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An extension of the calculus of indications (of G. Spencer Brown) is presented to encompass all occurrences of
self-referential situations, This is done through the introduction of a third state in the form of indication, a state
seen lo arise autonomously by self-indication. The new extended calculus is fully developed, and some of its
consequences [or systems, logic and epistemology are discussed.

INDEX TERMS Self-reference, self-refcrential systems, calculus of indications, paradoxes, autonomy.

“Was wir liefern, sind eigentlich Bemerkungen zur Natur,
sondern Fetstellungen von Fakten, an denen nicmand
weil sie sich stindig vor unsern Augen herumtreiben.”

geschichte des Menshen: aber keine kuriose Beitrige,
gezweifelt hat, und die dem Bemerktwerden nur enlgehen,

(What we are supplying are really remarks on the natural history of man: not curiosities, however, but rather
observations on facts which no one has doubted and which have only gone unremarked because they are always

before our eyes.)

ONE: THE DOMAIN

1. Presence.

Self-reference is awkward: one may find the
axioms in the explanation, the brain writing its
own theory, a cell computing its own computer,
the observer in the observed, the snake eating its
own tail in a ceuseless generative process.

Stubbornly, these occurrences appear as out-
standing in our experience. Particularly obvious is
the case of living systems, where the self-producing
nature of their entire dynamic is easy to observe,
and it is this very fuct that can be taken as a
characterization for the organization of living
systems.'*? Similarly, the physiological and cog-
nitive organization of a self-conscious system may
be understood as uarising from a circular and
recursive ncuronal network. containing its own
description as a source of further descriptions.?+*+3
We have mentioned some of the few reports which
address themselves directly to the self-referential
nature of such systems, normally avoided as
undesirable difticulty (or circulus vitiotus).

The difticulties in dealing with self-referential
systems arc rooted in language. Antinomies are
to be expected when the self-referential capacity

Wiugenstein.

of language is used upon itself, as known for long
in the capsular form of the epiminidean paradox, -
later to become, in mathematical language,
Cantor’s diagonal argument.® This singularity of
self-referential antinomies, where a proposition is
equivalent to its own negation, has been used for
the establishment of internal limitations on cerrain
formalisms.”-8

2. Mechanism.

Whether in dealing with the organization of
systems or with the structure of languages, hard-
ships with self-referential situations have the same
root: the distinction between actor or operand, and
that which is acted or operated upon, collapses.
There seems to be an irreducible duality between the
act of expression and the content to which this
act addresses itself; self-referential occurrences
blend these two immiscible components of our
cognitive behavior and engender a dual nature
which, apparently, succeeds in escaping this
universal behavior and thus seems peculiar in our
knowledge. Their peculiarity lies in being self-
indicative in a given domain, in standing out of a
background by their own means, in being aurono-
mous as the strict meaning of the word enounces.
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3. Anfecedents.

It is ordinarily assumed that self-reference leads
inevitably to contradictions even in ordinary
discourse, let alone in formal languages, and
hence, as said, is carefully avoided. Yet, true as
this may be, language is self-referential, and, if
we are not prepared to avail ourselves fully of
self-referential notions, it is not possible to deal
either with this aspect of discourse or with the
many systems where self-reference is a central
feature of their organization.

Moreover, consistent analysis of several classes of
systems has been done with such concepts.’ 234
And in the mathematical domain it is too often
forgotten that even classic works, such as Gédel’s,®
are based on the non-contradictory use of self-
reference. More recently, Giinther'® and Lafgren’!
have addressed the problem more directly from
the logical and set-theoretic point of view, and
firmly prove that, although not without conse-
quence, self-reference need not lead into contra-
dictions.

1 believe, however, that these antecedents are
not enough to do justice to the central and re-
current nature of self-reference. We have no
unified way of dealing with it in several domains,
from biological to mathematical.

4. The Calculus of Indications.

I also believe that new possibilities opened, in this
and other domains, after the formulation of the
calculus of indications by G. Spencer Brown.'?
By succeeding in going deeper than truth, to
indication and the laws of its form, he has pro-
vided an account of the common ground in which
both logic and the structure of any umiverse are
cradled, thus providing a foundation for a genuine
theory of general systems.

By pointing out the need to rehabilitate what he
calls Boolean equations of higher degree, he has
also indicated a way of constructing a unified
formalism for self-reference. In higher degrees,
an expression is allowed to re-enier its own
indicative space, and thus allowed to be self-
indicative or self-informed. Self-reference, in this
calculus, can be identified with the notion of

- -re-entry, and in this way its basic form is recovered
at this deep level, from which all its manifestations
can be contemplated, whether in logic and formal
language, or in the organization of certain systems.

By this revealing shift in perspective, the whole
problem of self-reference is seen in a much more

tractable light, as I hope to show here. It follows
that hereinafter extensive use of the calculus of
indications will be made and I shall assume the
reader to be familiar with it. For those readers
not yet acquainted with this calculus, Spencer
Brown’s book is irreplaceable; however, the
Appendix contains an index of results.

5. The Calculus and Higher Degree.

It would be of interest in itself to explore further
the description of self-referential notions with the
tools of higher degree equations. Yet, as Spencer
Brown says, he has only indicated a direction for
work, and not provided a firmly constructed
theory of re-entering expressions'? (page xv). In
fact, with a closer look, the departure from the

calculus of indications proper, into re-entering

forms, is not without its difficulties which render
the treatment of higher degree equations, as it
now stands, in need of revision. Spencer Brown
claims that “it is evident that (the two algebraic
initials) hold for all equations whatever their
degree”!? (page 57). However, let us consider the
simple second degree equation

f=7l, (1)

in relation to the first algebraic initial, J1,

pl A= I
which we may choose to write as
Pl p="1
and hence, if Spencer Brown is right, we have
q1=71f 11
= fr . (1)
=f CI C3t

But this is clearly untrue, since replacing in (1) we
obtain

=T

contrary to J1 itself.
Thus by allowing re-entry we lose connection
not only with the arithmetic, as Spencer Brown saw,

+ Any labeling preceded by CI indicates a correspanding
result of the calculus of indications, which can be located in
the Appendix.
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but also with the algebra which cannot be used
freely without running into contradictions. Spencer
Brown himself hinted somewhat at this, by noting
that certain transformations must be avoided if
the memory properties of second degree equations
are to be preserved'? (page 62). The trouble runs
deeper than these partial restrictions. The imaginary
value, required to interpret re-entering expressions,
is not rooted enough in the calculus, and, as we

have seen above, is unable to come to grips with -

the pending antinomies in a formal sense.

