
Factorization in Polynomial Rings

These notes are a summary of some of the important points on divisibility
in polynomial rings from §17 and 18 of Gallian’s Contemporary Abstract
Algebra.

Most of the important results about the structure of F [X] follow in one
way oranother from one key fact.

Theorem 1 (Division Algorithm) If F is a field, f, g ∈ F [X] and f 6= 0,
there are q, r ∈ F [X] such that g = qf + r and either r = 0 or degr < degf.

PIDs

Definition 2 A principal ideal domain (PID) is an integral domain D in
which every ideal has the form 〈a〉 = {ra : r ∈ D} for some a ∈ D.

For example, Z is a PID, since every ideal is of the form nZ.

Theorem 3 If F is a field, then F [X] is a PID.

Proof We know that F [X] is an integral domain. Let I be an ideal. If
I = {0}, then I = 〈0〉.

Suppose I 6= {0}. Let g ∈ I be a nonzero polynomial of minimal degree.
We claim that I = 〈g〉. Suppose f ∈ I. By the division algorithm, there
are nonzero polynomials q and r such that f = qg + r and either r = 0 or
deg(r) < degg. Since f, g ∈ I, r = f − qg ∈ I. Since g is of minimal degree
in I, we must have r = 0. Thus f = qg ∈ 〈g〉.

If I 6= {0} and f ∈ I is of minimal degree, then f is a minimal polynomial
of I and I = 〈f〉.
Definition 4 Let D be an integral domain. If a ∈ D is nonzero and not a
unit, we say that a is irreducible if whenever b, c ∈ D and a = bc then b is a
unit or c is a unit.

1



Otherwise we say that a is reducible.

For example, in Z, n is irreducible if and only if n is prime.
Suppose F is a field and f ∈ F [X]. If f has degree 1, then f is irreducible.

If f has degree 2 or 3, then f is irreducible if f has no zero in F . [If f = gh
where neither g nor h is a unit, then one of g or h has degree 1 and has a
root.]

Here are some examples
X2 − 2 is irreducible in Q[X] but reducible in R[X] since X2 − 2 =

(X −
√
2)(X +

√
2).

X2 + 1 is irreducible in R[X], but reducible in C[X] since X2 + 1 =
(X + i)(X − i).

2X + 2 is irreducible in R[X], but reducible in Z[X] since (2X + 2) =
2(X + 2) and 2 is a unit in R, but a nonunit in Z. This example shows we
have to be more careful in D[X] when D is not a field.

We recall some basic definitions from §14.
Definition 5 Let R be a commutative ring and let I 6= R be an ideal of R.

I is a prime ideal if whenever a, b ∈ R and ab ∈ I, then a ∈ I or b ∈ I.
I is a maximal ideal if whenever J is an ideal and I ⊆ J ⊆ R, then J = I

or J = R.

If R is a commutative ring with unity, then every maximal ideal is prime,
but prime ideals need not be maximal. For example, in R[X, Y ]. The ideal
〈X〉 is prime (since R[X, Y ]/〈X〉 ∼= R[Y ] an integral domain), but not max-
imal since 〈X〉 ⊂ 〈X, Y 〉 ⊂ R[X, Y ].

We remind you of one key fact about prime and maximal ideals.

Theorem 6 If R is a commutative ring with unity and I is an ideal then:
i) I is prime if and only if R/I is an integral domain;
ii) I is maximal if and only if R/I is a field.

Proposition 7 If D is an integral domain, and 〈a〉 is prime, then a is ir-
redcuible.

Proof Suppose a = bc. We must show that either b or c is a unit. Since
bc ∈ 〈a〉 and 〈a〉 is a prime ideal, either b ∈ 〈a〉 or c ∈ 〈a〉. Suppose b ∈ 〈a〉.
Then b = ad for some d ∈ D. Thus a = bc = adc. Since D is an integral
domain, 1 = dc. Thus c is a unit. A similar argument shows that if c ∈ 〈a〉,
then b is a unit. Thus a is irreducible.
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The converse is true in F [X] for F a field. Indeed, if 〈a〉 is irreducible,
then 〈a〉 is maximal. The proof works just as well for all PIDs.

