, there
are other examples. Indeed every field has an algebraically closed extension
field. The key idea is that even though a nonconstant polynomial does not have
a zero in a field F it will have one in an extension of F .

Theorem 1.4 (Fundamental Theorem of Field Theory) If F is a field and
f ∈ F [X ] is a nonconstant polynomial, there is an extension field K ⊇ F con-
taining a zero of F .

Sketch of Proof Let p ∈ F [X ] be an irreducible factor of f . It suffices to find
a zero of p. Since p is irreducible, 〈p〉 is a maximal ideal and K = F [X ]/〈p〉 is
a field. By identifying a ∈ F with a + 〈p〉, we can view F as a subfield of K.
The element α = X + 〈p〉 is a zero of p.

While this might seem artificial, this construction is really quite natural.
Indeed if p is an irreducible polynomial of degree n and α is a zero of p in K,
then

F (α) =

{

n−1
∑

i=0

aiα
i : a0, . . . , an−1 ∈ F

}
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is an extension field isomorphic to F [X ]/〈p〉.
Any proof that every field has an algebraically closed extension needs a

little set theory. We will simplify the set theory involved by only considering
the countable case.

Recall that a set A is countable if there is an onto function f : N → A. In
this case f(0), f(1), . . . is a listing of A (possibly with repetitions).

The next lemma summarizes all we will need about countability.

Lemma 1.5 i) If A is countable and f : A→ B is onto, then B is countable.
ii) N× N is countable.
iii) If A is a countable set, then An is countable.
iv) If A0, A1, . . . are countable then

⋃n
n=0 An is countable.

Proof
i) If g : N → A is onto and f : A→ B is onto, then f ◦ g is onto.
ii) Define φ : N → N×N as follows if x ∈ N we can factor x = 2n3my where

neither 2 nor 3 divides y. Let φ(x) = (n,m). Then φ is onto.

iii) We prove this by induction on n. It is clearly true for n = 1. Suppose
An is countable. There are onto functions f : N → A and g : A → An. Let
h : N× N → An+1 be the function

h(n,m) = (f(n), g(n)).

Then h is onto. By i) and ii) An+1 is countable.

iv) Suppose A0, A1, . . . are all countable sets. Let fn : N → An be onto. Let

g : N× N →
∞
⋃

n=0

An

be the function g(n,m) = fn(m). Then g is onto and
⋃∞
n=0 An is onto.

Corollary 1.6 i) If F is a countable field and f ∈ F [X ] is nonconstant, we
can find a countable field K ⊇ F containing a zero of f .
ii) If F is a countable field, then F [X ] is countable.

Proof i) Let p be an irreducible factor of F . Let α be a zero of p in an extension
field. If p has degree n, then

F (α) =

{

n−1
∑

i=0

aiα
i : a0, . . . , an−1 ∈ F

}

and the map

(a0, . . . , an−1) 7→
n−1
∑

i=0

aiα
i
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is a function from F n onto F (α).

ii) Let Pn be the polynomials in F [X ] of degree at most n. The map

(a0, . . . , an) 7→
n
∑

i=0

aiX
i

is an function from F n onto Pn. Thus Pn is countable and F [X ] =
⋃∞
n=0 Pn is

countable.

We need one more basic lemma.

Lemma 1.7 Suppose F0 ⊆ F1 ⊆ F2 ⊆ . . . are fields. Then F =
⋃∞
n=0 Fn is a

field.

Sketch of Proof We first note that F is closed under addition and multi-
plication. If a, b ∈ F we can find n0, n1 such that a ∈ Fn0

and b ∈ Fn1
. Let

n = max(n0, n1). Then a, b ∈ Fn and a + b, ab ∈ Fn ⊆ F . Similarly if a ∈ F
and a 6= 0, there is an n such that a ∈ Fn and 1

a
∈ Fn.

It is easy to check that all of the field axioms hold. For example, if a, b, c ∈ F ,
there is an n such that a, b, c ∈ Fn. Since Fn is a field a+ (b+ c) = (a+ b) + c.
All of the field axioms have analogous proofs.

Lemma 1.8 If F is a countable field, there is a countable field K ⊇ F such that
if f ∈ F [X ] is a nonconstant polynomial, there is α ∈ K such that f(α) = 0.

Proof Since F [X ] is countable, we can find f0, f1, . . . an enumeration of F [X ].
We build a sequence of countable fields

F0 ⊆ F1 ⊆ F2 ⊆ . . .

as follows. Let F0 = F . Given Fi if fi is a constant polynomial let Fi+1 = Fi,
otherwise let Fi+1 ⊇ Fi be a countable extension field containing a zero of fi.
This is possible by Corollary 1.6. Let K =

⋃∞
i=0 Fi. Then K is a countable field

extending F . If fi ∈ F [X ], then fi has a zero in Fi ⊆ Ki. Thus fi has a zero in
K.
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Theorem 1.9 If F is a field, then there is an algebraically closed K ⊇ F .

Proof We will prove this only in case F is countable. We build fields

K0 ⊆ K1 ⊆ . . .

as follows. Let K0 = F . Given Kn a countable field, we can find a countable
field Kn+1 ⊇ Kn such that every nonconstant polynomial f ∈ Kn[X ] has a zero
in Kn+1. Let K =

⋃∞
n=0 K

n. Suppose f ∈ K[X ]. Let

f =

n
∑

i=0

aiX
i.

For each i we can find mi such that ai ∈ Kmi
. Let m = max(m0, . . . ,mn).

Then f ∈ Km[X ]. If f is nonconstant, f has a zero in Km+1[X ].
Thus every nonconstant polynomial in K[X ] has a zero in K.

Solving Equations in Algebraically Closed Fields

Lemma 1.10 If F is a field, f ∈ F [X ], a ∈ F and f(a) = 0, then we can
factor f = (X − a)g for some g ∈ F [X ].

Proof By the Division Algorithm there are g and r ∈ F [X ] such that

f = g(X − a) + r

and either r = 0 or deg r < 1. In either case, we see that r ∈ F . But

0 = f(a) = g(a)(a− a) + r = r.

Thus f = (X − a)g.

Corollary 1.11 Suppose f ∈ F [X ] is nonconstant, then the number of zeros of
F is at most deg f .

Proof We prove this by induction on deg f . If deg f = 1, then f(X) = aX+ b
for some a, b ∈ F with a 6= 0 and the only solution is − b

a
. Suppose deg f > 1.

case 1: f has no zeros in F .
In this case the number of zeros is less than deg f , as desired.

case 2: f has a zero a ∈ F .
By the previous lemma, there is g ∈ F [X ] such that f = (X − a)g and

deg g = deg f − 1. If f(x) = 0 then either x = a or g(x) = 0. By induction, g
has at most deg f − 1 zeros. Thus f has at most deg f zeros.

In algebraically closed fields we can get more precise information. Suppose
f ∈ F [X ] has degree n. We say that f splits over F if

f = b(X − a1)(X − a2) · · · (X − an)

for some a1, . . . , an, b ∈ F .
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Proposition 1.12 If K is an algebraically closed field, then every f ∈ K[X ]
splits over K.

Proof We prove this by induction on the degree of f . If deg f ≤ 1, this is clear.
Suppose deg f > 1. There is a ∈ K such that f(a) = 0. Thus f = (X − a)g for
some g ∈ F [X ] with deg g < deg f . By induction, we can factor

g = b(X − c1) · · · (X − cdeg g).

Hence
f = b(X − a)(X − c1) · · · (X − cdeg g).

If
f = b(X − a1)(X − a2) · · · (X − an),

then the zeros of f are {a1, . . . , an}. There is no reason to believe that a1, . . . , an
are distinct as f might have repeated zeros.

If K is an algebraically closed field, f ∈ K[X ] and a1, . . . , an are the distinct
zeros of f , then we can factor

f = b(X − a1)
m1 · · · (X − an)

mn .

Since K[X ] is a unique factorization domain, this factorization is unique, up to
renumbering the ai.

Definition 1.13 If F is a field, f ∈ F [X ] is a nonconstant polynomial, a ∈ F ,
we say that a is a multiple zero of f if (X − a)2 divides f in F [X ].

We say that a has multiplicity m if we can factor f = (X − a)mg where
g(a) 6= 0.

If
f = b(X − a1)

m1 · · · (X − an)
mn ,

where a1, . . . , am are distinct, then ai has multiplicity mi. The following Propo-
sition is useful, but quite easy.

Proposition 1.14 If K is an algebraically closed field, f ∈ K[X ] is a noncon-
stant polynomial, a1, . . . , an are the distinct zeros of f and ai has multiplicity
mi. Then m1 + . . .+mn = deg f .

In other words, “counted correctly” f always has deg f zeros in K.
There is an easy test to see if a is a multiple zero of f .
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Lemma 1.15 Let F be a field, a ∈ F , f ∈ F [X ] nonconstant, then a is a
multiple zero of f if and only if f(a) = f ′(a) = 0.

Proof
(⇒) If f = (X − a)2g, then

f ′ = (X − a)2g′ + 2(X − a)g

and f ′(a) = 0.
(⇐) Suppose f(a) = 0. Then f = (X − a)g for some g ∈ F [X ]. Then

f ′ = (X − a)g′ + g. If f ′(a) = 0, then g(a) = 0. Thus g = (X − a)h for some
h ∈ F [X ], f = (X − a)2h, and a is a multiple zero of f .

Although a polynomial f ∈ F [X ] may have no zeros in F , the above idea
also allows us to test if f has multiple zeros in an extension of F . We need one
lemma about polynomial rings. This lemma is the analog that in Z we can find
greatest common divisors and gcd(n,m) = ns+mt for some s, t ∈ Z. The proof
is essentially the same.

Lemma 1.16 Suppose F is a field and f, g ∈ F [X ] are nonzero. There is a
nonzero h ∈ F [X ] such that:
i) h divides f and g;
ii) if k ∈ F [X ] divides f and g then, k divides h;
iii) there are s, t ∈ F [X ] such that h = fs+ gt.

Proof Consider A = {fs+gt : s, t ∈ F [X ]}. Let h ∈ S be a nonzero polynomial
of minimal degree. Using the Division Algorithm we can find q, r ∈ F [X ] such
that f = qh+ r and either r = 0 or deg r < deg h. If h = fs+ gt, then

r = f(1− qs)− gqt ∈ A.

By choice of h, we must have r = 0 and f = qh. Thus h divides f . An analogous
argument proves that h divides g and i) holds. Clearly iii) holds.

To show ii), suppose k divides f and h. Let f = uk and g = vk. Then

h = fs+ gt = uks+ vkt = (us+ vt)k

and k divides h.

Corollary 1.17 If f, g ∈ F [X ] are nonzero polynomials with no common non-
constant factor, then there are s, t ∈ F [X ] such that fs+ gt = 1.

Proof Let h be as in the previous lemma. Since f and g have no common
nonconstant factor, h must be a constant polynomial. If fs + gt = h, then
f s
h
+ g t

h
= 1.

Corollary 1.18 Suppose F is a field, f ∈ F [X ] is a nonconstant polynomial,
and K ⊇ F is an algebraically closed field. Then f has a multiple zero in K if
and only if f and f ′ have a common nonconstant factor in F [X ].
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Proof
(⇒) If f and f ′ have no common nonconstant factor, then we can find

s, t ∈ F [X ] such that fs + f ′t = 1. Suppose a is a multiple zero in K, then
f(a) = f ′(a) = 0. But then

0 = f(a)s(a) + f ′(a)t(a) = 1

a contradiction.
(⇐) Suppose g ∈ F [X ] is a nonconstant polynomial dividing f and f ′. In

K we can find a such that g(a) = 0. But then f(a) = f ′(a) = 0. Hence f has a
multiple zero in K.

Corollary 1.19 If f ∈ F [X ] is irreducible and f has a multiple root in K, then
f ′ = 0.

Proof If f has a multiple zero, then f and f ′ have a common nonconstant
factor g. Since f is irreducible, we must have f = cg for some constant c and
we must have deg g = deg f . Since g also divides f ′ and deg f ′ < deg f , we
must have f ′ = 0.

How is this possible? If

f =

d
∑

i=0

aiX
i,

then

f ′ =

d−1
∑

i=0

iaiX
i−1.

The only way we can have f ′ = 0 is if iai = 0 for all i. In characteristic zero
this is impossible.

Corollary 1.20 Suppose F is a field of characteristic zero and f ∈ F [X ] is
irreducible, if K ⊇ F is algebraically closed, then f has no multiple zeros in F .

Proof If f has degree n, and an 6= 0 is the coefficient of Xn, then the Xn−1

coefficient in f ′ is nan 6= 0. Thus an 6= 0.

Corollary 1.21 If f ∈ Q[X ] is irreducible, then f has deg f distinct zeros in
C.

In characteristic p > 0, it is possible to have f ′ = 0, but f nonconstant. For
example the polynomial f = X4 + 1 in Z2[X ] has f ′ = 0.

We need to work a little harder to get a counterexample to the Corollary
in characteristic p. Suppose F = Z2(t), the field of rational functions over Z2

in a single variable t. There is no square root of t in F . Thus f = X2 − t is
irreducible but f ′ = 0.
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Resultants

Suppose K is an algebraically closed field, f, g ∈ K[X ]. Can we determine if f
and g have a common solution?

Suppose f = anX
n+an−1X

n−1+. . . a0 and g = bmX
m+bm−1X

m−1+. . .+b0
where an, bm 6= 0.

The resultant of f and g is the determinant of the following (n+m)×(n+m)-
matrix.

Rf,g =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 . . . . . . . . . an 0 . . . . . . 0
0 a0 a1 . . . . . . . . . an 0 . . . 0

. . .
. . .

0 . . . . . . 0 a0 a1 . . . . . . . . . an
b0 b1 . . . . . . bm 0 . . . . . . . . . 0
0 b0 b1 . . . . . . bm 0 . . . . . . 0

. . .
. . .

0 . . . . . . . . . 0 b0 b1 . . . . . . bm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

where there are m rows of a′s and n rows of b′s.

Theorem 1.22 Let F be a field, f, g ∈ F [X ]. Then the following are equivalent:
i) f and g have a common nonconstant factor;
ii) Rf,g = 0.

Before giving the proof we recall some basic linear algebra. Consider the
homogeneous system of linear equations







a1,1 . . . a1,n

...
an,1 . . . an,n













x1

...
xn






= 0.

This system always has ~0 as a trivial solution.

Theorem 1.23 If A is an n×n matrix over a field F , the following are equiv-
alent:
i) the homogeneous system

A~x = 0

has a nontrivial solution;
ii) the rows of A are linearly independent;
iii) det A = 0.

Proof of Theorem 1.22
i) ⇒ ii) Suppose h is a common nonconstant factor f = f1h and g = g1h.