6. [Intention.

Since, for our purpose, we would like to keep both
the calculus of indications and the presence in it of
higher degree equations, rather than drop either of
them, it seems worth an attempt to reconcile them
both in a context different from the one originally
envisioned by Spencer Brown. The new or third
value introduced by re-entry as an imaginary
state in the form, may be taken as a value in an
extended arithmetic to arrive at a calculus capable
of containing re-entering expressions.

This defines the principal intention of this work:
to construct an extended calculus of indications
fully compatible with equations of higher degree,
and thus capable of handling self-referential
forms at a deep enough level. The starting point is
viewing the basic form of self-reference as belonging
intrinsically to the arithmetical domain, that is, to
take its self-indicatory or autonomous value as a
state in the form. To be sure, there are many
implications to confront by taking autonomy at
face value: implications of departing from the
primary arithmetic and enlarging its domain.
These 1 propose .to explore in the following
calculus.

TwWO: THE CALCULUS

1. Context.

Let the calculus of indications, and the context
from which it is seen to arise, be valid, except for
the modifications introduced hereinafter.

2. Definition (Third State).

Let there be a third state, distinguishable in the
form, distinct from the marked and unmarked
states. Let this state arise autonomously, that is,

by self-indication.-Call this third state appearing in
a distinction, the autonomous state.

3. Notation.

Let the autonomous state be marked with the mark
1. and let this mark be taken for the operation of
an autonomous state, and be itself called self-cross
to indicate its dperation.

4. Definition (Arrangement).

Call the form of a number of tokens 71, , O.
considered with respect to one another an arrange-
ment. Call any arrangement intended as an indicator
an expression. Call a state indicated by an expres-
sion the value of the expression.

5. Noration.

Let r stand for any one of the marks of the states
distinguished or self-distinguished: ~], , . Call
v a marker.

6. Definition (Simple expressions).

Note that the arrangements 1, ,{1 are, by defini-

tion, expressions. Call a marker a simple expression.
Let there be no other simple expressions.

ARITHMETIC

7. Initials.

Let the following initials be valid, and be used to
determine a calculus out of them. Call this calculus
the Extended Calculus of Indications.

Initial 1: Dominance

o= "] I1
Initial 2: Order

= oI2
Initial 3: Constancy

Dl= 13
Initial 4: Numb_er

Dd=0 | 14
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8.  Theorem 1 (CITI).

. The value indicated by an expression consisting of
a finite number of crosses and self-crosses can be
taken to be the value of a simple expression, that
is, any expression can be simplified to a simple
expression. .

Proof:

Let x be any expression, and let s be its indicative
space. Being finite, @ must have a reachable space
which is the deepest in it. Call it s, s, is either
(1.1) contained in a cross, or (1.2) not contained in
a Cross.

1.2) If 4 is not contained in a cross, then s, either
contains a finite number of self-crosses or it
does not. In either case- it is already simple,
since the self-crosses can be condensed by I4.

1.1) If 5, is in a cross ¢y, then ¢, is either empty or
contains a finite number of self-crosses, other-
wise s, would not be deepest.

Now, ¢, either stands alone in s (2.1), or (2.2)
does not stand alone in 5.

2.1) If ¢, stands alone in s, then « is already
simple, since it is either a cross or a self-
cross, according to 13, 14.

2.2) If ¢, does not stand alone in s, the ¢; must
stand either (2.2.1) in a space together with a
marker (otherwise s, would not be deepest)
or (2.2.2) alone in the space under another
Cross. :

In either case the initials apply and two
markers are eliminated from «, and the
expression reduced in one depth.

There will be a time when « has been simplified to

a marker.

9. Theorem 2 (CI T2). -

If any space pervades an empty CTOSS, the value
indicated by the space is the marked state.

Proof:
Let  be any expression consisting of a part p and

4 Cross.
We must show

p =71
By the first theorem, p simplifies to a simple
expression v.

Thus, in any case, after simplification we can
write '

pl=r"]

which, according to 11,

1=
This completes the proof.

10. Rule of Dominance (CI Canon 6).

Let m stand for any number, larger than zero, of
expressions indicating the marked state. Let a
stand, similarly, for any number of expressions
indicating the autonomous state. Let n stand for
any number of expressions indicating the un-
marked state.

We have

mm=m= "] Il
aa=a= ] 14
nn=n=

also by Il ‘
mn=m
ma=m

and
na=a

Call m a dominant value, a a mixed value, n a
recessive value. Then we obtain the following
rule:

If an expression « in a space s shows a dominant
value in s, then the value of « is the marked state.
Otherwise the value of a either shows a mixed
value in s, and then the value of « is the autono-
mous state, or it does not, and then the value of «
is the unmarked state.

Also
w o=n
WI-=m
but
al =g

11. Theorem 3 (CI T3)

The simplification of an expression is unique.
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Proof:

Let & be any expression in a space s. Find the
deepest space s,. By hypothesis the crosses covering
&, are either empty or contain a self-cross (perhaps
after condensation via [4), and they are the
contents of s,_, together, perhaps. with self-
crosses. Mark #r outside of each empty cross in
$4—1, mark un a outside u cross covering a self-
cross, and an a next 1o every self-cross in s5,.,. We
know that

Rl S |

d-0e=00=0

O—-gle=0l0=00=a=al

Thus no value in s;_; is changed.

Consider next the markers in s,.,. Mark every
self-cross with an a. Any cross in s;_, either is
empty or covers some marker, alrendy marked with
moor a. I it is empty, mark it with m. If it covers a
mark m,mark it with «; if it covers no m but an g,
mark it with 4. We know

n=

a2 —aae=30310 =d=0l=d

so that no value in s,_, is changed.