Theorem 8 Let D be a PID and a ∈ D. The following are equivalent:
i) a is irreducible;
ii) 〈a〉 is maximal;
iii) 〈a〉 is prime.

Proof
ii)⇒ iii) In any commuative ring with unity, every maximal ideal is prime.

iii) ⇒ i) This is Proposition 7

i) ⇒ ii) Suppose a is irreducible. Since a is not a unit 〈a〉 6= D. Let J be
an ideal such that 〈a〉 ⊆ J ⊆ D. We must show that J = I or J = D.

Since D is a PID, there is b ∈ D such that J = 〈b〉. Since 〈a〉 ⊆ J , a = bc
for some c ∈ D. Since a is irreducible, either b or c is a unit.

case 1: b is a unit.
Then b has an inverse b−1 ∈ D. If d ∈ D, then d = db−1b ∈ J . Thus

J = D.

case 2: c is a unit.
Since a = bc, b = c−1a ∈ 〈a〉. Since b ∈ 〈a〉, J = 〈a〉.

Corollary 9 If F is a field and p ∈ F [X] is irreducible, then F [X]/〈p〉 is a
field.

Proof Since p is irreducible, 〈p〉 is maximal and F [X]/〈p > is a field.

UFDs

Suppose F is a field and f ∈ F [X] is reducible. Then we can factor f = gh
where f and g both have lower degree. If either g or h is reducible, then we
can factor again.

For example if f = 2X4 − 7X3 + 8X2 − 3X we see that

f = X(2X3 − 7X2 + 8X − 3)

= X(X − 1)(2X2 − 5X + 3)

= X(X − 1)(X − 1)(2X − 3)
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Proposition 10 If F is a field and f ∈ F [X] is nonzero and not a unit,
then for some n there are irreducible polynomials g1, . . . , gn ∈ F [X] such that
f = g1g2 · · ·gn.

This is similar to the fact that in the natural numbers N we can factor
every element as a product of primes. In N the prime factorization is unique.
Is this true in F [X]? Not quite. For example

(X2 − 1) = (X − 1)(X + 1) =

(

X

2
− 1

2

)

(2X + 2).

Of course even in Z we have

6 = 2(3) = (−2)(−3).
Indeed if we have one irreducible factorization, then by multiplying by suit-
able units we can always get another.

The next definition gives us the right way to state uniqueness of factor-
ization.

Definition 11 If D is a domain, we say that a and b are associates if there
is a unit u ∈ D such that a = ub.

Note that if u is a unit and a = ub, then b = u−1a. Thus “being asso-
ciates” is a symmetric relation.

Definition 12 If D is a domain, we say that D is a Unique Factorization
Domain (or UFD) if:

i) if f ∈ D is nonzero and not a unit, then there are irreducible elements
g1, . . . , gn ∈ D such that f = g1g2 · · · gn, and

ii) if p1, . . . , pn, q1, . . . , qm ∈ D are irreducible, and p1 · · · pn = q1 · · · qm,
then n = m and there is σ ∈ Sn such that pi is an associate of qσ(i) for
i = 1, . . . , n.

In other words if f = p1 · · ·pn = q1 · · · qm are two factorizations of f into
irreducible factors, then n = m and we can renumber the q’s so that pi and
qi are associates for all i.

Suppose F is a field and

f = p1 · · · pn = q1 · · · qm
are irreducible factorizations of f in F [X]. Since p1 is irreducible, 〈p1〉 is a
prime ideal.

We need one easy lemma.
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Lemma 13 If D is an integral domain, I ⊂ D is a prime ideal, a1, . . . , an ∈
D and a1a2 · · ·an ∈ I, then some ai ∈ I.