Note that fg1 = gf1. Let f =
∑n

i=0 aiX
i g =

∑m
i=0 biX

i where an, bm 6= 0.
Since deg f1 ≤ n− 1 and deg g1 ≤ m− 1. Let

f1 =
n−1
∑

i=0

ciX
i and g1 =

m−1
∑

i=0

diX
i.
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Then

fg1 =

m+n−1
∑

i=0

∑

j+k=i

ajdkX
i

and

gf1 =

m+n−1
∑

i=0

∑

j+k=i

bjckX
i.

Since fg1 = gf1 we have the following system of equations

a0d0 = b0c0

a0d1 + a1d0 = b0c1 + b1c0
...

ancm−1 = bmdn−1

If A is the matrix




























a0 a1 . . . . . . . . . an 0 . . . . . . 0
0 a0 a1 . . . . . . . . . an 0 . . . 0

. . .
. . .

0 . . . . . . 0 a0 a1 . . . . . . . . . an
−b0 −b1 . . . . . . −bm 0 . . . . . . . . . 0
0 −b0 −b1 . . . . . . −bm 0 . . . . . . 0

. . .
. . .

0 . . . . . . . . . 0 −b0 −b1 . . . . . . −bm





























,

Then (d0, . . . , dm−1, c0, . . . , cn−1) is a nontrivial solution to the homogenous
linear system

(x0, . . . , xm−1, y0, . . . , yn−1)A = 0.

This is a system of n+m homogeneous linear equations in n+m variables.
If the rows of A are linearly independent, then the trivial solution is the unique
solution. Thus the rows of A are linearly dependent and det A = 0. But
det A = (−1)ndet Rf,g.

(⇐) Suppose det R = 0. Then the system of equations

(x0, . . . , xm−1, y0, . . . , yn−1)A = 0

has a nontrivial solution (α0, . . . , αm−1, β0, . . . , βn−1). Let

g2 =

m−1
∑

i=0

αiX
i and f2 =

m−1
∑

i=0

βiX
i.

Then g2f = f2g.
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We now use unique factorization in F [X ]. Factor f = p1 . . . pk and f2 =
q1 . . . ql where each pi and qi are irreducible. Renumber the p’s and q’s such
that pi and qi are associates for i ≤ s and if i, j > s then pi and qj are not
associates. Then

f2 = cp1 . . . psqs+1 · · · ql
where c ∈ F and pi and qj are not associates for s < i ≤ k, s < j ≤ l. Since

deg f > deg f2 we have s < k. But ps+1 divides f2
p1···ps

g and ps+1 does not

divide f2
p1···ps

. Since ps+1 is irreducible, 〈ps+1〉 is a prime ideal. Thus ps+1

divides g and f and g have a common factor.

Corollary 1.24 If F is a field, f, g ∈ F [X ] and K ⊇ F is an algebraically
closed field, then f and g have a common zero in K if and only if Rf,g = 0.

We return to the question of whether a polynomial has multiple roots in an
algebraically closed extension.

Definition 1.25 If f ∈ F [X ] the discriminant of f is Rf,f ′ .

Corollary 1.26 If F is a field of characteristic zero and K ⊇ F is algebraically
closed, then f ∈ F [X ] has a multiple zero in K if and only if the discriminant
is zero.

Computations in MAPLE

Suppose f, g ∈ Q[X ]. Theorem 1.22 gives us an easy way to decide if f and g
have a common zero in C, as we need only check if Rf,g = 0. This is easily done
in MAPLE.

To calculate a resultant we need only now how to enter a matrix and take
its determinant. Here are the steps you need to know.

i) Loading the linear algebra package.

> with(linalg);

ii) Enter an n×mmatrix as array([ row1...,rowm]) where rowi is [ x1,...,xn].
For example:

> A:=array([[1,2,3],[2,-1,-1],[0,1,1]]);

Enters the matrix




1 2 3
2 −1 −1
0 1 1



 .

> B:=array([[a,b,c],[1,0,-1]]);

Enters the matrix
(

a b c
1 0 −1

)

.

iii) Computing the determinant.
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> det(A);

Computes the determinant of a square matrix A.

Let f(X) = X4 + X3 − X2 + X − 2 and g(X) = X3 + X2 + X + 1. The
resultant Rf,g is the determinant of a 9× 9 matrix.

> A:=array([[1,1,-1,1,-2,0,0], [0,1,1,-1,1,-2,0], [0,0,1,1,-1,1,-2],

[1,1,1,1,0,0,0],[0,1,1,1,1,0,0],[0,0,1,1,1,1,0], [0,0,0,1,1,1,1]]);

A =





















1 1 −1 1 −2 0 0
0 1 1 −1 1 −2 0
0 0 1 1 −1 1 −2
1 1 1 1 0 0 0
0 1 1 1 1 0 0
0 0 1 1 1 1 0
0 0 0 1 1 1 1





















> det(A);

det (A) = 0

This “hands on” method works fine, but in fact MAPLE has a built in
resultant function. If f and g are polynomials in variable v, then

> resultant(f,g,v); Computes the resultant.

For example
>resultant(Xˆ4+Xˆ3-Xˆ2+X-2, Xˆ3+Xˆ2+X+1,X);
computes the resultant of X4 +X3 −X2 +X − 2 and X3 +X2 +X + 1 and
>resultant(3*Xˆ2+2*X+1, Xˆ3+Xˆ2+X+1,X);
computes the resultant of 3X2 + 2X + 1 and X3 +X2 +X + 1.

MAPLE also has factoring routines. Suppose f ∈ Q[X ] and we want to
find the number of zeros and their multiplicities in C. For example: let f =
X8 − X6 − 2X5 + 2X3 + X2 − 1. Using MAPLE we can find an irreducible
factorization of f in Q[X ].

> factor(Xˆ8-Xˆ6-2*Xˆ5+2*Xˆ3+Xˆ2-1);
Gives us the factorization (X2 +X +1)2(X − 1)3(X +1). Since polynomial

X2 +X + 1 is irreducible in Q[X ], it has two distinct complex zeros α and β.
The zeros of f are α, β, 1,−1. The zeros α and β have multiplicity 2, while 1
has multiplicity 3 and −1 has multiplicity 1.

We can also factor over Zp. Let g = X7+2X5+2X4+X3+4X2+2 ∈ Z7[X ].

> Factor(Xˆ7+2*Xˆ5+2*Xˆ4+Xˆ3+4Xˆ2+2) mod 7;

Gives us the factorization (X2 + 1)2(X3 + 2). Suppose K ⊃ Z7 is an alge-
braically closed field. Since (X2 +1)′ = 2X 6= 0, the polynomial X2 + 1 has no
multiple zeros. Similarly, (X3 + 2) has no multiple zeros. It follows that g has
5 zeros. Two of them have multiplicity 2, the other have multiplicity 1.
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2 Affine Lines and Conics

Let k be a field.

Definition 2.1 Affine n-space over k is

An(k) = {(x1, . . . , xn) : x1, . . . , xn ∈ k}.

Definition 2.2 We say that V ⊆ An(k) is an algebraic set if there are polyno-
mials f1, . . . , fm ∈ k[X1, . . . , Xn] such that

V = {x ∈ An(k) : f1(x) = f2(x) = . . . = fm(x) = 0}.

If m = 1, i.e. V is the solutions of a single polynomial, we call V a hyper-
surface. We will be particularly interested in the case where n = 2 and m = 1.
In this case we call V a plane algebraic curve.

Suppose f ∈ k[X1, . . . , Xn] is nonzero. We can write

f =

m1
∑

i1=0

. . .

mn
∑

in=0

ai1,...,inX
i1
1 X

i2
2 . . . X in

n .

Definition 2.3 The degree of f is defined by

deg f = max{i1 + . . .+ in : i1 ≤ m1, i2 ≤ m2, . . . , in ≤ mn, ai1,...,in 6= 0}.

For example, X4+3X3Y Z−X2Y +Y Z3 has degree 5 because of the 3X3Y Z-
term. If f is a nonzero constant, then f has degree 0.

We begin by carefully studying plane curves of degree 1 and 2. Our main
tools will be high school algebra and some very elementary calculus and linear
algebra.

Lines

Polynomials f ∈ k[X,Y ] of degree 1 are called linear. A linear polynomial is of
the form

aX + bY + c

where at least one of a and b is nonzero. The zero set of a linear polynomial is
called a line.

Of course, if k = R then lines have a clear geometric meaning. But if k
is the field Z3 then the line X + 2Y + 1 = 0 is just the discrete set of points
L = {(0, 1), (1, 2), (2, 0)}. We will see that the well-know geometric properties
of lines hold in arbitrary fields even when there is no obvious geometry.
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Suppose L is the line aX + bY + c = 0. We can easily find φ : k → L a
parametrization of L. If b 6= 0, let

φ(t) =

(

t,
−c− at

b

)

while, if b = 0, then a 6= 0 and we let

φ(t) =

(−c
a
, t

)

.

We leave the proof of the following proposition as an exercise.

Proposition 2.4 φ : k → L is a bijection. In particular, if k is infinte, then
so is L.

Suppose fi = aiX + biY + ci for i = 1, 2. Let Li be the line fi = 0. If
(x, y) ∈ L1 ∩ L2, then

(

a1 b1
a2 b2

)(

x
y

)

=

(

c1
c2

)

.

Linear algebra tells us exactly what the solutions look like.

If the matrix A =

(

a1 b1
a2 b2

)

is invertible, then A−1

(

c1
c2

)

is the unique

solution.
But A is invertible if and only if the rows are linearly independent. Thus A

is not invertible if and only if there is a λ such that a2 = λa1 and b2 = λb1. In
this case there are two possibilities. If c2 = λc1, then f2 = λf1 and L1 and L2

are the same line. If c2 6= λc1, then the system has no solution and L1∩L2 = ∅.
We summarize these observations in the following proposition.

Proposition 2.5 Suppose f1, f2 ∈ k[X ] are linear polynomials and Li is the
line fi = 0 for i = 1, 2.
i) L1 = L2 if and only if f2 = λf1 for some λ ∈ k.
ii) If L1 and L2 are distinct lines, then |L1 ∩ L2| ≤ 1.
iii) If L1 ∩ L2 = ∅ and f1 = a1X + b1Y + c1, then for some λ f2 = λa1X +

λb1Y + d where d 6= λc1.

One sees that “usually” two distinct lines intersect in exactly one point. The
fact that we can have parallel lines that do not intersect is one of the annoying
features of affine space.

Proposition 2.6 If (x1, y1) and (x2, y2) are distinct points in A2(k), there is
a unique line containing both points.

Proof We are looking for f = aX + bY + c such that

ax1 + by1 + c = 0

ax2 + by2 + c = 0.

15



This is a system of linear equations in the variables a, b, c. Since (x1, y1) and

(x2, y2) are distinct, the rows of the matrix

(

x1 y1 1
x2 y2 1

)

are linearly inde-

pendent. Since the matrix has rank 2, linear algebra tells us that we can find an
nontrivial solution (a, b, c) and every other solution is of the form (λa, λb, λc).
Thus there is a unique line through (x1, y1) and (x2, y2).

Affine Transformation

In R2 we can transform any line to any other line by rotating the plane and
then translating it. We will show that this is possible for any field.

Definition 2.7 We say that T : A2(k) → A2(k) is an affine transformation if
there are linear polynomials f and g such that T (x, y) = (f(x, y), g(x, y)). In

this case there is a 2× 2 matrix A with entries from k and a vector ~b ∈ k2 such
that

(

f(x, y)
g(x, y)

)

= A

(

x
y

)

+~b.

If ~b = 0 we say that T is a linear transformation.

An affine transformation can be though of as a linear change of variables

U = a1X + b1Y + c1

V = a2X + b2X + c2

Proposition 2.8 If C is a line in A2(k) there is an invertible affine transfor-
mation taking C to the line X = 0.

Proof Suppose C is given by the equation aX + bY + c = 0.
If a 6= 0, consider the affine transformation

(

a b
0 1

)(

x
y

)

+

(

c
0

)

.

In other words we make the invertible change of variables U = aX+ bY + c and
V = Y . This transforms C to the line U = 0.

If a = 0, we use the transformation

(

0 b
1 0

)(

x
y

)

+

(

c
0

)

,

i.e., the change of variables U = bY + c and V = X , to transform C to U = 0.

Conics

We next look at solution sets to second degree equations in A2(k). Our first
goal is the following theorem.
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Theorem 2.9 Suppose k is a field and the characteristic of k is not 2. If
p(X,Y ) ∈ k[X,Y ] has degree 2, there is an affine transformation taking the
curve p(X,Y ) = 0 to one of the form aX2+bY 2+c = 0 where b 6= 0, aX2+Y = 0
or X2 + c = 0.

We will prove this by making a sequence of affine transformations. We begin
with a polynomial

aX2 + bY 2 + cXY + dX + eY + f = 0.

Claim 1 We may assume that a 6= 0.
If a = 0 and b 6= 0, we use the transformation T (x, y) = (y, x).
If a = b = 0, then since the polynomial has degree 2 we must have c 6= 0.

We make the change of variables

X = X

V = Y −X

Then XV = XY −X2 and our curve is transformed to

cX2 + cXV + (d+ e)X + eV + f = 0.

Claim 2 We may assume that c = 0.
This is the old algebra trick of “completing the square”. We make a change

of variables U = X+αY so that aU 2 = aX2+cXY +βY 2 for some appropriate
β. To get this to work we would need 2aα = c. So we make the change of
variables U = X + c

2aY . Note at this point we have to divide by 2. This is one
reason we had to assume that the characteristic of k is not 2.

This change of variables transforms the curve to:

aU2 +

(

b− c2

4a2

)

Y 2 + dU +

(

e− dc

2a

)

Y + f = 0.

Thus, by affine transformations, we may assume that our curve is given by

aX2 + bY 2 + cX + dY + e = 0.

There are two cases to consider.

case 1 b 6= 0.
We must do two more applications of completing the square. First we make

a change of variables U = X+α so that aU 2 = aX2+cX+β. We need 2aα = c
so α = c

2a . Similarly we let V = Y + d
2a . The transformed curve is given by

aU2 + bV 2 + e− c2 + d2

4a2
= 0.

case 2 b = 0.
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As above we complete the square by taking U = X + c
2a . That transforms

the curve to

aU2 + dY + e− c2

4a2
= 0.

If d 6= 0, the change of variables V = dY + e− c2

4a2 gives us

aU2 + V = 0.

If d = 0, then the curve is already given by the equation

X2 +
e− c2

4a2

a
= 0.

Conics in A2(R)

When our field is the field R of real numbers, we can give even more precise
information.

Theorem 2.10 If p ∈ R[X,Y ] has degree 2, then there is an affine tranforma-
tion taking the curve p = 0 to one of the following curves:
i) (parabola) Y = X2;
ii) (circle) X2 + Y 2 = 1;
iii) (hyperbola) X2 − Y 2 = 1;
iv) (point) X2 + Y 2 = 0;
v) (crossed-lines) X2 − Y 2 = 0;
vi) (double line) X2 = 0;
vii) (parallel lines) X2 = 1
viii) (empty set) X2 = −1
ix) (empty set) X2 + Y 2 = −1.