Continue the procedure 1o subsequent spaces up
to 5, = 5. By the procedure each marker is uniquely
marked with n1, n, or a. Therefore by the Rule a

unique value of x is determined. But the procedure |,

leaves x unchanged, and the rules of the procedure
are taken from the initials. Therefore, the value of
o uniquely determined by the procedure is the same
as the value determined by simplification. Thus the
simplification of an expression is unique,

12. Corollary (CI T4).

The value of an expression constructed by taking
steps from a given simple expression is distinct
from the value of an expression constructed from
a different simple expression.

Proaof:

Every step in the construction is reversible by
simplification, But the simplification is unique
according to the preceding theorem. Thus the
corollary follows.

13. Commentary (Consistency).

The preceding results show thut the three values
of the calculus are not confused, that is, the calculus
is consistent. Indeed its consistency is seen, by the
form of the proofs, to follow closely that of the
calculus of indications. By this consistency the
following rules are seen to be evident consequences
(CI'T5, T6, T7).

14, Rules of Consistency.

Rules of Identity: In every case of an expression
pP.p=p.
Rules of Value: In every case where p, g, express
the same value, p = gq.

Rules of Consequence: Expressions equivalent to
an identical expression are
equivalent to one another.

15. Theorem 3 (Cl C4).

Let p, g be of any expressions. Then in any case
Pl 4alp=p

Proof:
Let p = 71. Then

Fd p="10 q

substitution (S)

=] theorem 2(T2)
=p. S
Letp = . Then
71 gl p="4ql 5
=T T2
= 12
= p. S

Let p = 1. Then

7l ql p=10| ¢/ O S
=dql0. 13
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Takeg = 71, Let p = . Then
dqlO0 =070 S palp=000 S
e S - I3, I
takeg = , = | , 14
pO=0041 S
dgl0=1al0o S .
= . 14
=d 13, 14 There is no other case of p. Thus the theorem
=p; : S follows,
take g = 1, 17. Theorem 5 (C1 T9).
Let p, g, r, be any expressions. Then in any case
dela =000 S -
- £ 14, 13, 14 7l anl =l
Proof:
=p. S
Let r = 7]. Then
There is no other case of g. There is no other case
of p. Thus the theorem follows.
prgnl =714 1 S
16. Theorem 4. .
; , =37 T2
Let p be any expression. Then in every case
=", 12
pdip=pd and '
Proof:
4 Aalr=7al1 s
Let p = 71. Then '
= . T2
}T—_—ﬂl,:—m—l o Letr = .Then
= L 7 qnl =7 4l s
p0d =70 5 . and
= el Aqlr=A@. S
Letp = .Then
Let r = (. Then
pdlp=0 S

A0 =i s | Falr=7al O s




thus we must show

PO gdl =W A O

Take p = ¢ = 7]:in this case

poll el =1l 14l
=3
=%

Aalo="10

=0
=,
Takep =g = :in this case

7ol gl =alal
=gdal
=d

mﬂm=1ﬂa

=ﬁ|-;_“|

Take p'= 71,4 = ;in this case

palgoll = a0l
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T2

12

I3

14

13

#2]

11,13

12,13

Aalo =Tlo s
=1 I2

Take p = 71,4 = ; in this case

pllaall=Taool S

=3 Ol 11, 14

=, . 12, I3
7 ala = T alo S

= . 12, 13, 14
Take p = , g = {; in this case
palqnll=010 all S

=, 14, 13
a0 = 1alo s

= 0. 12,13, 4

There is no other distinct way of substituting
p, q. There is no other case of r. Therefore the
theorem follows.

ALGEBRA

18. Initials.

Let the results of the three preceding theorems be
taken as initials to determine a new calculus. Call
this calculus the Extended Algebra.

Initial 1: Occultation

Aaler=p Al

Initial 2: Transposition

FAGrl =7 qlr A2
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Initial 3: Autonomy

radlp=p0

19, Proposition 1 (CI Cl1).

p =7l
Demonstration:
We first note that by Al

7l p =P,
and
A -
Now,
p=r7plr
=71 e
=77 7l
=7 pl7 p
=71 71l
— ﬁll -
20. Proposition 2 (€1 C5).
pp=p
Demonsiration:

We first find by Pl

Al=

Now,

p=Tlr

=pp.

A3

Pl

Al

Al

A2

A2

Al

Al

P2

Al

Pl

F. J. VARELA G.

21. Proposition 3 (C1 C3). -

pP-l="]
Demonstration:
=7

= p ‘]‘
22. Proposition 4 (CI C7).

Pl d A =7A7 A

Demonstration:

7 =7 7l

=714 1]

=A@ 7
23. Proposition 5 (CI C8).

2 gn sal=7a 77 7l

Demonstration:

77 5 = 71 7 oAl
=ﬁ|ﬁrﬂ_

=74 3 A7l

24. Proposition 6.

O=7 sl0
Demonstration:

We first note that by A3

al = 0.

P3

Al

Pl

P6
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Now.
: =FAAal @ raRgd A2
71 pla =7 Allo Pl
= pdl 2101 A2 =7l 7|||Cl—||?ﬂ f[[ﬁl’ﬂ ral‘ Pl, A3, P2
»—-p—DlplpD]Cl” A2 =7 AlA fllan rl‘
; {continued)
=palplO Pl, Al
'’ a7 Aan Al A2
= p ol A3
=, | Al =2 A Alr = ol oa all

25, Pruposition 7.