Proof We prove this by induction. If n = 2 this is the definition of a prime
ideal. If n > 2 and a1(a2 · · ·an) ∈ I, then either a1 ∈ I and we are done, or
(a2 · · ·an) ∈ I. In the later case, by induction aj ∈ I for some j = 2, . . . , n.

Since q1 · · · qm = p1(p2 · · · pn), there is an i such that qi ∈ 〈p1〉. Thus
qi = up1 for some i, since qi is irreducible, u must be a unit.

Thus
p1 · · · pn = q1 · · · qm = q1 · · · qi−1(up1)qi+1 · · · qm.

Since D is an integral domain,

p2 · · ·pn = uq1 · · · qi−1qi+1 · · · qm.

We have gotten rid of one irreducible from each side, but at the cost of
introducing a unit. This leads us to the following lemma which gives the
right induction.

Lemma 14 Suppose F is a field, p1, . . . , pn, q1, . . . , qm ∈ F [X] are irre-
ducible, u is a unit, and p1 · · · pn = uq1 · · · qm. Then n = m and we can
renumber the q’s so that pi and qi are associates for all i.

Proof We prove this by induction on n.
Suppose n = 1. Then p, q1, . . . , qm are irreducible, u is a unit and p =

uq1 · · · qm. Since uq1 . . . qm ∈ 〈p〉 and 〈p〉 is a prime ideal, there is qi such
that qi ∈ 〈p〉. Then there is w ∈ 〈p〉 such that qi = wp. Since qi is irreducible
and p is not a unit, w is a unit. Thus

p = uq1 · · · qi−1(wp)qi+1 · · · qm

and, since F [X] is an integral domain.

1 = uwq1 · · · qi−1qi+1 · · · qm.

Since no qi is a unit, we must have m = 1 and p = uq1. Thus p and q are
associates.

Suppose n > 1. The begining of the argument is similar. Since uq1 · · · qm ∈
〈p1〉, there is a unit w and a qi such that qi = wp1. Then

p1 · · ·pn = uq1 · · · qi−1(wp)qi+1 · · · qm
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and, since F [X] is an integral domain.

p2 · · · pn = uwq1 · · · qi−1qi+1 · · · qm.

By induction, n− 1 = m− 1 and we can renumber the q’s as so that pi and
qi are associates.

Putting together Lemma 10 Lemma 14 we prove that polynomial rings
are UFDs.

Theorem 15 If F is a field, then F [X] is a unique factorization domain.

Two Important Theorems

We won’t give the proofs of these results in this course, but here are two very
important theorems about PIDs and UFDs that you should know. The first
is a generalization of Theorem 15. It says that every PID is a UFD.

Theorem 16 If D is a principle ideal domain, then D is a unique factor-
ization domain.

Theorem 17 If D is a unique factorization domain, then the polynomial
ring D[X] is also a unique factorization domain.

Suppose D is a domain. We claim that D[X, Y ] = D[X][Y ]. Suppose

f(X, Y ) =

n
∑

i=0

m
∑

j=0

ai,jX
iY j ∈ D[X, Y ].

For j = 0, . . . , m let gj(X) ∈ D[X] be the polynomial

gj(X) =

n
∑

i=0

ai,jX
i.

Then

f(X, Y ) =

m
∑

j=1

gj(X)Y j ∈ D[X][Y ].

Similarly if f ∈ D[X][Y ], by multiplying out we get a polynomial in D[X, Y ].
Similarly we can identify D[X1, . . . , Xn] = D[X1] . . . [Xn]. This allows us

to inductively apply Theorem 17.
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Corollary 18 i) The polynomial ring Z[X1, . . . , Xn] is a unique factoriza-
tion domain.

ii) If F is a field, then the polynomial ring F [X1, . . . , Xn] is a unique
factorization domain.

Proof Since Z and F [X1] are unique factorization domains, Theorem 17
and induction tell us that Z[X1, . . . , Xn] and F [X1, . . . , Xn].
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