Proof
If we can transform p to aX2+Y = 0, then the tranformation V = −Y

a
gives

the parabola V = X2.
Suppose we can transform p to X2 + c = 0. If c < 0, the transformation

U = X√
−c , transforms p to X2 = 1. While if c > 0, the transformation U = X√

c
,

transforms p to X2 = −1.
Suppose we have transformed p to aX2 + bY 2 + c = 0.

case 1 c 6= 0
Our curve is the same as the curve −a

c
X2+ −b

c
Y 2 = 1. Thus we may assume

our curve is aX2 + bY 2 = 1.
case 1.1 a > 0 and b > 0

The transformation U = X√
a
, V = Y√

b
transforms the curve to the circle

U2 + V 2 = 1.
case 1.2 a > 0 and b < 0

The transformationU = X√
a
, V = Y√

−b
transforms the curve to the hyperbola

U2 − V 2 = 1.
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case 1.3 a < 0 and b > 0
We make the transformation T (x, y) = (y, x) which transforms the curve to

case 1.2.
case 1.4 a < 0 and b < 0

The transformation U = X√
−a , V = Y√

−b
transforms the curve to

U2 + V 2 = −1, which has no solutions in R2.

case 2 c = 0.
If b = 0, then we have curve aX2 = 0 which is the same as X2 = 0.
Suppose b 6= 0. We may assume a > 0. If b > 0, then the change of variables

U = X√
a
, V = Y√

b
transforms the curve to U2 + V 2 = 0 which has a single

solution {(0, 0)}.
If b < 0, then the change of variables U = X√

a
, V = Y√

−b transforms the curve

to U2 − V 2 = 0. The solution set is pair of lines U + V = 0 and U − V = 0.

Cases i)–iii) are considered nondegenerate. In §4 we will see how we make
this distinction.

The classification we have given is optimal for A2(R) as no affine transfor-
mation can take one of these curves to another one. For example, if C is a circle
and T is an affine transformation, since C is compact T (C) is also compact.
This means there is no affine transformation of A2(k) taking C to a parabola
or a hyperbola. Since parabolas are connected and the continuous image of a
connected set is connected, an affine transformation can’t take a parabola to a
hyperbola.

Conics in A2(C)

Over the complex field, we can simplify the classification.

Theorem 2.11 If p ∈ C[X,Y ] has degree 2, then there is an affine tranforma-
tion taking the curve p = 0 to one of the following curves:
i) (parabola) Y = X2;
ii) (circle) X2 + Y 2 = 1;
iii) (crossed-lines) X2 − Y 2 = 0;
iv) (double line) X2 = 0;
v) (parallel lines) X2 = 1.

Proof We have gotten rid of four cases.
The change of variable V = iY transforms the hyperbola X2 − Y 2 = 1 to

the circle X2 + V 2 = 1.
The same change of variables transforms the X2+Y 2 = 0 to the double line

X2 − V 2 = 0 (Note: in A2(C) X2 + Y 2 = 0 is the two lines (X + iY ) = 0 and
(X − iY ) = 0.)

Finally the transformations U = iX , V = iY transform X2 + Y 2 = −1 to
the circle U2 + V 2 = 1 and transform X2 = −1 to X2 = 1.

Exercise 2.12 Show that the same classification works in A2(K) for any alge-
braically closed field K with characteristic different from 2.
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Intersecting Lines and Circles

For the moment we will restrict our attention to A2(R).
What happens when we intersect the circle C with the line L given by

equation Y = aX + b? If (x, y) ∈ C ∩ L then

y = ax+ b

x2 + y2 = 1

Thus x2 + (ax+ b)2 = 1 and (a2 + 1)x2 + 2abx+ b2 = 1. The polynomial

g(X) = (a2 + 1)X2 + 2abX + (b2 − 1)

is a nonzero polynomial of degree at most 2 (Note: if a2 = −1, then g has
degree at most 1), and hence has at most two solutions. Thus |C ∩L| ≤ 2. It is
easy to see that all of these possibilites occur. Let La be the line Y = a. Then
C ∩ L0 = {(±1, 0)}, C ∩ L1 = {(0, 1)} and C ∩ L2 = ∅.

A separate but similar argument is needed to show that lines x = a will
also intersect C in at most two places. The same ideas work just as well for
nondegenerate conics.

Proposition 2.13 If C is any parabola, circle or hyperbola in A2(R) and L is
a line, then |L ∩ C| ≤ 2.

Note that the proposition is not true for degenerate conics in A2(R). For
example, the conic X2 = 1 has infinite intersection with the line X = 1.

Let’s work in A2(C) instead of A2(R). There are several cases to consider.
Case 1 a = ±i and b = 0.

In this case g is the constant polynomial −1 and there are no solutions.
Case 2 a = ±i and b 6= 0.

In this case g is a linear polynomial and there is a single solution.
Case 3 a 6= ±i and b2 − a2 = 1.

In this case

g =
1

a2 + 1
((a2 + 1)X + ab)2

and the unique point of intersection is ( −ab
a2+1 ,

b
a2+1 ).

If (c, d) is a point on the circle, then a little calculus shows that the tangent
line has slope − c

d
and equation

Y = − c

d
X +

c2

d
+ d.

Thus the tangent line at ( −ab
a2+1 ,

b
a2+1 ) is Y = aX + b. In other words, case 3

arises when the line Y = aX + b is tangent to the curve.
Case 4 a 6= ±i and b2 − a2 6= 1.

In this case g has two distinct zeros in C and |C ∩ L| = 2.

Case 4 is the general case. We understand why there is only one solution in
case 3 as the line is tangent. Cases 1 and 2 are annoying. In the next section
we will see that they occur because the lines have intersections “at infinity”.
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Parameterizing Circles

Consider the circle C ⊂ A2(R) given by the equation X2 + Y 2 = 1. It is well
known that we can parameterize the curve by taking f(t) = (cos t, sin t). There
are two problems with this parameterization. First, we are using transcendental
functions. Second, the parameterization is not one-to-one. For each (x, y) ∈ C
if f(θ) = (x, y), then f(θ+2π) = (x, y). We will show how to construct a better
parameterization.

Note that the point (0, 1) ∈ C. Let Lλ be the line λX + Y = 1. Then
Lλ is the line throught the point (0, 1) with slope −λ. Consider Lλ ∩ C. If
(x, y) ∈ Lλ ∩ C, then

x2 + (1− λx)2 = 1

(λ2 + 1)x2 − 2λx = 0

x((λ2 + 1)x− 2λx) = 0

Thus there are two solutions x = 0 and x = 2λ
λ2+1 . The solution x = 0 corre-

sponds to the point we already know (0, 1). So we have one additional point

x =
2λ

λ2 + 1
, y =

1− λ2

λ2 + 1
.

We consider the parameterization ρ : R → C given by

ρ(λ) =

(

2λ

λ2 + 1
,
1− λ2

λ2 + 1

)

.

Suppose (x, y) ∈ C and x 6= 0. Let λ = 1−y
x

. Then

ρ(λ) =

(

2 1−y
x

1−y
x

2
+ 1

,
1− 1−y

x

2

1−y
x

2
+ 1

)

(1)

=

(

2(1− y)x

1− 2y + y2 + x2
,
x2 − 1− 2y + y2

(1− 2y + y2) + x2

)

(2)

=

(

2(1− y)x

2− 2y
,
2y − 2y2

2− 2y

)

(3)

= (x, y) (4)

Where we get (2) from (3) since x2 + y2 = 1 and get (4) since y 6= 1. The
following proposition is now clear.

Proposition 2.14 The parameterization ρ : R → C is one-to-one. The image
is C \ (0,−1).

It is annoying that the image misses one point on the circle. If we wanted
to get the point (0,−1) we would need to use the line x = 0 with infinite slope.

This construction is very general and could be used for any nondegenerate
conic once we know one point.

Exercise 2.15 Find a rational parameterization of the hyperbola
X2 − 2Y 2 = 1. [Hint: Start with the point (1, 0).]
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Connections to Number Theory

It is well known that the equation X2 + Y 2 = Z2 has many solutions in Z.
For example (1, 0, 1), (3, 4, 5) and (5, 12, 13). If (a, b, c) is a solution and n is
any integer then (na, nb, nc) is also a solution. Thus there are infinitely many
integer solutions. Can we find infinitely many solutions where (a, b, c) have no
common factor greater than 1?

If (a, b, c) is a solution to X2 + Y 2 = Z2 other than (0, 0, 0), then (a/c, b/c)
is a solution to

X2 + Y 2 = 1.

Thus we are interested in studying points on the circle C in A2(Q). Let C(Q) =

C ∩ A2(Q). Let ρ(λ) =
(

2λ
λ2+1 ,

1−λ2

λ2+1

)

be the parameterization of C. Note that

if λ ∈ Q then ρ(λ) ∈ Q and if (x, y) ∈ C(Q), then λ = 1−y
x

∈ Q. Hence
ρ : Q→ C(Q) \ {(0,−1)} is a bijection.

Suppose p1, p2 ∈ C(Q) with p1 6= p2. We can write pi = (ai/ci, bi/ci) where
ai, bi, ci have no common factor. In particular there is no λ ∈ Z such that that
(a2, b2, c2) = λ(a1, b1, c1), Thus distinct points on C(Q) give rise to distinct
relatively prime solutions to X2 + Y 2 = Z2. Thus there are infinitely many
solutions (a, b, c) where a, b, c have no common factors.

If m and n are relatively prime integers, then

ρ(
m

n
) =

(

2m
n

m2

n2 + 1
,
1− m2

n2

m2

n2 + 1

)

and (2mn, n2 −m2, n2 +m2) is a solution to X2 + Y 2 = Z2. If one of m and n
are even, then 2mn, n2 −m2, n2 +m2 have no common factor . If both m and

n are odd, then mn, n
2−m2

2 , n
2+m2

2 have no common factor. We find all integral
solutions this way.

Similar ideas work for any nondegenerate conic defined over the integers.
Once we have a point in A2(Q).

Exercise 2.16 Use the parameterization from Exercise 2.15 to find all integral
solutions to X2 − 2Y 2 = Z2.

Of course in order for this to work we need to find at least one point in
A2(Q).

Proposition 2.17 The only integral solution to X2 + 2Y 2 = 5Z2 is (0, 0, 0).
Thus the ellipse X2 + 2Y 2 = 5 has no points in A2(Q).

Proof Suppose (a, b, c) ∈ Z3 is a nonzero solution to X2 + 2Y 2 = 5Z2. By
dividing by the greatest common divisor, we may assume that a, b, c have no
common factor. Note that if a 6= 0 or b 6= 0, then c 6= 0. Thus we may assume
that c 6= 0.

Since a2 + 2b2 = 5c2, we also have

a2 + 2b2 = 5c2 mod 5

a2 + 2b2 = 0 mod 5
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The only squares mod 5 are 0, 1, 4. If a2 + 2b2 = 0 mod 5, we must have
a = b = 0 mod 5. But then a and b are both divisible by 5 and c2 = a2 + 2b2

is divisible by 25. Considering the factors of c we see that c is divisible by 5
contradicting our assumtion that a, b, c have no common factors.

If (a1/n1, a2/n2) is a rational solution toX2+2Y 2 = 5, then (n2a1, n1a2, n1n2)
is an integral solution to X2+2Y 2 = 5Z2. Thus there are no points in A2(Q).

3 Projective Space

One important problem in algebraic geometry is understanding |L ∩ C| where
L is a line and C is a curve of degree d. The basic idea is that if L is given by
Y = aX + b and C is given by f(X,Y ) = 0, we substitute and must solve the
equation f(X, aX + b) = 0. Usually this is a polynomial of degree d and there
are at most d solutions. We would like to say that there are exactly d solutions,
but we have already seen examples where this is not true.

1) In A2(R) the line Y = X is a subset of the solution set to X2 − Y 2 = 0.
In this case L ∩ C is infinite.

2) In A2(C) the line Y = 1 is tangent to the circle X2 + Y 2 = 1 and
|L ∩ C| = 1.

3) In A2(R) the line Y = 2 does not intersect the circle X2+Y 2 = 1, because
there are no real solutions to the equation X2 + 3 = 0.

4) In A2(C) the point (0, 1) is the only point of intersection of the line
Y = iX+1 and the circle X2+Y 2 = 1, because X2+(iX+1)2 = 1 if and only
if X = 0.

5) Even if we only consider the intersection of two lines L1 and L2 we might
have no intersection points if the lines are parallel.

We can avoid problem 1) by only looking at the cases where L 6⊆ C. For
example in §4 we will see that this holds if C is irreducible and d > 1. Problem
2) is unavoidable. We will eventually get around this by carefully assigning
multiplicities to points of intersection. Tangent lines will intersect with mul-
tiplicity at least 2. This will allow us to prove results saying that “counted
correctly” there are d points of intersection. In arbitrary fields k we will always
run into problems like 3) where there are fewer than d points of intersection
because there are polynomials with no zeros. We can avoid this by restricting
our attention to algebraically closed fields.

In this section we will try to avoid problems 4) and 5) by working in pro-
jective space rather than affine space. In P2(C) we will find extra intersection
points “at infinity”. There are a few other problems that working in projective
space will solve.

6) The parameterization we gave of the circle missed the point (0,−1) be-
cause we needed to use the line X = 0 with “infinite slope”.

7) When we consider the hyperbola X2 − Y 1 = 1 we see that curve is
asymptotic to the lines Y = ±X . Can we define “asymptote” so that the
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concept makes sense in arbitrary fields k?

Pn(k)

Let k be a field. We define an equivalence relation ∼ on kn+1 \ {(0, . . . , 0)} by
(x1, . . . , xn+1) ∼ (y1, . . . , yn+1) if and only if there is λ ∈ k such that

(y1, . . . , yn+1) = (λx1, . . . , λxn+1).

We let

[(x1, . . . , xn+1)] = {(y1, . . . , yn+1) ∈ kn+1\{0} : (x1, . . . , xn+1) ∼ (y1, . . . , yn+1)}

denote the equivalence class of (x1, . . . , xn+1).

Definition 3.1 Projective n-space over a field k is

Pn(k) = {[(x1, . . . , xn+1)] : (x1, . . . , xn+1) ∈ kn+1 \ {0}}.

We say that (x1, . . . , xn+1) is a set of homogeneous coordinates for the ∼-
equivalence class [(x1, . . . , xn+1)].

For any point p ∈ Pn(k) we have a number of choices for homogeneous
coordinates. If (x1, . . . , xn+1) is one choice of homogeneous coordinates for p.
Then [(x1, . . . , xn+1)] is exactly the line with parametric equation

f(t) =











x1t
x2t
...

xn+1t











.

Thus the ∼-equivalence classes are exactly the lines through (0, . . . , 0) in kn+1.
This gives alternative characterization of Pn(k).

Proposition 3.2 There is a bijection between Pn(k) and the set of lines through
0 in kn+1.