(cont.) A7 rilllg 7] r ol

7 el p3l.= pdl P7

Demaonstration:
(cont) 7 rl ] A2
ralpl Al =0 nl p P4
- -ga A a3l
= DI P Al ) .
| A3 (cont) rid7 riJ ql” P1, Al

6. Prupasition 8. -

- F o 7 allramE

rAlgna = poelal ] 7 r|oPs

Deronstration:
) (cont.) r ﬂﬂl” A2, P4, Pl

am ma Al

=AAAD Taral

= 1177 r Pl
ﬂﬂlm ’—I gl (cont.) rgl O _ A2, Al

=7 A7 Dlﬂarll A2 =4 A Ol S| P1, A2
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AR Al A2

n

pn @l AR AlD P4

=7 pl g r A= Al, PI
= P 7 0 P4
=pAlgAd . Pé6-

27. Commentary (Primary and Extended Algebra).

It is interesting to note how some of the results
valid in the primary algebra, are also valid in this
algebra. In fact, only the following are found to be
invalid

7l pl = CCLJI
abl b=Tal b Cl C2
@ bllal bl =a CI C6
EEEEEEEL

=7 ab] TX¥] - CILC9
For example, in

abl b=al b
take a = ,b=|___[,‘then

abl b=0l0 S

= [, A3, P2

and

a b="10 S

" 7 These consequences of the primary algebra have a

direct dependence on the validity of CI J1, which

is exactly the key difference, as is reflected at the
algebraic level, between the two calculi (cf. Part
Three).

The propositions proved also show, in regard to
the primary algebra, that CI C4 (A1) and CI J2 (A2)
generate a set of consequences compatible with a
three-valued Boolean arithmetic. This fact may also
be taken as an indirect proof that CI C4 and C¥ J2
cannot form a complete set of initials for the
primary algebra (as it is the case with CI C5 and
CI C6). For, if they were, then in the extended
algebra, CI C2, for example, would be demon-
strable, and thus an expression could be simplified
to more than a simple expression, contrary to T1.

28. Theorem 6 (CI T14).

For any given expression, an equivalent expression
not more than two crosses deep can be derived.

Proof:

Let o be any expression. Since a is finite, it will
have a finite number of deepest spaces. According
to P4 we can reduce the depth, so as to produce
@, = o« again with a finite number of deepest
spaces, of one depth less than a. By repeating this
procedure we finally come to anexpression 24_ -3,
of depth 2 not reducible any further by P4. Thus
the theorem follows.

29. Theorem 7 (CI T15).

From any given expression an equivalent expres-
sion can be derived so as to contain not more
than two appearances of any given variable.

Proof:

The proof is done constructively, based on the
preceding theorem.

Let o be any expression, and let p be any variable
in it. By T6, a will be of the form

a=..pa bl 7e dl b TF P ...

in which. a, b, ¢, h, x, y, ..., are expressions appro-
priate to . Now we have

«=..7 al @ bl 71 4|7 4]
h x| BV ...

(cont.) Pl A2




' CALCULUS FOR SELF-REFERENCE 15

=..7l a ﬂd]g Xt PF)s

after cai]i_ng

g=h @ bl 7 dl ...,

x= .7 7| 77 | ol g P, A2

So that any variable p in a given expression « can
be taken to appear in the form

1= 7 Pl %2p] .

This completes the proof.

30. Commentary.

If the algebra is to be of real interest with respect
to the arithmetic, it must be shown to be complete,
that .is. we must be convinced that every valid
arithmetic form must be demonstrable in the
algebra. This is shown in the next theorem.

31. Theorem 8 (C1 T17).

The extended algebra is complete,

Proof:

We must show that if « = § can be proved true
in the arithmetic, it is also algebraically demon-
strable, The proof is .done by induction on the
number of variables of the equation a« = f.

Suppose the theorem true for « = f containing
an aggrepate of less than n variables. Let now
x = f contain n variables, By the preceding
theorem. let us write x and § in their canonical
forms with respect to a variable p,

2 =% Pl 5GPl 2 ()

B= B _P_llm B3 (2)

as these identities are demonstrable since the
theorems 6 and 7 were proved without use of the
arithmetic. We now have by hypothesis

% FIIEWI 2 = Eﬂ_lsz_Fl B

Substituting values for p we find

ay] a3 = m B3 3
@] a3 = B3] Bs 4)

ay O] o, O g = B, 3l B, Ol B3 (5)

having at most n—1 variables and therefore
demonstrable. By (5),

oy O] a; Al &3 O
= B, 0| B, Cll Bs (6)

is also demonstrable by substitution. Thus
a3l = @, d| o, O] a3 O A3
= fd .| B3 (6)

= f3 0, A3
so that
o3 =F:0 )]
is demonstrable.
Now
el = o Pl&P] o (1
=7 @7 GI7 Al P8
=71 &l %] pl |ﬂ pll2; 0PI
— = Al
(cont.) Pl pay 0l A2
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=7 o 0| % a3 0p]

(cont.) fﬂ——dp_aﬂ A2
_ 7 T B dllFd g, 5
(cont) fdF] P (3). 4, (M

Bl Rl g0 a2 Pl

=7 Bl PR B P8

=§0 (2)
showing that

ed=A0 (8)

is demonstrable. Since by hypothesis « = f is true,
although perhaps not demonstrable, it is also true,
although perhaps not demonstrable, that @] = p—fﬂ =
by substitution. An exactly similar reasoning to the
preceding one about this new identity will show
that

Z0 = A0 (9)
is demonstrable.

Now,

e=a gl = Al
- Aol « ©)
= afl ] A2
= a«f] B0 (8)
=@al B A2
=gl s ©®
= f. Al

Thus a = f is demonstrable with n variables if it is
demonstrable with less than n variables. We now
prove the theorem to be true for n = 1, that is, for
expressions with no variables. By T1-T3 itis enough
to show that the initials of the arithmetic are
demonstrable. In P3 let p be any marker v,

o= "1
which is Il.
InPlletp= ,
)=
which is 12.

InA3,letp = ,

‘ =0
which is I3.

InP2letp =,
-y dd=d
which is 14,

This completes the proof.

EQUATIONS OF HIGHER DEGREE

32. Context.

Let any expression in the calculus be permitted to
re-enter its own indicative space at an odd or an
even depth.

33. Commentary (Indeterminancy).

Consider the expression

=77l | 0

where f re-enters its own space at an odd and an
even depth. In this case the value of f cannot be
obtained by fixing the values of the variables which
appear in the expression.

For example, let f = , then
=717l s, (1)
=T S
= P1
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and let nowfé i,

0 =71/ S, (1)
a1 al | S

=[] A3, P2

By allowing re-entry we have introduced a degree
of indeterminancy which we must try to classify.

34.  Definition (Degree).

Let the deepest space in which re-entry occursin an
expression determine a way to classify such expres-
sion. Call an expression with no re-entry, of first
degrec: those expressions with deepest te-entry in
the next most shallow space of second degree,
and so on.t

Thus

=/l ‘ (2)

is of second degree, while

f=1rlq (3)

is of third degree.

35, Noration.

Where re-entry takes place as part of a larger
expression it is necessary to indicate clearly the
part reinserted and where re-entry takes place. We
shall indicate this by direct connection'? (page 64).
Thus we can re-write the preceding expressions

/=] ()

r=m (2)

r=m 4] (3)

Let the notion of a marker be extended so as to
include any such non-literal parts of an expression.

T Note the dilference from the definition in Spencer
Brown'?® {page 57), where the degree is given by the number
ol re-entering expressions, not by their depth. This difTerence
will be scen to be very superficial by the next theorems.

36. First Rule of Lexicographical Consistency.

Any of the re-entries of a marker may be replaced
by writing, in the place of re-insertion, an expres-
sion equivalent to the marker.

Thus we may write

r=ay =71s1. (1)

In the case of a larger expression, for example,

g=pplL g 7

by the rule we can now write

= q[

and furthermore

7=7o 4 .

Thus we chose to view a marker as always being a
token for re-entering variables.
37. Second Rule of Lexicographical Consistency.

Consider expression (2) and take p = . Thus

r=1.

or, by the preceding rule and notation

S=0.
To escape any ambiguity in writing it is therefore
necessary to adopt the following rule:

Any variable whose value is the autonomous
state can be taken to be a second degree expres-
sion.

Thus by the rule, if p = [, then this equation is
of second degree, and by the preceding rule we
have also®

P ="
Alternatively, any self-cross represents a re-entering

expression because we may write

=g
and thence

p =7l
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In this way we may look at a self-cross alternatively
as a value in the arithmetic or as a basic form of a
higher degree equation, and thus they provide the
connection between the arithmetic and re-entering
expressions. The following theorems show this fact

clearly.

38, Theorem 9.

For a given expression of any degree an equivalent
expression can be found of degree at most 3 and
containing a number of additional variables equal
to the number of higher degree markers other than
self-crosses.

Proof:

We shall prove this theorem by induction on the
degree k of any expression «. The proof is trivial,
in view of the preceding rules, for an « of k. 3.
So let us assume the theorem to be true for any
expression of degree k— |, and consider an expres-
sion « of degree k.

It will contain a finite number of parts gi,
which re-enter at a depth k. By the first rule we
may write a variable g} equal to the marker in all
places of re-entry, and proceed to reduce the
depth of the resulting expression according to
theorem 6. Since by the hypothesis all other
expressions within gi have degree at most 3, we
obtain an expression equivalent to g which is
also of degree at most 3, since it will re-enter at
depth at most 2. Moreover, by repeating this
procedure in all of the g, we introduce exactly 7
new variables. Thus the theorem follows.

39. Commentary (Example).

To illustrate the procedure used in the proof,
consider

d=ﬂqlﬂsr

so that we can write

g;';=g3=__p| q

and

gl=g:= 880 4| 725l 3|

P = g g,p5 781G T&al sl

so that g, is of degree 3, and g, also re-enters at a
depth 2, so that « can be now written as third
degree equation with two new variables,

a=@t|

1= £283P5Tg5] 4l Tgil s| .

40. Commentary (Confusion).

An expression consisting of variables derived from
markers can be seen by this theorem to confuse
the richness that the markers convey to a point
that is impossible to follow. By approaching the

algebra with an expression of higher degree, the

structure is lost, although not its sense, which we
can keep by recursive records of what the variables
actually indicate at successive depths. Yet this same
confusion also reveals a connection between the
variety of re-entering expressions and more simple
forms in the calculus.

41. Definition (Solution).

Let o be an expression of any degree. Call a
solution of « any simple expression, when it exists,
to which « can be shown to be equivalent.

42, Commentary.

According to the . definition, any first degree
expressiori will have one and only one solution.
For higher degree we have seen that more than
one solution is possible (Cf. 31). But we have no
assurance that any such solution exists in all cases
of re-entering expressions.

43, Theorem 10.

Every expression has at least one solution in the
extended calculus.

Proof:

By theorem 9, we only need to prove the result for
expressions re-entering at a depth of at most two.
Three possible such forms exist: of second degree

J=pfl M
and of third degree,

f=>p7 4| | @
f=nflafl. 3
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Consider (1). Let p = . then
r=1l
o s
let p ="1. then

=7

.

let p =1 . then

f=70

so that it must be / = (J- Thus every expression of
second degree is equivalent to either a self-cross or

a blank. Consider (2). Let p and ¢ take all possible’

values, and let us record the value of f as entries
in the following 1able

¢ 0

: 0 I:a]
1T H e

Consider (3). and similarly let us draw a table

=

q 1 |
P '
7 EI |
Al o)
]
| | |

Thus every expression of third degree is equivalent
to at least one simple expression. This completes
the proof.

44.  Commentary (Classification of
Indeterminancy).

The preceding proof provides a way of classifying
the indeterminancies in re-entering expressions, as
proposed in 31. In fact, by inspecting the two
tables and the results on second degree equations,
we see that there is a total of six basic indeterminate
forms. Since every higher degree equation can be
reduced to some of these basic forms presented in
the proof, we conclude also that these are the only
six possible ipdeterminancies that arise in the
calculus by allowing re-entry.

THREE: THE INTERPRETATION

1. Recapitulation.

I have endeavored to present an extension of the
calculus of indications to encompass all occurrences
of self-referential situations, through the introduc-
tion of a third state in the form of indication,
seen to arise autonomously by self-indication.