Let U = {p ∈ Pn(k) : p has homogeneous coordinates (x1, . . . , xn+1) where
xn+1 6= 0}. If [(x1, . . . , xn+1] ∈ U , then

(x1, . . . , xn+1) ∼
(

x1

xn+1
, . . . ,

xn
xn+1

, 1

)

and if (y1, . . . , yn+1, 1) are also homogeneous coordinates for p, then
y1 = x1

xn+1
,. . . , yn = xn

xn+1
.

Proposition 3.3 The map (x1, . . . , xn) 7→ [(x1, . . . , xn, 1)] is a bijection be-
tween An(k) and U
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In this way we view An(k) as a subset of Pn(k). Note that we had a great deal
of freedom in this choice. If Ui = {p ∈ Pn(k) : p has homogeneous coordinates
(x1, . . . , xn+1) where xi 6= 0}. Then we could also identify An(k) with Ui.

We think of the points of Pn(k)\U as being “points at infinity”. The points
in Pn(k) \ U are those with homogeneous coordinates (x1, . . . , xn, 0) where not
all xi = 0. Note that (x1, . . . , xn, 0) ∼ (y1, . . . , yn, 0) if and only if (x1, . . . , xn) ∼
(y1, . . . , yn). This proves:

Proposition 3.4 The map [(x1, . . . , xn, 0)] 7→ [(x1, . . . , xn)] is a bijection be-
tween Pn(k) \ U and Pn−1(k).

We look more carefully at Pn(k) for n = 0, 1, 2.
For n = 0, if x, y ∈ k \ {0}, then (y) = y

x
(x). Thus (y) ∼ (x) and P0(k) is a

single point.
For n = 1, we have U = {p ∈ P1(k) : p has homogeneous coordinates (x, 1)}

that we identify with A1(k). There is a unique point p ∈ P1(k) \ U and p has
homogeneous coordinates (1, 0). We call P1(k) the projective line over k.

Here is another way to think about P1(R). Consider the upper semi-circle
X = {(x, y) : x2 + y2 = 1, x, y ≥ 0} in A2(R). The line Y = 0 intersects X
in two point (±1, 0), while all other lines through (0, 0) intersect X in exactly
one point. When we identify (1, 0) and (−1, 0), we see that P1(R) topologically
looks like a circle.

For n = 2, we have U = {p ∈ P2(k) : p has homogeneous coordinates
(x, y, 1)} that we identify with A2(k). The points in P2 \ U have homogeneous
coordinates (x, y, 0). We can either think of P2 \U as a projective line or divide
into two pieces V = {p : p has homogeneous coordinates (x, 1, 0)} that looks like
an affine line and the remaining point with homogeneous coordinates (1, 1, 0)

A similar argument to the one above shows that P2(R) looks like the topo-
logical space obtained by identifying antipodal points on a sphere in R3.

Projective Algebraic Sets in P2(k)

We will restrict our attention to the projective plane P2(k), though the ideas
we present generalize immediately to Pn(k).

How do we talk about solutions to polynomial equations in P2(k)? Some
care is needed. For example, let f(X,Y, Z) = X2 + Y 2 + Z. If p =∈ P2(R)
has homogeneous coordinates (1, 1,−2) then f(1, 1,−2) = 0. But p also has
homogeneous coordinates (3, 3,−6) and f(3, 3,−6) = 12.

Definition 3.5 A monomial of degree d in k[X,Y, Z] is a polynomial aX iY jZk

where a ∈ k and i+ j + k = d.
We say that a polynomial f ∈ k[X,Y, Z] is homogeneous of degree d if it is

a sum of monomials of degree d.
We say f is homogeneous if it is homogeneous of degree d for some d.

For example f(X,Y, Z) = X2 + Y 2 − Z2 is homogeneous of degree 2.
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Proposition 3.6 If f is homogeneous of degree d, then

f(tx, ty, tz) = tdf(x, y, z)

for all t, x, y, z ∈ k.

Proof If f is homogeneous of degree d, then

f(X,Y, Z) =

m
∑

n=1

anX
inY jnZkn

where each an ∈ k and in + jn + kn = d for each n = 1, . . . ,m. Then

f(tx, ty, tz) =
m
∑

n=1

an(tx)
in (ty)jn(tz)kn

=

m
∑

n=1

ant
in+jn+knxinyjnzkn

=

m
∑

n=1

ant
dxinyjnzkn

= tdf(x, y, z).

Corollary 3.7 If f ∈ k[X,Y, Z] is homogeneous, and f(x, y, z) = 0, then
f(λx, λy, λz) = 0 for all λ ∈ k.

Thus if (x1, y1, z1) and (x2, y2, z2) are different homogeneous coordinates
for p ∈ P2(k) and f is homogeneous, then f(x1, y1, z1) = 0 if and only if
f(x2, y2, z2) = 0.

Definition 3.8 An algebraic set in P2(k) is the set of

{[(x, y, z)] ∈ P2(k) : f1(x, y, z) = . . . = fm(x, y, z) = 0}

where f1, . . . , fm are homogeneous polynomials.
A projective curve in P2(k) is

{[(x, y, z)] ∈ P2(k) : f(x, y, z) = 0}

where f is a nonzero homogeneous polynomial.

Lines in P2(k)

A homogeneous polynomial of degree 1 in k[X,Y, Z] is of the form aX+bY +cZ
where at least one of a, b, c 6= 0. The zero set of such a polynomial is a projective
line.

We can now demonstrate the first nice property of projective space.
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Proposition 3.9 If L1 and L2 are projective distinct projective lines, then
|L1 ∩ L2| = 1.

Proof Suppose Li is the line aiX + biY + ciZ = 0. Points p ∈ L1 ∩ L2 have
homogeneous coordinates (x, y, z) such that

(

a1 b1 c1
a2 b2 c2

)





x
y
z



 =





0
0
0



 ,

a homogeneous system of 2 linear equations in 3 unknowns.
If (a2, b2, c2) = λ(a1, b1, c1) for some λ, then L1 and L2 are the same line.

Thus we may assume that (a1, b1, c1) and (a2, b2, c2) are linearly independent.
Thus the matrix

(

a1 b1 c1
a2 b2 c2

)

has rank 2. It follows that the homogeneous system has a one dimensional
solution space. Let (x, y, z) be a nonzero solution. Then all solutions are of the
form (λx, λy, λz) for some λ ∈ k. In other words, L1 ∩ L2 = {[(x, y, z)]}.

Suppose L is the line in P2(k) given by the equation aX+bY +cZ = 0 a point
p with homogeneous coordinates (x, y, 1) is on L if and only if aX + bY + c =
0. Thus when we identify affine space A2(k) with U = {p ∈ P2(k) : p has
homogeneous coordinates (x, y, z) with z 6= 0}. Then the points on L ∩ A2(k)
are exactly the points on the affine line aX + bY + c = 0.

Start with an affine line aX + bY + c = 0 where at least one of a, b 6= 0 and
let L be the projective line aX+bY +cZ = 0. If ax+by = 0, then (x, y, 0) is also
a point on L. It is easy to see that any such point is of the form (λb,−λa, 0).
Thus L contains a unique point in P2(k) \A2(k). We consider this the point at
infinity on L.

Note that [(b,−a, 0)] is also a point on the line aX + bY + dZ = 0 for any d.
Thus we have shown that “parallel” affine line intersect at the point at infinity.

What happens when a = b = 0. In this case we just have the line Z = 0. As
this line contains no points of U , we think of it as the line at infinity.

Proposition 3.10 If p1, p2 ∈ P2(k) are distinct points, there is a unique line
L with p1, p2 ∈ L.

Proof Suppose pi = [(xi, yi, zi)]. We look for a line L with equation
aX + bY + cZ = 0 such that

ax1 + by1 + cz1 = 0

ax2 + by2 + cz2 = 0

Thus we are looking for a, b, c that are nontrivial solutions to the homogeneous
system of equations

(

x1 y1 z1
x2 y2 z2

)





a
b
c



 =





0
0
0



 .
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Since (x1, y1, z1) 6∼ (x2, y2, z2), the matrix has rank 2. Thus there is a nontrivial
solution (a, b, c) and every solution is of the form (λa, λb, λc) for some λ ∈ k.
Any two equations of the form λaX+λbY +λcZ = 0 define the same line. Thus
aX + bY + cZ = 0 is the unique line through p1 and p2.

The previous proofs leads to an interesting observation.

Proposition 3.11 Let Li be the line aiX + biY + ciZ = 0 for i = 1, 2. Then
L1 = L2 if and only if (a1, b1, c1) ∼ (a2, b2, c2).

Proof Clearly if (a2, b2, c2) = λ(a1, b1, c1), then L1 = L2. On the other hand,
if (a1, b1, c1) 6∼ (a2, b2, c2), then the matrix

(

a1 b1 c1
a2 b2 c2

)

has rank 2, and |L1 ∩ L2| = 1. In particular the lines are distinct.

Corollary 3.12 Let La,b,c be the line with equation aX + bY + cZ = 0. The
map [(a, b, c)] 7→ La,b,c is a bijection between P2(k) and {L : L ⊂ P2(k) is a
line}.

Projective Transformations of Pn(k)

Recall that T : kn → kn is a linear transformation if T (a~x+b~y) = aT (~x)+bT (~y)
for all a, b ∈ k and ~x, ~y ∈ kn. Let GLn(k) be the set of invertible n×n matrices
with entries from k. If T is a linear transformation of kn, then there is an
n × n matrix A such that T (~x) = A~x for all ~x ∈ kn. If T is invertible, then
A ∈ GLn(k).

If T : kn+1 → kn+1 is a linear transformation, then T (0) = 0 and T (λ~x) =
λ(T (~x)). Thus if ~x ∼ ~y, then T (~x) ∼ T (~y). Moreover, if T is invertible and
T (~y) = λT (~x), then ~y = λ~x. Thus

~x ∼ ~y ⇔ T (~x) = T (~y)

for invertible linear T . In particular if T : kn+1 → kn+1 is an invertible linear
transformation, then there map

[~x] 7→ [T (~x)]

is a well-defined function from Pn(k) to Pn(k). We call such functions projective
transformations.

We first look at the case n = 1.
Suppose

A =

(

a b
c d

)

is invertible, then
T ([(x, y)]) = [(ax+ by, cx+ dy)]
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is a projective transformation of P1(k). We can think of P1(k) as k (i.e. the
points with homogeneous coordinates [(x, 1)] together with an additional point
∞ = [(1, 0)].

How does T act on k?

T ([(x, 1)]) = [(ax+ b, cx+ d)] =

[(

ax+ b

cx+ d

)

, 1

]

if cx + d 6= 0. Thus we can view T as extending the function x 7→ ax+b
cx+d on

k \ {−d
c
}. Since A is invertible, a(−d

c
) + b 6= 0. Thus

T

([(−d
c
, 1

)])

=

[(−da
c

+ b, 0

)]

= [(1, 0)].

Also
T ([(1, 0)] = [a, c].

There are two cases to consider.

case 1: c = 0
In this case T (x) = ax+b

d
for x ∈ k and T (∞) =∞.

case 2: c 6= 0
In this case T (x) = ax+b

cx+d for x ∈ k\{−d
c
}, T (−d

c
) =∞ and T (∞) = [(a, c)] =

[(a
c
)].

In case 1, T extends an affine transformation of A(k). This is not true in
case 2.

We prove two results about projective transformations of P2(k).

Proposition 3.13 If L ⊆ P2(k) is a line, then T (L) is a line.

Proof Let L be the line aX + bY + cZ = 0. Let A ∈ GL3(k) be a matrix such
that T ([~x]) = [A~x]. Then L is the set of [(x, y, z)] where x, y, z is a solution to

(

a b c
)





x
y
z



 =





0
0
0



 .

Let
(

α β γ
)

=
(

a b c
)

A−1.

Then

(

α β γ
)

A





x
y
z



 =





0
0
0



 .

Thus T ([(x, y, z)]) is a point on the line L1 with equation αX + βY + γZ = 0.
On the other hand if αx + βy + γz = 0, then

(

a b c
)

A−1





x
y
z



 =
(

α β γ
)





x
y
z



 =





0
0
0



 .

Thus T−1([x, y, z]) is on L. Thus T (L) = L1 and T−1(L1) = L.
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Proposition 3.14 If L1, L2 ⊆ P2(k) are projective lines, there is a projective
transformation taking L1 to L2.

Proof By composing projective transformations and their inverses, it’s enough
to show that if L is the line aX + bY + cZ = 0, then there is a projective
transformation taking L to the line X = 0.

The idea is similar to Proposition 2.8. We let U = aX + bY + cZ and define
V = a2X + b2Y + c2Z, W = a3X + b3Y + c3Z in such a way that we insure
the transformation is invertible. Choose (a2, b2, c2) and (a3, b3, c3) such that
(a, b, c),(a2, b2, c2) and (a3, b3, c3) are linearly independent and let

A =





a b c
a2 b2 c2
a3 b3 c3



 .

Then (a b c)A−1 = (1 0 0) and, arguing as above, we have transformed the line
L to X = 0.

Homogenizing Affine Equations

Recall that we identify A2(k) with the subset U = {[(x, y, 1)] : x, y ∈ k} of
P2(k).

If C is a projective curve given by F (X,Y, Z) = 0, then

C ∩ A2(k) = {(x, y) : f(x, y) = 0}

where f(X,Y ) = F (X,Y, 1). Thus C ∩ A2(k) is an affine curve. On the other
hand, suppose f(X,Y ) ∈ k[X,Y ] has degree d. For i ≤ d, let fi be the sum
of all monomials in f of degree i. Then fi is homogeneous of degree i and
f =

∑d
i=0 fi. Let

F (X,Y, Z) =

d
∑

i=0

fi(X,Y )Zd−i.

Then f(X,Y ) = F (X,Y, 1), F is homogeneous of degree d, and the affine curve
f(X,Y ) = 0 is the affine part of the projective curve F (X,Y, Z) = 0.

For example if f(X,Y ) = Y −X2, then F (X,Y, Z) = Y Z −X2. This trick
will allow us to use projective methods to study affine equations.

Solving equations in P1(k)

Suppose F (X,Y ) ∈ k[X,Y ] is a homogeneous polynomial of degree d. We would
like to study the zeros of F in P1(k). Recall that we can view P1(k) as A1(k)
with an additional point ∞. Points in A1(k) have homogeneous coordinates
(x, 1), while infinity has homogeneous coordinates (1, 0).

Let

F (X,Y ) =
d
∑

i=0

aiX
iY d−i
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and let

f(X) = F (X, 1) =

d
∑

i=0

aiX
i.

The solutions to F (X,Y ) = 0 in A1(k) are points p = [(x, 1)] where x is zero of
f . We let mp be the multiplicity of f at x.

The point ∞ = [(1, 0)] is a solution if and only if ad = 0 and Y divides
F (X,Y ). Let k be the maximal such that Y k divides F (X,Y ). We call k = m∞

the multiplicity at ∞.

Proposition 3.15 If F (X,Y ) is homogeneous of degree d, p1, . . . , pk are the
distinct zeros of F in P1(k) and mpi

is the multiplicity at pi, then
∑

mpi
≤ d.