The principal idea behind this work can be
stated thus: we choose to view the form of indica-
tion and the world arising from it as containing
the two obvious dual domains of indicated and
void states, and a third, not so obvious but distinct
domain, of a self-referential autonomous state
which other laws govern and which cannor be
reduced by the laws of the dual domains. If we do
nat incorporate this third domain explicitly in our
field of view, we force ourselves to find ways to
avoid it (as has been traditional) and to confront it,
when it appears, in paradoxic forms.

We have shown that a third value can be intro-
duced in a Boolean arithmetic preserving con-
sistency, and even more, providing a complete
algebra to represent every arithmetic form. When
departing from the calculus to re-entering expres-
sions, these new forms are seen to fit without
contradiction in the calculus, and thus it indeed
serves as a basis for a rigorous foundation of higher
degree equations, as_was our intention (One: 6).
In this sense, we have arrived at a satisfactory
result to what we were looking for, and it is
necessary to stop and consider several possible
interpretations to which the calculus can be
subjected.
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2. Autonomy as a Paradigm for Self-Reference.

A key to the basic form of self-reference is how
self-reference finds its way into language. As
mentioned (One: 1), antinomies appear when
language is used onto itself, that is, a proposition
equivalent to its own negation. This antinomic
form is paradigmatic of self-referential situations
not only in language®*®-%, and is in fact just the
consequence of the circular interlocking of operator
and operand in any self-referential sitnation we
choose to look at (One: 2). If, for a moment, we
interpret the calculus of indications for logic'?
(Appendix 2), and consider a cross to be the
negation of its content, we see that ‘indeed a self-
cross is equivalent to its own negation. Alter-
natively, if a variable is autonomous, then it is
necessarily equivalent to its negation (Two: 34).
Thus a self-cross embodies the basic paradigm of
self-reference. By putting autonomy as a third
value in the form we therefore render self-
referential instances as singular with respect to
indication, singular because they are unmodified by
indication (or, in logic, by negation).

3. Autonomy as the Basis for Any Self-Referential
Form. ‘

Although a self-cross represents the paradigm for
self-reference, it is the re-entry of an expression into
its own indicative space that is the way to recover
all the forms of circularity, linguistic or otherwise.
The results proven, however, show that, as is clear
to the intuition, all the variety of re-entering
expressions can be made equivalent to the basic
values of the arithmetic (Two: 40). The connection
of these expressions with the calculus hinges
critically on the autonomous value, in itself
simultaneously a state in the form and a re-entering
expression. Many such re-entering expressions can
be shown to be equivalent to a self-cross, that is,
shown to behave essentially as the basic paradigm
of self-reference; however, as seen in the proof of
Theorem 10, not all re-entering expressions take
an autonomous value, as some of them are equiva-
lent to a mark or a blank. Thus although some
re-entering . expressions may appear to be self-
referring, in fact, at a closer inspection, they are not.
The calculus shows, not only that indeed all self-
referential situations can be treated on an equal
footing as belonging essentially to one class, but
also shows a way to decide when an apparently
self-referring situation is truly such. )
When restricted to the calculus itself we can

contemplate the behavior of self-reference; when
allowed re-entry we can contemplate the unity in
the diversity of self-referring situations. By moving
farther from the arithmetic to free re-entry we per-
mit diversity to appear; by confining to the calculus
we simplify back to the basic forms and regain
uniqueness.

4, Self-Reference and Time.

When Spencer Brown introduces re-entry and
arrives at an expression equivalent to its content,

f =—j_"|, what we call a self-cross, he notes its
disconnection with his arithmetic and thus chooses
to interpret it as an imaginary state in the form
seen in time as alternation of the two states of the
form. This interpretation is, in my opinion, one
of his most outstanding contributions. He succeeds
in linking time and description in a most natural
fashion. .

However, we have seen that this interpretation
was not sufficient to hold consistently to the
equations of higher degree; we took the alternative
path of introducing a third valué. What for the
calculus of indications is contradictory with the
arithmetic, here is a constitutive part of it, and we
do not need any other interpretation of a self-cross
other than as an embodiment of self-reference or
autonomy. But we should pay attention to the
fact that the double nature of self-reference, its
blending of operand and operator, cannot be
conceived of outside of time as a process in which
two states alternate, and thus retrieving Spencer
Brown’s interpretation. True-as it is that a cell is
both the producer and the produced ‘which em-
bodies the producer, this duality can be pictured
only when we represent for ourselves a sequence of
processes of a circular nature in time. Apparently
our cognition cannot hold both ends of a closing
circle simultaneously; it must travel through the
circle ceaselessly. Therefore we find a peculiar
equivalence of self-reference and time, insofar as
self-reference cannot be conceived outside time,
and time comes in whenever self-reference is
allowed. '

It is worthwhile to note in this connection that a
re-entering expression, since it can be substituted
an indefinite number of times in itself, can engender
an infinite expression, something that we have not
explicitly (but at this light implicitly) allowed in the
calculus. An excursion to infinity is precisely the
way in which Spencer Brown introduces re-entry in
his context. We should not be surprised by the
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connection between infinity and time since the
nature of a re-entering expression is precisely that
of an infinite recursion in time of a closed system.
Thus in a cell we deal with productions of pro-
ductions of productions ...; in self-consciousness
with descriptions of descriptions of descriptions ...,
and so on. By writing an infinite expression we
only expand in a. different fashion the basic form
of self-reference.

We may interpret a self-cross, a value in the
extended arithmetic, as an alternation of the other
values in time. Conversely we. may take the states,
marked and unmarked, as timeless constituents of
a self-cross occurring as an oscillation in time.
Either point of view reattaches time directly to our
dealingnwith self-referential forms. We may note
in this connection that. by considering a self-cross
as an oscillation in time, we may also consider
other re-entering expressions as modulations of a
basic frequency. This is one of the applications
Spencer Brown finds lor higher degree expressions' 2
(puge 67). To what extent a re-entering expression
can be characterized by a certain frequency,
remains to be investigated,

5. The Exrended Caleulus and Logic.

The extended calculus can be interpreted for logic
in much the same manner as the primary calculus'?
(Appendix 2) and we need not repeat it here. In
fact the key difference between the two calculi, in
this interpretation. is the same as between a two
and o three valued logic. The adoption of a third

" value leads necessarily to the ubandonment of the
. law of excluded middle (tertium non datur), which,
in the primary calculus, takes the form of CI JI

7o =

This form is not valid in the extended. calculus,
and it can be shown to be the source of contradic-
tions when re-entering expressions are allowed in
the primary calculus (One: 3). We find a similar
but not identical form in the extended calculus in
P6 ’

7 rla=a.

There are, of course, several consequénces of
the abandonment of such a classical principle, but
these are not so serious as one might expect.
Ackerman and Fitch'2-'* have presented consistent
contradiction-free  logical systems leaving oul
tertium non datyr, and have been able ta show that

the richness of such logic is ample enough to
permit the construction of most of the classical
mathematics. In this sense, a three-valued logic,
although it forces us to abandon logical principles
which appear so basic to our common discourse,
can nevertheless be reconstructed so as to yield
enough richness to deal in some other way with
the common forms of discourse (and thus with
basic mathematics). For the extended algebra,
being interpretable as one of these logics, similar
conclusions are valid,

To introduce more than two values in a calculus
or a logical system has been a current field of
investigation since Lukasiewicz.'*® Such additional
values are usually interpreted in terms of proba-
bility or necessity.'* Giinther'® has been alone in
pointing out that another possible interpretation of
many-valued logics as a basis for a cybernetic
ontology, that is, for systems capable of self-
reference, and precisely one such additional value,
he claims, must be taken as time. I follow here
Giinther’s suggestion that a third value might be
taken as time. But [ have shown that this third
value can be seen at a level deeper than logic, in
the calculus of indications, where the form of
self-reference is taken as a third value in itself, and
in fact confused with time as a necessary com-
ponent for its contemplation. In the extended
calculus, self-reference, time, and re-entry are
seen as aspects of the same third value arising
autonomously in the form of distinction.

This logical interpretation has bearings on
classical meta-mathematical results of the internal
limitations of formalisms,® 781314 a5 Spencer
Brown saw for the primary calculus,'? (page xv).
which indicate the need for a review of the real
import of these results, a review which cannot be
undertaken here, and I shall restrict myself to some
remarks. The present calculus, when interpreted
for logic. is clearly non-Gédelian by the presence of
a third value; it can deal with self-referential
situations which are the basis of the Gidelian
limitations. If we are prepared to avail ourselves
of re-entry in the present form, we can see the
classic paradoxes (such as Russell’s) in a new light,
as being a domain distinguishable precisely because
of their antinomic behavior. Instead of finding
ad-hoc means of avoiding their appearance (as in
Russell’s theory of types) we let them appear
Jreely by taking their apparent anomaly as a
characteristic, namely, autonomy, which we find
in so many of our descriptions that it seems futile
to avoid rather than confront it. Thus the epimini-
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dean is a liar precisely because it is not a liar, that
is, the epiminidean sentence is, in the extended cal-
culus, autonomous not anomalous.

6. The Extended Calculus and General Systems.

I have already stated my view that the calculus
of indications is a sound basis for a theory of
general systems, insofar as it provides a grounding
for every descripticn of any universe. [ also believe
the present calculus to have a similar bearing on
those systems which are self-referential in nature.
In fact, [ have undertaken the present work urged
by the need of tools to deal adequately with the
organization of living systems.''? Lacking the
actual presentation of results, 1 can only say here
on the basis of my unpublished work, that this
approach is, to say. the least, very fertile.

7. The Imaginary State and the Intercrossing of
Domains.

In this calculus antinomic forms are allowed to
appear without restrictions and thus we have
found a way to construct from an antinomic
situation, which, formerly, we might have avoided
rather than face. By not doing so, we have found a
new, wider domain where all the preceding forms
can be lodged. A similar case, at the numerical
level is to be seen in the construction of the complex
number,'? starting from the antinomic form of
x? = —1, not solvable in the real domain because
it needs a number which is both positive and
negative. This antinomy is solved by admitting this
behavior within a larger arithmetic containing a
new value i =+/—1, and thus extending the real
domain to the complex domain. In analogy, we
have presented a similar construction at the Boolean
level. By allowing an antinomic form (from the
point of view of logic) we have constructed a new
larger domain akin to the complex plane, where
new forms can be lodged, including those of the
preceding primary domain found to be in conflict
by the introduction of re-entering expressions.
Again, rather than avoid the antinomy, by con-
fronting it, a new domain emerges.

This intercrossing of domains at the point of
self-referring, hence, antinomic, situations in a
given domain, repeats itself. The most impressive
instance being the appearance of living systems
when a set of chemical productions closes.onto
itself to become -a-self-productive and self-con-
structive unity. Later on, when in a living system
cognitive ~ structures become capable of self-

description, again a significant new domain
emerges, that of self-consciousness. By uniting two
constituents of a domain, producer and produced,
description and describer, into a third state which
blends the two preceding ones through circular
closing, we see the appearance of a much more
inclusive domain. It appears as if different, suc-
cessively larger levels are connected and inter-
cross at the point where the constituents of the
new lower level refer to themselves, where anti-
nomic forms appear, and time sets in. We.recognize
this fact in ordinary speech.'® When trying to
convey a description of a new domain we oftén
construct an apparent antinomy to induce the
listener’s cognition in a way such as to compel his
imagination towards the construction of a larger
domain where the apparent opposites can exist in
unity. (A moral example: once you lose everything,
you have everything; a philosophical one: a being is
when it ceases to be).

Thus self-reference is the hinge upon which
levels of serial inclusiveness intercross. Rather than
récording any particular such instances (as in some
of the above example) the extended calculus
provides a record of the general form of this
situation, and can serve, therefore, as the paradigm
for all of them.