If k is algebraically closed, then
∑

mpi
= d.

Proof We can write F (X,Y ) = Y mG(X,Y ) where G is homogeneous of degree
d−m and Y does not divide G. If m > 0, then ∞ is a zero of F of multiplicity
m. The affine zeros of F are the zeros of g(X) = G(X, 1) a polynomial of degree
d−m. We know that the sum of the multiplicities of zeros of g is at most d−m,
with equality holding if k is algebraically closed.

Intersecting Projective Lines and Curves

At the beginning of this section we said that one of our reasons for passing to
projective space was to show that lines intersect curves of degree d in exactly
d points, when we count points correctly. Our next goal is to show that we
haven’t introduced too many points of intersection.

Theorem 3.16 Suppose F (X,Y, Z) is a homogeneous polynomial of degree d
and C is the projective curve F = 0. Let L ⊆ P2(k) be a projective line such
that L 6⊆ C. Then |L ∩ C| ≤ d.

Proof Let L be the line aX + bY + cZ = 0. We will assume that c 6= 0
(the other cases are similar). If (x, y, z) are the homogeneous coordinates for
a point of L ∩ C, then F (x, y, −ax−by

c
) = 0. Let G(X,Y ) be the polynomial

obtained when we substitute Z = −aX−bY
c

into F (X,Y, Z). If F (x, y, z) = 0
and aX + bY + cZ = 0, then G(x, y) = 0. Moreover, if G(x, y) = 0, then
F (x, y, −ax−by

c
) = 0.

Claim Either G(X,Y ) = 0 or G(X,Y ) is homogeneous of degree d.
Suppose F (X,Y, Z) =

∑m
n=0 anXinYjn

Zkn where in+ jn+ kn = d for all n.
When we expand (−aX − bY )kn we get a homogeneous polynomial of degree
kn. Thus each monomial occurring in anX

inY jn(−aX − bY )kn has degree d.
When we add up all of these terms, either they all cancel out and we get F = 0
or they don’t and F is homogeneous of degree d.

Suppose G(X,Y ) = 0. If ax + by + cz = 0, F (x, y, z) = 0. Thus the line L
is contained in C.
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Suppose G(X,Y ) is homogeneous of degree d. If [(x, y, z)] ∈ C ∩ L, then
[(x, y)] is a zero of G in P1(k). On the other hand, if [(x, y)] is a zero of G in
P1(k), then [(x, y, −ax−by

c
)] is a point on C ∩ L. The map

[(x, y)] 7→
[(

x, y,
−ax− by

c

)]

is well-defined and one-to-one. Thus there is a bijection between points on C∩L
and zeros of G. We know that there are at most d distinct zeros to G in P1(k).
Thus |C ∩ L| ≤ d.

The proof also gives us one idea of how we could assign multiplicities to
make sure that we get the right number of points of intersection. Suppose
p = [(x, y, z)] ∈ C ∩ L. We let mp be the multiplicity of [(x, y)] as a zero of G.
If k is algebraically closed we know that

∑

mp = d.
We will return to this idea later. For now let’s look at two examples. Let C

be the curve X2 + Y 2 − Z2 = 0 in P2(C). Then C ∩ A2(C) is the affine circle
X2 + Y 2 = 1.

Let L1 be the line iX −Y +Z = 0. This is the projective version of the line
Y = iX + 1. We have already noticed that A2(C) ∩ C ∩ L1 = {(0, 1)}.

Let

G(X,Y ) = X2 + Y 2 − (Y − iX)2 = 2X2 + 2iXY = 2X(X + iY ).

Then G has two zeros in P2(C), [(0, 1)] and [(−i, 1)], each with multiplicity
1. Thus C ∩ L1 has two points of intersection [(0, 1, 1)] and [(−i, 1, 0)]. Each
point of intersection has multiplicity one. Note that [(0, 1, 1)] is the one point
in A2(C), while [(−i, 1, 0)] is a point at infinity.

Now let’s consider the intersection of C and L2 given by iX − Y = 0. This
corresponds to intersecting the affine circle X2 + Y 2 = 1 with the line Y = iX .
We argued above that there are no points of intersection in A2(C). In this case,
since the Z-coordinate is zero, we consider

G1(X,Z) = F (X, iX,Z) = Z2.

The equation G1(X,Z) = 0 has a unique zero [(1, 0)] in P1(k) of multiplicity 2.
Thus C ∩ L2 has a unique point [(1, i, 0)] of multiplicity 2. We will return to
this example later and argue that the line L2 is tangent to C at this point.

Conics in P2(k)

Suppose F (X,Y, Z) has degree 2. Then

F (X,Y, Z) = aX2 + bY 2 + cZ2 + dXY + eXZ + fY Z.

Let C be the curve F = 0.

Proposition 3.17 Suppose k is a field of characteristic different from 2. There
is a projective transformation that transforms C to a curve X2+bY 2+cZ2 = 0.
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Proof We will essentially repeat quickly the main ideas from the Proof of
Theorem 2.10.

We first claim that we may assume a = 1. If a = 0 and either b, c 6= 0,
then by permuting the variables we may assume a 6= 0. If a = b = c = 0,
then, by permuting the variables, we may assume that d 6= 0 and make the
transformation V = Y −X . This transforms C to the curve

dX2 + dXV + (e− f)XZ + fV Z = 0

in the variables X,Y, Z. Now divide through by a to get an equation of the
form

X2 + bY 2 + cZ2 + dXY + eXZ + fY Z = 0.

We next claim that we may assume d = e = 0. If not we complete the
square. Let U = X + d

2Y . This transforms C to

U2 +

(

b− d2

4

)

Y 2 + cZ2 + eUZ +

(

f − de

2

)

Y Z = 0

in the variables U, Y, Z. We next let V = U + e
2 . This transforms the curve

above to

V 2 +

(

b− d2

4

)

Y 2 +

(

c− e2

4

)

Z2 +

(

f − de

2

)

Y Z = 0.

Thus we assume our curve has the form

X2 + bY 2 + cZ2 + dY Z = 0.

case 1: b 6= 0.
We let V = Y + d

2bZ to complete the square and transform to an equation
of the desired form.

case 2: b = 0 and c 6= 0.
We permute Y and Z to get to case 1.

case 3: b = c = d = 0
We are done.

case 4: b = c = 0, d 6= 0.
We let V = Z−Y and transform to an equation of the formX2+bV 2+cV Z =

0 where b 6= 0 and back in case 1.

Corollary 3.18 If k is a field of characteristic different from 2, and C is a
conic curve then there is a projective transformation transforming C to one of
the following curves:
i) X2 + bY 2 + cZ2 = 0 where b, c 6= 0.
ii) X2 + bY 2 = 0 where b 6= 0.
iii) X2 = 0.
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We call conics of type i) nondegenerate.
We can now give a very simple classification of conics in P2(K) for alge-

braically closed K.

Corollary 3.19 Let K be an algebraically closed field of characteristic different
from 2. If C is a conic curve in P2(K) there is a projective transformation
transforming C to one of the curves:
i) (circle) X2 + Y 2 − Z2 = 0;
ii) (crossing lines) X2 − Y 2 = 0;
iii) (double line) X2 = 0.

Proof If we can transform C to X2 + bY 2 + cZ2 = 0 where a, b, c 6= 0 we let
V =

√
bY , W = i

√
Z to transform the curve to X2 + V 2 −W 2 = 0.

Similar ideas work for X2 + bY 2 = 0.

By working in P2(K) we eliminate the need to look at parallel lines and
parabolas. Note that, up to projective transformations, there is only one non-
degenerate conic in P2(K).

Using this classification we can better understand what happens when a
conic C intersects a line L. If C is degenerate, we can of course have L ⊆ C.
This is impossible if C is nondegenerate.

Corollary 3.20 Let K be algebraically closed if C ⊆ P2(K) is a nondegenerate
conic and L ⊆ P2(K) is a line, then L 6⊆ C.

Proof By an projective transformation we may assume that C is given by
X2 + Y 2 + Z2 = 0. Let L be the line aX + bY + cZ = 0. Without loss of
generality suppose c = 0. If (x, y, z) are the homogeneous coordinates for a

point on C ∩L, then z = −ax−by
c

and x2 + y2 + (ax+by)2

c2
= 0 and (x, y) is a zero

of
(a2 + c2)X2 + (b2 + c2)Y 2 + 2abXY = 0.

This polynomial is not identically zero (in order to have 2ab = 0 we must have
a = 0 or b = 0, but c 6= 0, so we will either get a2 + cc 6= 0 or b2+ c2 6= 0). Since
the polynomial has at most two solutions in P2(K), |C ∩ L| ≤ 2.

The proof we gave of Proposition 3.17 was very ”low tech”. There is another
way to look at this for those of you who know some more linear algebra.

Suppose F has degree 2. Since our field doesn’t have characteristic 2 we can
write F as

aX2 + bY 2 + cZ2 + 2dXY + 2eXZ + 2fY Z

Thus we can think of F (X,Y, Z) = 0 as the matrix equations

(

X Y Z
)





a d e
e b f
d f c









X
Y
Z



 .
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We would like to find a projective transformation making to transform this
system of equations to one of the form

(

X Y Z
)





α 0 0
0 β 0
0 0 γ









X
Y
Z



 .

Note that the matrix of coefficients is symmetric. If B is an n × m matrix
with entries bi,j , then the transpose of B is Bt the m × n matrix (ci,j) where
ci,j = bj,i. We say that a matrix B is symmetric if and only if B = Bt. If our
transformation is given by

T





x
y
z



 = A





x
y
z



 ,

then

T ((x y z)) =



A





x
y
z









t

= (x y z)At.

Thus we are looking for A ∈ GL3(k) such that

At





a d e
d b f
e f c



A

is a diagonal matrix. The existence of such a matrix is a standard theorem from
linear algebra.

Theorem 3.21 Suppose k is a field with characteristic different from 2. If B
is a symmetric n × n matrix, there is an invertible n × n matrix A such that
AtBA is a diagonal matrix.

The argument we gave above can be used to give an elementary proof of
Theorem 3.21.

Projective Parameterizations

We assume that k is a field of characteristic different from 2. In §2 we showed
that

ρ(t) =

(

2t

1 + t2
,
1− t2

1 + t2

)

is a rational parameterization of the circle in A2(k). There were a couple of
problems with this parameterization:

i) it misses the point (0,−1);
ii) it is undefined when t2 = −1.

Both of these problems disappear in P2(k).
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Let C be the circle in P2(k) with equation X2 + Y 2 − Z2 = 0.
We think of t as being u

v
. Then

ρ(t) =

(

2uv

v2 + u2
,
v2 − u2

v2 + u2

)

.

This gives us an idea of how to define a projective transformation. We define
f : P1(k)→ C by

[(x, y)] 7→ [(2xy, y2 − x2, y2 + x2)].

We first argue that f is well-defined. First we see that f preserves ∼-
equivalence classes since

[(λx, λy)] 7→ [(2λ2xy, λ2(y2 − x2), λ2(y2 + x2)] = [(2xy, y2 − x2, y2 + x2)].

Moreover if (2xy, y2 − x2, y2 + x2) = (0, 0, 0), then x = y = 0. Thus f is a
well-defined function f : P1(k)→ P2(k).

Also notice that

(2xy)2 + (y2 − x2)2 − (y2 + x2)2 = 0.

Thus the image of f is contained in C.
We will argue that f is onto, by considering it’s inverse. We want our inverse

function to take [(2xy, y2 − x2, y2 + x2)] to [(x, y)]. One possibility is to take

g1([(a, b, c)]) = [(c− b, a)]).

Then
g1([(2xy, y

2 − x2, y2 + x2)] = [(2x2, 2xy)] = [(x, y)].

It is easy to see that if (a1, b1, c1) ∼ (a, b, c), then (c− b, a) ∼ (c1 − b1, a). Thus
g1 is a well-defined function as long as we don’t have a = 0 and b = c. In
particular g1 maps C \ {[(0, 1, 1)]} to P1(k).

We argue that this is the inverse to f . If [(a, b, c)] ∈ C \ [(0, 1, 1)], then

f([(c− b, a)] = [(2(c− b)a, a2 − (c− b)2, a2 + (c− b)2)]

= [(2(c− b)a, a2 − b2 − c2 + 2cb, a2 + c2 + b2 − 2cb)]

= [(2(c− b)a, 2cb− 2b2, 2c2 − 2cb)], since a2 = c2 − b2

= [(a, b, c)], factoring out c− b

If we extend g1 to g : C → P1(k) by

g(p) =

{

g1(p) if p 6= {[(0, 1, 1)]
[(0, 1)] p = {[(0, 1, 1)] ,

we see that f and g are inverses. Thus f : P1(k) → C is a bijection between
P1(k) and C.

Exercise 3.22 Alternatively we could have defined g2 : C \ {[(0,−1, 1)]} →
P1(k) by g2([(a, b, c)]) = (a, b+ c).
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a) Prove that f ◦ g2 is the identity on C \ {[(0,−1, 1)]}.
b) Prove that g1 = g2 on C \ {[(0, 1, 1)], [(0,−1, 1)]}.
We began this section mentioning two problems with the parameterization

we had found for the affine circle. Have these problems been fixed?
i) We worried that (0,−1) was not in the image. We now have

f(∞) = f([(1, 0)]) = [(0,−1, 0)].

So the affine point (0,−1) is in the image.
ii) We worried about ρ(t) if t2 = −1. If i ∈ k with i2 = −1, then

f([i, 1]) = [(2i, 2, 0)] and f([−i, 1]) = [(−2i, 2, 0)].

This is good since [(i, 1, 0)] and [(−i, 1, 0)] are the two points at infinity on C
(if k has a square root of −1).

Suppose K is an algebraically closed field and C1 is a nondegenerate conic.
There is a projective transformation T of P2(K) taking the circle C to C1. Then
T ◦ f is a parameterization of C1. We will later need to consider the exact form
of this parameterization. Suppose A ∈ GL3(k) and T ([~x]) = [A~x]. Then our
parameterization is given by

(x, y, z) 7→ A





2xy
y2 − x2

y2 + x2



 =





α(x, y)
β(x, y)
γ(x, y)





where α, β, γ are homogeneous of degree 2.
We can also find parameterizations directly.

Exercise 3.23 Suppose k is a field of characteristic different from 2. Sup-
pose C is a nondegenerate conic over k and there is p ∈ C ∩ P2(k). Find a
parameterization of C as follows:

i) Find a bijection f : P1(k) to the set of lines through p.
ii) If L is a line through p let

g(L) =

{

q if q ∈ L ∩ C \ {p}
p if L is tangent at p

.

Find an equations for g ◦ f and prove this parameterizes C.

Intersecting Conics with Curves

Theorem 3.24 Suppose K is an algebraically closed field of characteristic dif-
ferent from 2, C ⊆ P2(K) is a nondegenerate conic and D ⊆ P2(K) is a curve
of degree D. Either C ⊆ D or |C ∩D| ≤ 2d.

Proof We have a projective parameterization of C. By the arguments above,
there are homogeneous polynomials a, b, c of degree 2 such that

([x, y]) 7→ [(a(x, y), b(x, y), c(x, y))]
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is a parameterization of C.
Suppose D is the set of solutions to the degree d polynomial F (X,Y, Z) = 0.

Then points of C∩D are in bijective correspondence with points [(x, y)] ∈ P1(K)
such that

F (a(x, y), b(x, y), c(x, y)) = 0.

Let g(X,Y ) = F (a(X,Y ), b(X,Y ), c(X,Y )). Since F is homogeneous of degree
d and a, b, c are homogeneous of degree 2, g is either 0 or of degree 2d.

If g = 0, then [(a(x, y), b(x, y), c(x, y))] ∈ D for all [(x, y)] ∈ P1(K) and
C ⊆ D. If g has degree 2d, then there are at most 2d points p ∈ P1(K) such
that g(p) = 0 and [(a(x, y), b(x, y), c(x, y))] ∈ D. Thus |C ∩D| ≤ 2d.

Once again we could assign multiplicities by letting mp be the multiplicity
of p as a zero of g. Then we would have

∑

mp = 2d. One of the most important
result in the subject is that if we have curves C and D of degrees d1 and d2

such that C ∩D is finite, then if we assign multiplicites correctly we have d1d2

points of intersection. We will return to this idea later.

While two points determine a line, 5 points (in general position) determine
a conic.

Corollary 3.25 If p1, . . . , p5 ∈ P2(k), there is a conic C with p1, . . . , p5 ∈ C.
If no four of p1, . . . , p5 are colinear, then C is unique. If no three are colinear
C is nondegenerate.

Proof We first show that there is at least one conic. Let (xi,1, . . . , xi,5) be
homogeneous coordinates for pi. We are looking for a1, . . . , a6 such that







x2
1,1 x2

1,2 x2
1,3 x1,1x1,2 x1,1x1,3 x1,2x1,3

...
x2

5,1 x2
5,2 x2

5,3 x5,1x5,2 x5,1x5,3 x5,2x5,3













a1

...
a6






=







0
...
0






.

Since this is a homogeneous system of 5 linear equations in 6 unknowns it has a
nonzero solution (a1, . . . , a6). Let F = a1X

2 + a2Y
2 + a3Z

2 + a4XY + a5XZ+
a6Y Z. Then F (pi) = 0 for i = 1, . . . , 6.

Suppose no four of p1, . . . , p5 are collinear. We next must show uniqueness.
Suppose K ⊆ k is algebraically closed. It is enough to show that there is a
unique conic in K containing p1, . . . , p5. Suppose C1 and C2 are conics such
that p1, . . . , p5 ∈ C1 ∩ C2.

case 1 C1 and C2 are non-degenerate.
Then by the previous theorem C1 ⊆ C2 and C2 ⊆ C1.

case 2 One Ci is degenerate and the other is not.
Suppose C1 in nondegenerate and C2 is degenerate. We know that C1 does

not contain a line and that C2 is either two crossing lines or a single line. Since
p1, . . . , p5 are non collinear, C2 must be two crossing lines.

case 3 C1 and C2 are degenerate.
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Since the points p1, . . . , p5 are not collinear, C1 = L0 ∪L1 and C2 = L2 ∪L3

where each Li is a line L0 6= L1 and L2 6= L3.
Since {p1, . . . , p5} ⊆ L0 ∪L1. At least one of the lines must contain three of

the points. Suppose p1, p2, p3 ∈ L0. Since p1, p2, p3 ∈ L2 ∪ L3, at least one of
the lines must contain at least two of those points. Say p1, p2 ∈ L3. But then
p1, p2 ∈ L0 ∩ L3. Since two points determine a line we must have L0 = L2.

Thus we may assume that C1 = L0 ∩ L1, C2 = L0 ∩ L2 and p1, p2, p3 ∈ L0.
Since no four points are collinear we must have p4, p5 ∈ L1 and p4, p5 ∈ L2. But
then L1 = L2 and C1 = C2. Thus there is a unique conic through p1, . . . , p5.

If C is degenerate then C is either a line or the union of two lines. In either
case at least three of the points are on a line. Thus if no three points are collinear
C is nondegenerate.

The first part of the proof has a simple generalization.

Exercise 3.26 Suppose p1, . . . , pN ∈ P2(k) where N ≤ d2+3d
2 . Then there is a

curve C of degree d with p1, . . . , pN ∈ C.
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4 Irreducible Components

Let K be an algebraically closed field.
Recall that C ⊆ A2(K) is a curve if there is a polynomial f ∈ K[X,Y ] such

that
C = V (f) = {(x, y) ∈ A2(K) : f(x, y) = 0}.

Definition 4.1 We say that a curve C ⊆ A2(k) is reducible if there are curves
C1, C2 ⊆ C such that C1, C2 6= C and C = C1 ∪ C2. Otherwise we say that C
is irreducible.

For example the curve X2 − Y 2 = 0 is reducible since

X2 − Y 2 = (X − Y )(X + Y )

and V (f) is the union of the two lines X = Y and X = −Y . In general, if
f =

∏n
i=1 gi, then V (f) = V (g1) ∪ . . . ∪ V (gn). But the V (gi) may not be

distinct. For example V (X2) = V (X) ∪ V (X) = V (X).
One of our goals of this section is to prove that any curve can be written

as a finite union of irreducible curves in, essentially, a unique way. Clearly, to
fully understand how to decompose a curve into irreducible components, we will
need to understand factoring in K[X,Y ].

Unique Factorization Domains

Wewill prove that if k is a field, then the n-variable polynomial ring k[X1, . . . , Xn]
is a unique factorization domain.

We begin by recalling some of basic definitions and results from Math 330.

Definition 4.2 Let D be an integral domain.
We say that u ∈ D is a unit if there is v ∈ D such that uv = 1. We write

v = 1
u
.

If a ∈ D is nonzero and not a unit, we say that a is irreducible if whenever
b, c ∈ D and a = bc then either a is a unit or b is a unit.

We say that a, b ∈ D are associates if there is a unit u such that a = ub.

For example, if k is a field and D = k[X ], then the units are the nonzero
elements of k, f ∈ k[X ] is irreducible if and only if deg f > 0 and f can not
be factored as the product of two polynomials of lower degree, and f, g are
associates if and only if there is c ∈ k such that f = cg.

Lemma 4.3 If D is an integral domain and p ∈ D is irreducible, then (p) =
{a ∈ D : p divides a} is a prime ideal (i.e., if a, b ∈ D and p divides ab then p
divides a or p divides b.

Definition 4.4 If D is a domain, we say that D is a Unique Factorization
Domain (or UFD) if:
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i) if f ∈ D is nonzero and not a unit, then there are irreducible elements
g1, . . . , gn ∈ D such that f = g1g2 · · · gn, and

ii) if p1, . . . , pn, q1, . . . , qm ∈ D are irreducible, and p1 · · · pn = q1 · · · qm, then
n = m and there is σ ∈ Sn such that pi is an associate of qσ(i) for i = 1, . . . , n.
In other words, we can reorder the qi so that pi and qi are associates for all i.

There are two important examples of UFDs that you have encountered be-
fore.

Theorem 4.5 i) Z is a UFD.
ii) If k is a field, then k[X ] is a UFD.

The following theorem will allow us to construct more complicated UFDs.

Theorem 4.6 If D is a UFD, then the polynomial ring D[X ] is a UFD.

We can always identify the polynomial ring D[X1, . . . , Xn] with
D[X1, . . . , Xn−1][Xn]. Thus if D is a UFD, the polynomial ring in n-variables
over D is as well.

Corollary 4.7 i) Z[X1, . . . , Xn] is a UFD.
ii) If k is a field, then k[X1, . . . , Xn] is a UFD.

Definition 4.8 A nonconstant polynomial f(X) =
∑d

n=0 anX
n ∈ D[X ] is

primitive if the only common divisors of a0, . . . , an are units.

For example, let D = k[X ] and consider polynomials in D[Y ] = k[X,Y ].
The polynomial

X2Y + 2XY 2

is not primitive since X is a common nonunit divisor of X2 and 2X2. The
polynomial

X2 + 2XY + (X + 1)Y 2

is primitive since X2, 2X and (X + 1) have no common nonunit divisors. The
polynomial 2X2Y +4Y 2 is primitive since the only common divisors of 2X2 and
4 are units.

If f =
∑d

n=0 anX
n is not primitive, we can find a nonunit c such that for

each n, an = cbn for some bn ∈ D. Thus

f = c

d
∑

n=0

bnX
n.

Since c is a nonunit, f is reducible.
Note that 2X + 4Y is primitive in Q[X ][Y ], but not primitive in Z[X,Y ],

since 2 is a unit in Q but not in Z.

Proposition 4.9 If a ∈ D and a divides a nonconstant g ∈ D[X ], then a
divides all of the coefficients of D. In particular, if g is primitive and a ∈ D is
a nonunit, then a does not divide g.
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Proof Suppose

g = a

(

d
∑

n=0

bnX
n

)

=

d
∑

n=0

abnX
n.

Then a divides each coefficient of g.

Lemma 4.10 For any nonconstant f ∈ D[X ] we have f(X) = cg(X) where
c ∈ D and g(X) is primitive. Moreover if we also have f(X) = dh(X), where
d ∈ D and h is primitive, then there is a unit u ∈ D such that h = gu and
d = c

u
. Thus c and g are “unique up to units”.

We call c the content of g.

Proof
(existence) Suppose

f =
d
∑

n=0

anX
n.

Since D is a unique factorization domain, we can factor each nonzero nonunit an
into a product of irreducibles. LetMf be the maximal number of irreducible fac-
tors occuring in the factorization of some an. We prove the lemma by induction
on Mf .

If Mf = 0, then f is primitive.
If f is primitive, then we are done. Suppose f is not primitive. Then

a0, . . . , an have a common irreducible factor p. Let

h =

d
∑

n0

an
p
Xn.

Since Mh = Mf − 1, by induction, there is c ∈ D and a primitive g such that
h = cg. But then f = (pc)g.

(uniqueness) Suppose f = cg = dh where c, d ∈ D and g, h are primitive.
We claim that h = ug for some unit u. We can factor c as the product of Mc

irreducible factors. We will prove this by induction on Mc.
Suppose p ∈ D is an irreducible factor of c. Since h is primitive, p does not

divide all of the coefficients of h. Since it divides all the coefficients of f it must
divide d. Similarly, if p ∈ D is an irreducible factor of d, then p divides c.

If Mc = 0, then c is a unit and the above argument shows that d is also a
unit. Thus h = c

d
g and c

d
is a unit.

If Mc > 0, then c is not a unit. If p is an irreducible factor of c, then p is
also an irreducible factor of d and c

p
g = d

p
h. By induction h = ug for some unit

u.

For example, suppose k is a field, D = k[X ] and f = X2Y + 2XY 2 ∈ D[Y ],
then f = X(XY +2Y 2). Since XY +2Y 2 is primitive in D[Y ], X is the content
of f in D[Y ].1

1Note that we could also consider D∗ = k[Y ] and f ∈ D∗[X]. In that case f = Y (X2 +
2XY ) so the content is Y . is Y .
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Lemma 4.11 (Gauss’ Lemma) If D is a UFD and f, g ∈ D[X ] are primitive,
then fg is primitive. Indeed, if f1, . . . , fm are primitive, then so is

∏

fi.

Proof Let

f =

d
∑

n=0

anX
n

and

g =

d1
∑

n=0

bnX
n

be primitive in D[X ]. Suppose gf is not primitive. There is an irreducible p
such that p divides every coefficient of fg. Let s be least such that p does not
divide as and let t be least such that p does not divide bt. The X

s+t-coefficient
of fg is

∑

i+j=s+t

aibj =
∑

i<s

aibs+t−i + asbt +
∑

j<t

as+t−jbj .

By choice of s and t, p divides each ai in the first sum on the right-hand side
and each bj in the second. Since p divides the whole sum, it must also divide
asbt. Thus p divides as or bt, a contradiction.

The second claim is now a simple induction.

Exercise 4.12 Suppose D is a UFD and f, g ∈ D[X ]. Prove that the content
of f times the content of g is (a unit times) the content of fg.

Suppose D is a unique factorization domain. Let

K =
{a

b
: a, b ∈ D, b 6= 0

}

be the fraction field of D. Then D[X ] is a subring of K[X ]. Of course F [X ]
is a UFD. We want to consider the relationship between factoring in D[X ]
and factoring in K[X ]. The first thing to ask is which elements of D[X ] are
irreducible in K[X ].

Lemma 4.13 Suppose D is a UFD, K is its fraction field and f ∈ D[X ]. Then
f is irreducible in D[X ] if and only if f is primitive and f is irreducible in K[X ].

Proof
(⇐) Suppose there are nonunit g, h ∈ D[X ] such f = gh. If g ∈ D or h ∈ D,

then f is not primitive. If neither g, h ∈ D then deg f > deg g, deg h. Thus f
is reducible in K[X ].

(⇒) We argued above that every irreducible f ∈ D[X ] is primitive, so we
need only show it is irreducible in K[X ].

Suppose f = gh where deg g, deg h < deg f . We must show that f factors
in D[X ]. Each coefficient of g and h is a quotient of elements of D, by clearing
denominators we can find a ∈ D, g1, h1 ∈ D[X ] such that af = g1h1 and
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deg f > deg g1, deg h1. By Lemma 4.10 we can find b, c, d ∈ D and primitive
polynomials f1, g2, h2 such that

f = bf1, g1 = cg2, and h1 = dh2.

Then
abf1 = cdg2h2

and, by Gauss’ Lemma g2h2 is primitive. Thus, by Lemma 4.10, there is a unit
u, such that

abu = cd.

But then bu = cd
a

and

f = bf1 =
cd

a
g2h2 = bug2h2.

Thus f factors into (bug2)h2 in D[X ].

Proof of Theorem 4.6
(existence) Suppose D is a UFD. We want show that D[X ] is a UFD. We

first prove that every nonzero nonunit f ∈ D[X ] can be factored into a product
of irreducibles. If deg f = 0, then f ∈ D and we are done since D is a UFD.

Suppose deg f > 0. We may view f as an element of K[X ], where K is the
fraction field of D. Since K[X ] is a UFD, we can factor

f =

n
∏

i=1

where g1, . . . , gn are irreducible factors in K[X ]. Let ai ∈ D be the product
of all of the denominators occuring in coefficients in gi, let a =

∏

ai and let
hi = aigi ∈ D[X ]. Then

af =
∏

hi.

Since ai ∈ D is a unit in K, hi = aigi is irreducible in K[X ]. By Lemma 4.10,
there are c, d1, . . . , dn ∈ D and primitive f∗,h∗1, . . . , h

∗
n ∈ D[X ] such that

f = cf∗, h1 = d1h
∗
1, . . . , hn = dnh

∗
n.

Note that each h∗i is irreducible inK[X ] and primitive in D[X ]. Thus by Lemma
4.13, each h∗i is irreducible in D[X ].