8. Conclusion.

The starting point of this calculus, following the
key line of the calculus of indications, is the act of
indication. In this primordial act we separate
forms which appear to us as the world itself. From
this starting point, we thus assert the primacy of
the role of the observer who draws distinctions
wherever he pleases. Thus the distinctions made
which engender our world reveal precisely that:
the distinctions we make—and these distinctions
pertain more to a revelation of where the observer
stands than to an intrinsic constitution of the world
which appears, by this very mechanism of separa-
tion between observer and observed, always
elusive. In finding the world as we do, we forget all
we did to find it as such, and when we are reminded
of it in retracing our steps back to indication, we
find little more than a mirror-to-mirror image of
ourselves and the world. In contrast with what is
commonly assumed, a description, when carefully
inspected, reveals the properties of the observer.
We, observers, distinguish ourselves precisely by
distinguishing what we apparently are not, the
world.
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We then see that we stand in relation to the world
by mutual negation, and that the union of us rwo
has therefore an autonomous structure whereby
the negation engenders a distinction which leads
to its own negation in a ceaseless circular process
which is, in fact, the symbol which tradition has
chosen to represent the creation of everything
since time inmemorial.

Autonomy is seen in this light to engender the
two stages of the form when this ceaseless process
is broken into its constituents. By the introduction
of a third autonomous state in the form, we do
nothing but restore to our field of view that which
was there at the beginning, and which we can
only see now reflected as segments of the world or
in language itself. Conversely, by taking self-
reference and time as our filum ariadnis through a
succession of levels, we dwell upon the re-union of
the constituents of these levels up to our own union
with the world, and thus we find a way to retrieve
the unity originally lost,

REFERENCES

I. H.R. Maturana y F. Varela, De Mdyuinus y seres vivos.
Editorial Universitaria, Santiago de Chile, 1973.

2. F. Varela, H. R. Maturana and R. Uribe, “Auto-
poiesis: the organization of living systems, its charac-
terization and a model”, Biosystems 3, No. 4, May 1974,

. H. R. Maturana, ""Neurophysiclogy of Cognition™. In:
Cognition, a multiple view, edited by P. L. Garvin,
Spartan Books, New York, 1969.

4. H. Yon Foerster, *Molecular Ethology™. In: Molecular
Mechanisins in Memary and Learning, edited by G.
Ungar, Plenum Press, New York, 1970.

5. H. Von Foerster, “What is memory that may have
hindsight and foresight as well . In: The Furure of the
Brain Sciences, edited by S. Bogoch, Plenum Press,
New York, 1969.

6. J. Ladriére, Les Limitationes Internes des Formalismes.
Publications Universitaires de Louvain, Louvain, 1957.

7. A. Fraenkel and Y. Bar-Hillel, Foundations of Set
Theory. North-Holland Publishing Co., Amsterdam,
1958.

8. K. Godel, “Uber formal unentsheidbare Sitze der
Principia Mathematica und verwandter Systeme.” I.
Monatshefte fiir Mathematik und Physik, 38, 1931, pp.
173-198.

9. G. Pask, “A cybernetic model for types of learning
and mentations,” In: Cyberneric Problems in Bionics,
edited by H. L. Ostricher and D. R. Moore, Gordon
and Breach, New York, 1968.

10. G. Gunther, “Logik, Zeit, Emanation und Evolution.”
Heft 136, Westdeutscher Verlag, K&ln and Opladen,
1967.

11. L. Lofgren, “An axiomatic explanation of complete
self-reproduction™, Bull. Math. Biophysics, 30, No. 3,
September 1968, pp. 415-425.

12. G. Spencer Brown, The Laws of Form. George Allen
and Unwin, London, 1969. (American edition: The
Julian Press, New York, 1972).

13. W. Ackerman, “Wiederspruchfreier Aufbau der Legik.
I: Typenfreies System ohne Tertium non Datur. J.
Symbol. Logic, 15, 1950, pp. 33-57.

14. F. B. Fitch, “A demonstrably consistent mathematics",
Part 1. J. Symbol, Logic, 15, 1950, pp. 17-24; Part 1I:
J. Symbel. Logic, 16, 1950, pp. 121-124.

15. I. Lukasiewicz, Selected Logical Papers. North-Holland
Publishing Co., Amsterdam, 1970.

16. W. V¥V, O. Quine, The Way of Paradoxes and Other
Essays. Random House, New York, 1970.

Appendix

Index of Forms From the Caleulus of Indications'?
{page 138).

Definition:
Distinction is perlect continence.
Axioms:
1 The value of a call made again is the value of
the call,

2 The value of a crossing made again is not the
value of the crossing.

Arithmetic Initials:

I 171 =7 Number

12 i Order

Algebraic If:ir;'als.’

1 7l pl = Position

12 prl 77| = 7| E||r Transposition
Theorems:

Tl The form of any finite number of crosses can
be taken as the form of an expression.

T2 If any space pervades an empty cross, the
value indicated in the space is the marked
state.

T3 Thesimplification of an expression is unique.

T4 The value of any expression constructed by
taking steps from a given simple expression
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is distinct from the value of any expression
constructed by taking steps from a different
simple expression.

T5 Identical expressions express the same value.

T6 Expressions of the same value can be
identified.

T7 Expressions equivalent to an identical ex-
pression are equivalent to one another.

T8 Invariance: p| p| =

T9 Variance: pr| 'q-rl] 7] ?” r

T10 The scope of J2 can be extended to any
number of divisions of the space s, .

T11 The scope of C8 can be extended as in T10.

T12 The scope of C9 can be extended as in T10.

T13 The generative process in C2 can be extended
to any space not shallower than that in
which the generated variable first appears.

T14 From any given expression, an equivalent
expression not more than two crosses deep
can be derived.

Ti5 From any given expression, an equivalent
expression can be derived so as to contain
not more than two appearances of any
given variable,

T16 If expressions are equivalent in every case of
one variable, they are equivalent.

T17 The primary algebra is complete.

T18 The initials of the primary algebra are
independent.

Consequences:

A=a

C2 Generation abl b= a] b

Cl Reflexion

C3 Integration Tla= "1

C4 Occultation 4| b| a=a
C5 Iteration aa=a

C6 Extension @l bl] @l &] =a

C7 Echelon 7] B| ¢| = @& bl c[

C8 Modified transposition

el aAl=molal @Al
C9 Crosstransposition

Al @Al @A 7

= Tl abl rxyl
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