But

acf∗ =

n
∏

i=1

di

n
∏

i=1

h∗i

and, by Gauss’ Lemma,
∏

h∗i is primitive. Thus, by 4.10 there is a unit u ∈ D
such that

acu =
n
∏

i=1

di.
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Then

acf∗ = acu
n
∏

i=1

h∗i

and

f = cf∗ = cu

n
∏

i=1

h∗i .

Since D is a UFD, we can factor cu into a product of irreducibles. This gives a
factorization of f into a product of irreducibles.

(uniqueness) If deg f = 0, then f ∈ D and we have unique factorization
since D is a UFD. Suppose deg f > 0. Suppose

f = a1 · · · asp1 · · · pm = b1 · · · btq1 · · · qn

are two irreducible factorizations of f ∈ D[X ] where ai, bj are irreducible ele-
ments of D and pi, qj are irreducible nonconstant elements of D[X ]. By Lemma
4.13, each pi and qj is irreducible in K[X ]. In K[X ],

∏

pi is a unit times
∏

qi.
Thus, sinceK[X ] is a UFD, m = n and we can reorder the qi such that pi =

ci

di
qi

for some ci, di ∈ D. But then dipi = ciqi and each pi and qj is irreducible in
D[X ] and, hence, primitive. Thus ci

di
is a unit in D.

Thus there is a unit u ∈ D such that

s
∏

i=1

ai

m
∏

i=1

pi = u

n
∏

i=1

bi

m
∏

i=1

pi.

Since D is a UFD, s = t and we can reorder the bi such that ai = wibi for
some unit. Thus the factorization is unique up to permuting the factors and
multiplication by units.

Study’s Lemma

We return to trying to understand algebraic curves in A2(K).
For the remainder of this section K is an algebraically closed field
Our first goal is to relate divisibility in K[X,Y ] with containment of curves.

If f, g ∈ K[X,Y ] and f divides g, then there is h ∈ K[X,Y ] such that g = fh
and V (g) = V (f) ∪ V (h). Thus V (f) ⊆ V (g). We will argue that the converse
is also true for irreducible f .

Theorem 4.14 (Study’s Lemma) If f, g ∈ K[X,Y ], f is irreducible and
nonconstant, and V (f) ⊆ V (g), then f divides g.

Note that Study’s Lemma may fail if K is not algebraically closed. For
example X2 + Y 2 is irreducible in R[X,Y ] and V (X2 + Y 2) ⊂ V (X) in A2(R),
but X2 + Y 2 does not divide X .

Before proving Study’s Lemma, we derive some consequences.

Corollary 4.15 If f ∈ K[X,Y ] is nonconstant, then V (f) 6= ∅.
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Proof If V (f) = ∅ ⊆ V (1), then, by Study’s Lemma, f divides 1 and f is
constant.

Exercise 4.16 Show that V (f) is infinite.

Corollary 4.17 Let f ∈ K[X,Y ] be nonconstant. The curve V (f) ⊆ A2(K) is
irreducible, if and only if there is an irreducible polynomial g and k > 0 such
that f = gk.

Proof
(⇒) Since K[X,Y ] is a UFD, we can factor f =

∏n
i=1 g

ki

i where g1, . . . , gn
are irreducible and relatively prime. If n > 1, then V (f) =

⋃

V (gi) and V (gi) 6=
V (f), contradicting the irreducibility of f .

(⇐) Suppose f = gk where g is irreducible and V (f) = V (h1)∪V (h2) where
V (h1) 6= V (h2). Let p be an irreducible factor of h1. Then V (p) ⊆ V (h1) ⊂
V (f). By Study’s Lemma, p divides gk. Since g is irreducible p = cg for some
c ∈ K and V (p) = V (g) = V (f).

Theorem 4.18 If f ∈ K[X,Y ] is nonconstant and C = V (f), then there are
irreducible curves C1, . . . , Cn such that C = C1∪ . . .∪Cn and Ci 6⊆ Cj for i 6= j.
Moreover, if D ⊆ C is an irreducible curve, then D = Ci for some i.
We call C1, . . . , Cn the irreducible components of C.

Proof We can factor

f =
n
∏

i=1

gki

i

where each gi is irreducible and gi and gj are relatively prime for i 6= j. Then

C = V (g1) ∪ . . . V (gn)

and, by Corollary 4.17, each V (gi) is irreducible. By Study’s Lemma, Ci 6⊆ Cj
for i 6= j.

If D ⊆ C is an irreducible curve, there is an irreducible h ∈ K[X,Y ] such
that D = V (h). Since V (h) ⊆ V (f), h divides f . Since K[X,Y ] is a unique
factorization domain, h = cgi for some i ≤ n and c ∈ K. Thus V (h) = V (gi).

We still must prove Study’s Lemma. The proof will use a generalization of
Theorem 1.22 on resultants. Suppose D is an integral domain and f, g ∈ D[X ]
are nonzero polynomials. If f = anX

n + an−1X
n−1 + . . . a0 and g = bmX

m +
bm−1X

m−1 + . . .+ b0 where an, bm 6= 0, we can still form the resultant

Rf,g =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 . . . . . . . . . an 0 . . . . . . 0
0 a0 a1 . . . . . . . . . an 0 . . . 0

. . .
. . .

0 . . . . . . 0 a0 a1 . . . . . . . . . an
b0 b1 . . . . . . bm 0 . . . . . . . . . 0
0 b0 b1 . . . . . . bm 0 . . . . . . 0

. . .
. . .

0 . . . . . . . . . 0 b0 b1 . . . . . . bm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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We will have Rf,g ∈ D.
We need a mild generalization of Theorem 1.22

Theorem 4.19 Suppose D is a unique factorization domain and f, g ∈ D[X ]
are nonzero polynomials. The following are equivalent:
i) f and g have a common nonconstant factor in D[X ];
ii) There are nonzero f1, g1 ∈ D[X ] such that deg f1 < deg f , deg g1 <

deg g and
fg1 = f1g.

iii) Rf,g = 0.

Exercise 4.20 Show that the proof of Theorem 1.22 can be modified to prove
Theorem 4.19. [Note: The proof of ii)⇔ iii) should work for any integral domain
D.]

Proof of Study’s Lemma
We have f, g ∈ K[X,Y ], f is irreducible and V (f) ⊆ V (g). Without loss

of generality assume that Y occurs in some monomial of f (otherwise we work
with X instead of Y ). We can write

f =

n
∑

i=0

aiY
i

and

g =

m
∑

i=0

biY
i

where ai, bi ∈ K[X ] for all i, and an, bm 6= 0.
Suppose for purposes of contradiction, that f does not divide g. Since f is

irreducible, f and g have no common nonconstant factors. Thus by Theorem
1.22, Rf,g ∈ K[X ] is nonzero. Since K is algebraically closed K is infinite. The
polynomials an, bm, Rf,g ∈ K[X ] are nonzero, thus we can find c ∈ K such that
an(c) 6= 0, bm(c) 6= 0 and Rf,g(c) 6= 0.

Consider the polynomials

p(Y ) = f(c, Y ) =

n
∑

i=0

ai(c)Y
i

and

q(Y ) = g(c, Y ) =
m
∑

i=0

bi(c)Y
i.
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Note that p has degree n > 0, q has degree m and

Rp,q =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0(c) a1(c) . . . . . . . . . an(c) 0 . . . . . . 0
0 a0(c) a1(c) . . . . . . . . . an(c) 0 . . . 0

. . .
. . .

0 . . . . . . 0 a0(c) a1(c) . . . . . . . . . an(c)
b0(c) b1(c) . . . . . . bm(c) 0 . . . . . . . . . 0
0 b0(c) b1(c) . . . . . . bm(c) 0 . . . . . . 0

. . .
. . .

0 . . . . . . . . . 0 b0(c) b1(c) . . . . . . bm(c)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Thus Rp,q = Rf,g(c) 6= 0. Since deg p > 0 there is d ∈ K such that p(d) = 0 and,
by Theorem 1.22, q(d) 6= 0. But then f(c, d) = 0 and g(c, d) 6= 0 contradicting
the fact that V (f) ⊆ V (g).

Irreducible Components in Projective Space

We next consider irreducible components in P2(K). If F ∈ K[X,Y, Z] is homo-
geneous, then, because K[X,Y, Z] is a UFD, we can factor F into irreducible
factors. We first need to notice that the irreducible factors are homogeneous.

Lemma 4.21 Suppose F,G,H ∈ K[X1, . . . , Xn], F is homogeneous and F =
GH. Then G and H are homogeneous.

Proof We can write G =
∑n

i=0 Gi and H =
∑m

i=0 Hi where Gi and Hi are
homogeneous of degree i, Gn 6= 0 and Hm 6= 0. Let i0 be least such that Gi0 6= 0
and let j0 be least such that Hj0 6= 0. Then

F = GnHm +

m+n−1
∑

k=i0+j0+1

∑

i+j=k

GiHj +Gi0Hj0

and
∑

i+j=k

GiHj

is homogeneous of degree k. Since F is homogeneous we must have n = i0 and
m = j0. Thus G = Gn and H = Hm are homogeneous.

Our next goal is to prove the projective version of Study’s Lemma. We must
first investigate the relationship between factoring polynomials in K[X,Y ] and
factoring their homogenizations in K[X,Y, Z].

Recall that if f ∈ K[X,Y ] has degree d. We can write f =
∑d

i=0 fi where
fi ∈ K[X,Y ] is homogeneous of degree i and let

F (X,Y, Z) =

d
∑

i=0

fiZ
d−i.

Then F is homogeneous of degree d and f(X,Y ) = F (X,Y, 1). We call F the
homogenization of f . Note that Z is not a factor of the homogenization.
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Lemma 4.22 Suppose f, g, h ∈ K[X,Y ] are nonconstant polynomials and f =
gh. Suppose F,G,H in K[X,Y, Z] are the homogenizations of f , g and h. Then
F = GH.

Proof Let

f =
n+m
∑

i=0

fi, g =
n
∑

i=0

gi, and h =
m
∑

i=0

hi

where fi, gi, hi are homogeneous of degree i, gn, hm, fn+m 6= 0. Then

fk =
∑

i+j=k

gihj .

But

G =

n
∑

i=0

giZ
n−1, H =

m
∑

i=0

hiZ
m−i

and

GH =

m+n
∑

k=0





∑

i+j

giZ
n−ihjZ

m−j



 =

m+n
∑

k=0

fkZ
m+n−k = F.

Corollary 4.23 Suppose f ∈ K[X,Y ] and F ∈ K[X,Y, Z] is its homoge-
nization. Then f is irreducible in K[X,Y ] if and only if F is irreducible in
K[X,Y, Z].

Proof
(⇐) Clear from the Lemma.
(⇒) Suppose F = GH . If g(X,Y ) = G(X,Y, 1) and h(X,Y ) = H(X,Y, 1),

then f = gh. Since f is irreducible, one of g or h is constant. Suppose g is
constant. Since Z is not a factor of F , Z is not a factor ofG. Thus deg g = deg G
and G is constant. Thus F is irreducible.

We can now prove the projective version of Study’s Lemma. If F ∈ K[X,Y, Z]
is homogeneous, we let

VP(F ) = {p ∈ P2(K) : F (p) = 0}.

Proposition 4.24 Suppose K is an algebraically closed field. If F,G ∈ K[X,Y, Z]
are homogeneous, F is irreducible and VP(F ) ⊆ VP(G), then F divides G.

Proof There are two cases to consider.

case 1: F = aZ for some a ∈ K \ {0}.
We will suppose F does not divide G and show that VP(F ) 6⊆ VP(G). Let

G(X,Y ) =

n
∑

i=0

gi(X,Y )Zi
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where gi ∈ K[X,Y ] is homogeneous of degree n− i. Since Z does not divide G,
g0 6= 0. Thus there are x, y ∈ K such that x 6= 0, y 6= 0 and g0(x, y) 6= 0. But
then [x, y, 0] ∈ VP(F ) \ VP(G) and VP(F ) 6⊆ VP(G).

case 2: Z does not divide F .
We can factor G = ZdH where Z does not divide H . Let f(X,Y ) =

F (X,Y, 1), and h(X,Y ) = H(X,Y, 1). If f(x, y) = 0, then h(x, y) = 0. Thus
V (f) ⊆ V (h) and by Study’s Lemma, f divides h. By Lemma 4.22, F divides
H . Thus F divides G.

We can now follow the arguments given above for affine curves. We say that
a projective curve C is irreducible, if there are no projective curves D0, D1 ⊂ C
with C = D0 ∪D1, C 6= D0, and C 6= D1.

Exercise 4.25 Suppose K is an algebraically closed field and F ∈ K[X,Y, Z]
is nonconstant and homogeneous.

a) Show that VP(F ) is irreducible if and only if F = Gk for some irreducible
G ∈ K[X,Y, Z].

b) Let C be a projective curve. Show that there are irreducible projective
curves C1, . . . , Cn such that C = C1∪ . . .∪Cn and Ci 6⊆ Cj for i 6= j. Moreover,
if D ⊆ C is an irreducible curve, then D = Ci for some i. We call C1, . . . , Cn
the irreducible components of C.

c) Suppose f = F (X,Y, 1) and Z does not divide F . Show that if C1, . . . , Cn
are the irreducible components of VP(F ), then C1 ∩A2(K), . . . , Cn ∩A2(K) are
the irreducible components of the affine curve V (f).

d) What happens in c) if Z divides F ?
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5 Bézout’s Theorem

Throughout this section we will assume that K is an algebraically closed field.
Suppose f, g ∈ K[X,Y ] are nonconstant. Our goal in this section is to ana-

lyze |V (f)∩V (g)|. One possibility is that f and g have a common nonconstant
factor h. In that case V (h) ⊆ V (f) ∩ V (g) and V (f) ∩ V (g) is infinite. In case
f and g have no common nonconstant factor we will prove that V (f) ∩ V (g) is
finite and

|V (f) ∩ V (g)| ≤ deg f deg g.

We begin by describing the main idea of the proof. Suppose f, g ∈ K[X,Y ]
are nonconstant polynomials with no common nonconstant factors, deg f = n
and deg g = m. By applying an affine transformation if necessary, we may
assume that f(0, 0) 6= 0 and g(0, 0) 6= 0. The following proposition is the key to
the proof.

Proposition 5.1 There are at most mn lines L through (0, 0) such that L ∩
V (f) ∩ V (g) 6= ∅.

We first argue that V (f)∩V (g) is finite. Let L1, . . . , Ls be the lines through
(0, 0) that intersect V (f)∩V (g). If p ∈ V (f)∩V (g), then there is a unique line
L containing p and (0, 0) and L must be one of the Li. Thus

V (f) ∩ V (g) =

s
⋃

i=1

(V (f) ∩ V (g) ∩ Li).

If L is a line and V (f) ∩ V (g) ∩ L is infinite, then V (f) ∩ L is infinite and,
by Theorem 3.16 L ⊆ V (f). Similarly, L ⊆ V (g). If h = 0 is the linear equation
for L, then, by Study’s Lemma, h is a common factor of f and g. Thus each Li
intersects V (f)∩V (g) in at most finitely many points and V (f)∩V (g) is finite.

Suppose |V (f) ∩ V (g)| = N . For each pair of distinct points p, q ∈ V (f) ∩
V (g) let Lp,q be the unique line containing p and q. Note that

|{Lp,q : p, q ∈ V (f) ∩ V (g) distinct}| = N(N − 1)

2
.

By doing a second affine transformation we may assume that (0, 0) is not on
V (f), V (g) or any of the lines Lp,q. Let L1, . . . , Ls be all lines through (0, 0)
containing a point of V (f) ∩ V (g). Since (0, 0) ∈ Li, Li 6= Lp,q for any distinct
p, q ∈ V (f) ∩ V (g). Thus |Li ∩ V (f) ∩ V (g)| = 1 and

|V (f) ∩ V (g)| = s ≤ mn.

In fact, we will not prove the proposition in the form we have stated it.
It is somewhat easier to work in projective space rather than affine space and
by working in projective space we will be able to prove the following stronger
result.

For F ∈ K[X,Y, Z] homogeneous, we let

VP(F ) = {p ∈ P2(K) : F (p) = 0}.
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Theorem 5.2 (Bézout’s Theorem) Let F,G ∈ K[X,Y, Z] be nonconstant
homogeneous of degree m and n respectively. Either F and G have a common
nonconstant factor or |VP(F ) ∩ VP(G)| ≤ mn.
Moreover, if F and G have no common nonconstant factor, there is a natural

way to assign intersection multiplicities mp(F,G) for each p ∈ VP(F ) ∩ VP(G)
such that

∑

p∈VP(F )∩VP(G)

mp(F,G) = mn.

Resultants of Homogeneous Polynomials

The key to proving Bézout’s Theorem is a result about resultants of homoge-
neous polynomials. We need one basic fact about homogeneous polynomials.

Exercise 5.3 Suppose F ∈ K[X,Y, Z] is nonzero. Consider the polynomial
F (TX, TY, TZ) ∈ K[X,Y, Z, T ]. Then F is homogeneous of degree d if and
only if

F (TX, TY, TZ) = T dF (X,Y, Z).

[Hint: See 3.6]

Theorem 5.4 If F,G ∈ K[X,Y, Z] are nonconstant homogeneous polynomials
with no common nonconstant factors such that F (0, 0, 1) 6= 0 and G(0, 0, 1) 6= 0,
then RF,G is homogeneous of degree deg F · deg G.

Proof By Theorem 4.19, if F and G have no common factor, then RF,G is a
nonzero polynomial. We will prove that RF,G is homogeneous of degree d by
showing that

RF,G(TX, TY ) = TnmRF,G(X,Y ).

Let

F =

n
∑

i=0

aiZ
i and G =

m
∑

i=0

biZ
i

where ai, bi ∈ K[X,Y ], ai is homogeneous of degree n − i, bi is homogeneous
of degree m − i. Since F (0, 0, 1) 6= 0, an 6= 0. Similarly, bm 6= 0. Thus
RF,G(TX, TY ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0T
n a1T

n−1 . . . . . . . . . an 0 . . . . . . 0
0 a0T

n a1T
n−1 . . . . . . . . . an 0 . . . 0

. . .
. . .

0 . . . . . . 0 a0T
n a1T

n−1 . . . . . . . . . an
b0T

m b1T
m−1 . . . . . . bm 0 . . . . . . . . . 0

0 b0T
m b1T

m−1 . . . . . . bm 0 . . . . . . 0
. . .

. . .

0 . . . . . . . . . 0 b0T
m b1T

m−1 . . . . . . bm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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We modify the determinant by multiplying the ith row by Tm+1−i for i = 1...m
and the m+ ith row by T n+1−i for i = 1...n.

The first m lines now look like:

a0T
n+m a1T

n+m−1 . . . . . . . . . anT
m 0 . . . . . . 0

0 a0T
n+m−1 a1T

n+m−2 . . . . . . . . . anT
m−1 0 . . . 0

. . .
. . .

0 . . . . . . 0 a0T
n+1 a1T

n . . . . . . . . . anT

while the last n lines look like:

b0T
m+n b1T

m+n−1 . . . . . . bmT
n 0 . . . . . . . . . 0

0 b0T
m+n−1 b1T

m+n−2 . . . . . . bmT
n−1 0 . . . . . . 0

. . .
. . .

0 . . . . . . . . . 0 b0T
m+1 b1T

m . . . . . . bmT

.

Recall that if we multiply one row of a matrix A by λ, then the determinant of
the new matrix is λdet A. Thus the determinant above is equal to

T (
� n

i=1
i+

� m
j=1

j)RF,G(TX, TY ).

To finish the proof we want to show in every element of the jth column
the power of T occuring is Tm+n+1−j . Suppose i = 1, . . . ,m in the matrix to
compute RF,G(TX, TY ) the element in the ith row and jth column is 0 if j < i
or j > i+ n+ 1. Otherwise it is

aj−iT
n+i−j .

When we modify the matrix to make the second determinant if 1 ≤ i ≤ m and
i ≤ j ≤ n+ i+ 1, the element in the ith row and jth column is

aj−iT
n+i−jTm+1−i = aj−1T

n+m+1−j .

Similarly if 1 ≤ i ≤ n and i ≤ j ≤ m + i + 1 then element in the (m + i, j)
position of the first determinant is

bj−iT
m+i−j

while in the second matrix it is

bj−iT
m+i−jTn+1−i = bj−iT

n+m+1−j .

Notice that all nonzero entries of the jth column of the second matrix have a
Tn+m+1−j term. It follows that we could have gotten the second determinant
starting with the matrix to compute RF,G and multiplying the first column by
Tn+m, the second by T n+m−1,. . . ,the last by T . Since multiplying a column
of a matrix by λ multiplies the determinant by λ. This shows that the second
determinant is equal to

T
� n+m

j=1
jRF,G.
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Thus
T

� n+m
j=1

jRF,G = T (
� n

i=1
i+

� m
j=1

j)RF,G(TX, TY )

and
RF,G(TX, TY ) = T (

� n+m
j=1

j−
�

n
i=1 i−

�
m
k=1 k)RF,G.

But
s
∑

i=1

i =
s(s+ 1)

2
.

Thus

n+m
∑

j=1

j −
n
∑

i=1

i−
m
∑

j=1

j =
(n+m)2 + (n+m)− n2 − n−m2 −m

2
= nm

and
RF,G(TX, TY ) = TnmRF,G

as desired.

Proof of Bézout’s Theorem

We now state and prove the projective version of Proposition 5.1

Proposition 5.5 Suppose F,G ∈ K[X,Y, Z] are nonconstant homogeneous
polynomials with deg F = n and deg G = m such that F (0, 0, 1) 6= 0, G(0, 0, 1) 6=
0, and F and G have no common nonconstant factors. Then there are at most
mn lines in P2(K) through [0, 0, 1] containing a point of VP(F ) ∩ VP(G).

Proof Since F and G have no common factor, by Theorem 5.4, RF,G is a
homogeneous polynomial of degree mn.

In general, projective lines have equations aX + bY + cZ = 0, but lines
through [0, 0, 1] have equations aX + bY = 0.

Claim Let L be the line aX + bY = 0. Then VP(F ) ∩ VP(G) ∩ L 6= ∅ if and
only if RF,G(b,−a) = 0.

If [x, y, z] are homogeneous coordinates for a point on L where x 6= 0, then
y = −a

b
x and

F (x, y, z) = 0⇔ F (x,
−a
b
x, z) = 0⇔ F (b,−a, bz

x
) = 0.

It follows that VP(F ) ∩ VP(G) ∩ L 6= ∅ if and only if there is a w such that

F (b,−a, w) = G(b,−a, w) = 0.

Let f(X) = F (b,−a,X) and g(X) = G(b,−a,X). By Theorem 1.22, f and g
have a common zero if and only if Rf,g = 0. But, as in the proof of Study’s
Lemma,

Rf,g = RF,G(b,−a).
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Thus VP(F ) ∩ VP(G) ∩ L 6= ∅ if and only if RF,G(b,−a) = 0.

Since λaX + λbY = 0 is the same line as aX + bY = 0, lines that contain
points of VP(F ) ∩ VP(G) correspond to points of P1(K) where RF,G = 0. But
RF,G = 0 has degree mn and at most mn zeros in P1(K). Thus there are at
most mn lines through [0, 0, 1] intersecting VP(F ) ∩ VP(G).

The proof of Bézout’s Theorem now follows the outline at the beginning of
the section.

Proof of Bézout’s Theorem
Suppose F,G ∈ K[X,Y, Z] are homogeneous of degree n and m respectively

with no common factor. By making a projective transformation we may assume
that F (0, 0, 1) 6= 0 and G(0, 0, 1) 6= 0. Suppose L is a line through [0, 0, 1]. If
L ∩ VP(F ) is infinite, then by Theorem 3.16, L ⊆ VP(F ). By the projective
version of Study’s Lemma, if H = 0 is the homogeneous linear equation for L,
then H divides F . Thus if VP(F ) ∩ VP(G) ∩ L is infinite, then H divides F and
G, a contradiction. Thus L ∩ VP(F ) ∩ VP(G) is finite. Since only finitely many
lines through [0, 0, 1] intersect VP(F ) ∩ VP(G), VP(F ) ∩ VP(G) is finite.

Let C1, . . . , CN be all lines containing two or more points of VP(F )∩ VP(G).
By making a second projective transformation, we may, in addition, assume
that [0, 0, 1] 6∈ Ci for i = 1, . . . , N . Thus if L1, . . . , Ls are the lines through
[0, 0, 1] intersecting VP(F ) ∩ VP(G), then |L ∩ VP(F ) ∩ VP(G)| = 1. Thus

|VP(F ) ∩ VP(G)| = s ≤ mn.

It remains to show how to define the intersection multiplicities. Assume,
via projective transformations, that we are in the setting where F (0, 0, 1) 6= 0,
G(0, 0, 1) 6= 0 and no line through [0, 0, 1] contains more than one point of
VP(F ) ∩ VP(G). There is a one-to-one correspondence between:

i) points of VP(F ) ∩ VP(G);
ii) lines through [0, 0, 1] intersecting VP(F ) ∩ VP(G);
iii) zeros of RF,G in P1(K).
Indeed if p = [a, b, c] ∈ VP(F )∩VP(G), then RF,G(a, b) = 0 and c is the unique

z such that [a, b, z] ∈ VP(F ) ∩ VP(G). We let mp(F,G) be the multiplicity of
[a, b] as a zero of RF,G. By the remarks after the proof of Theorem 3.16, we see
that

∑

p∈VP(F )∩VP(G)

mp(F,G) = mn

as desired.

Suppose C = VP(F ) is a projective curve. We can factor F = Fm1

1 · · ·Fmk

k

where F1, . . . , Fk are relatively prime irreducible polynomials. Note that

C = V (F1 · · ·Fk).

We say that F is a minimal polynomial for C if F = VP(C) and F has no
multiple irreducible factors. The previous paragraph shows that every curve has
a minimal polynomial.
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Exercise 5.6 Suppose F and G are minimal polynomials for a projective curve
C. Prove that F = aG for some a ∈ K.

Definition 5.7 If C is a projective curve, the degree of C is the degree of a
minimal polynomial for C.

Corollary 5.8 If C and D are projective curves with no common component,
then |C ∩D| ≤ deg C · deg D.

Three Example

Example 1 Let F (X,Y, Z) = Z3 −XY 2 and G(X,Y, Z) = Z3 +XY 2. Using
the MAPLE command

resultant(F,G,Z);

We find that
RF,G = 8X3Y 6.

Suppose [x, y, z] ∈ VP(F ) ∩ VP(G) then x = 0 or y = 0. If x = 0, then z = 0.
While if y = 0, z = 0. Thus [0, 1, 0] and [1, 0, 0] are the unique points of
intersection. We have

m[0,1,0](F,G) = 3 and m[1,0,0](F,G) = 6.

What does this mean in A2(C). Let f(X,Y ) = F (X,Y, 1) = 1 −XY 2 and
g(X,Y ) = G(X,Y, 1) = 1 + XY 2. The affine curves V (f) and V (g) have no
points of intersection. But there are two points of intersection “at infinity”.

Example 2 Let F (X,Y, Z) = X2 − 2XZ − Y Z + Z2 and G(X,Y, Z) = X2 −
4XZ − Y Z + 4Z2. In this case the resultant is

RF,G = −X3(6Y −X).

Since RF,G(0, 1) = 0, there must be a point of intersection with homongeneous
coordinates [0, 1, z]. But then −z+z2 = 0 and −z+4z2 = 0. Thus z = 0. Thus
[0, 1, 0] is the unique point of intersection on the line X = 9 and this point has
multiplicity 3.

We also need to look for a point of intersection on the line X = 6Y . We
look for a point with homogeneous coordinates [6, 1, z]. Then

0 = 36− 12z − z + z2 = (z − 9)(z − 4)

and
0 = 36− 24z − z + 4z2 = (4z − 9)(z − 4).

Thus z = 4 and [6, 1, 4] is the point of intersection. This point has multiplicity
1.

Let’s look at what this means in A2(C). Let f(X,Y ) = F (X,Y, 1) =
X2 − 2X − Y + 1 and g(X,Y ) = G(X,Y, 1) = X2 − 4X − Y + 4. Then
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these two parabolas have a unique point of interesection in A2(K). Since
(6, 1, 4) ∼ ( 3

2 ,
1
4 , 1). The point of intersection is ( 3

2 ,
1
4 ). There is an additional

point of intersection “at infinity”.

We still must address the question of what the intersection multiplicity
means. The next example begins to shed some light.

Example 3 Consider the affine curves Y = X2 + 1 and Y = 1. We investigate
their intersection by first homogenizing them to

F (X,Y, Z) = X2 − Y Z + Z2 and G(X,Y, Z) = Y − Z.

Then RF,G = X2. If x = 0 and y = 1, then z = 1. Thus [0, 1, 1] is the unique
point of intersection and it has multiplicity 2.

Considering the affine equations this is not surprising since the paraboloa
Y = X2 +1 and the line Y = 1 intersect at (0,1) and the line is tangent at this
point.

Suppose we change the previous problem by taking the line Y = a for any
a 6= 1. Then

F (X,Y, Z) = X2 − Y Z + Z2 and G(X,Y, Z) = Y − aZ.

Then
RF,G = aX2 − (a− 1)Y 2

If a 6= 0 and α2 = a−1
a

, then

RF,G = a(X − αY )(X + αY ).

Since Y = aZ, there are two distinct solutions [α, a, 1] and [−α, a, 1].
Thus is we move the line Y = 1 to the line Y = 1 ± ε for small ε > 0, we

get two points of intersection. This is the right intuition. If two curves point of
intersection of multiplicity > 1 and we perturbe the curves slightly, than we get
p distinct points of intesection.
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