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1 Introduction

This paper is a quick introduction to key relation-
ships between the theories of knots, links, three-
manifold invariants, and the structure of quantum
mechanics. In section 2 we review the basic ideas
and principles of quantum mechanics. Section 3
shows how the idea of a quantum amplitude is ap-
plied to the construction of invariants of knots and
links. Section 4 explains how the generalization of
the Feynman integral to quantum fields led to in-
variants of knots, links, and three-manifolds. Sec-
tion 5 is a summary.

This paper is a thumbnail sketch of recent devel-
opments in low-dimensional topology and physics.
I recommend that the interested reader consult the
references given here for further information, and
I apologize to the many authors whose significant

work was not mentioned here due to limitations of .

space and reference.

2 A Quick Review of
Quantum Mechanics

To recall principles of quantum mechanics it is use-
ful to have a quick historical recapitulation. Quan-
tum mechanics really got started when DeBroglie
introduced the fantastic notion that matter (such as
an electron) is accompanied by a wave that guides
its motion and produces interference phenomena
just like the waves on the surface of the ocean or
the diffraction effects of light going through a small
aperture. '

DeBroglie’s idea was successful in explaining the
properties of atomic spectra. In this domain, his
wave hypothesis led to the correct orbits and spec-

. in certain elliptical orbits.

tra of atoms, formally solving a puzzle that had
been only described in ad hoc terms by the pre-
ceding theory of Niels Bohr. In Bohr’s theory of
the atom, the electrons are restricted to move only
These restrictions are
placed in the theory to get agreement with the
known atomic spectra and to avoid the paradox
that arises if one thinks of the electron as a classi-
cal particle orbiting the nucleus of the atom. Such a .
particle is undergoing acceleration in order to move
in its orbit. Accelerated charged particles emit ra-
diation. Therefore the electron should radiate away
its energy and spiral into the nucleus! Bohr com-
manded the electron to occupy only certain orbits
and thereby avoided the spiral death of the atom—
at the expense of logical comnsistency.

DeBroglie hypothesized a wave associated with
the electron and he said that an integral multiple
of the length of this wave must match the circum-
ference of the electron orbit. Thus, not all orbits
are possible, only those where the wave pattern can
“bite its own tail’. The mathematics works out,
providing an alternative to Bohr’s picture.

DeBroglie had waves, but he did not have an

~equation describing the spatial distribution and

temporal evolution of these waves. Such an
equation was discovered by Erwin Schrodinger.

" Schrodinger relied on inspired guesswork based on

DeBroglie’s hypothesis and produced a wave equa-
tion, known ever since as the Schrodinger equation.
Schrodinger’s equation was enormously successful,
predicting fine structure of the spectrum of hydro-
gen and many other aspects of physics. Suddenly
a new physics, quantum mechanics, was born from
this musical hypothesis of DeBroglie.

Along with the successes of quantum mechanics
came a host of extraordinary problems of interpre-
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tation. What is the status of this wave function
of Schrodinger and DeBroglie? Does it connote a
new element of physical reality? Is matter “nothing
but” the patterning of waves in & continuum? How
can the electron be a wave and still have the capac-
ity to instantiate a very specific event at one place
and one time (such as causing a bit of phosphor
to glow there on your television screen)? It came
to pass that Max Born developed a statistical in-
terpretation of the wave-function wherein the wave
determines a probability for the appearance of the
localized particulate phenomenon that one wanted
to call an “electron”. In this story the wave func-
tion 1 takes values in the complex numbers and the
associated probability is "9, where ¢* denotes the
complex conjugate of 1. Mathematically, this is a
satisfactory recipe for dealing with the theory, but
it leads to further questions about the exact charac-
ter of the statistics. If quantum theory is inherently
statistical, then it can give no complete information
about the motion of the electron. In fact, there may
be no such complete information available even in
principle. Electrons manifest as particles when they
are observed in a certain manner and as waves when
they are observed in another, complementary man-
ner. This is a capsule summary of the view taken
by Bohr, Heisenberg, and Born. Others, including
DeBroglie, Einstein, and Schrodinger, hoped for a
more direct and deterministic theory of nature.

As we shall see in the course of this essay, the sta-
tistical nature of quantum theory has a formal side
that can be exploited to understand the topologi-
cal properties of such mundane objects as knotted
ropes in space and spaces constructed by identifying
the sides of polyhedra. These topological applica-
tions of quantum mechanical ideas are exciting in
their own right. They may shed light on the nature
of quantum theory itself.

In this section we review a bit of the mathematics
of quantum theory. Recall the equation for a wave:

f(z,t) = sin(g;(m - ct)).

With & interpreted as the position and t as the time,
this function describes a sinusoidal wave travelling
with velocity c. We define the wave number k =
27/ and the frequency w = ome/ A where X is the
~wavelength. Thus we can write f(z,t) = sin(kz —
wt). Note that the velocity, ¢, of the wave is given
by the ratio of frequency to wave number, ¢ = w/k.
DeBroglie hypothesized two fundamental rela-
tionships: between energy and frequency, and be-
tween momentum and wave number. These rela-

tionships are summarized in the equations

E = hw
p = hk

where E denotes the energy associated with a wave
and p denotes the momentum associated with the
wave. Here h = h/2m where h is Planck’s constant.

For DeBroglie, the discrete energy levels of the
orbits of electrons in an atom of hydrogen could be
explained by restrictions on the vibrational modes
of waves associated with the motion of the elec-
tron. His choices for the energy and the momen-
tum in relation to a wave are not arbitrary. They
are designed to be consistent with the notion that
the wave or wave packet moves along with the elec-
tron. That is, the velocity of the wave-packet is
designed to be the velocity of the “eorresponding”
material particle.

It is worth illustrating how DeBroglie’s idea
works. Consider two waves whose frequencies are
very nearly the same. If we superimpose them (as
a piano tuner superimposes his tuning fork over the
vibration of the piano string), then there will be a
new wave produced by the interference of the orig-
inal waves. This new wave pattern will move at its
own velocity, different (and generally smaller) than
the velocity of the original waves. To be specific, let
f(z,t) = sin(kz — wt) and g(z,t) = sin(k'z — w't).
Let

h(z,t) = [(sin(kz —wt)+ sin(k'z — w't)]
= f(x,t)"}_g(wat)'
A little trigonometry shows that

1 k—k w—uw
ih(x,t)—cos( 5%~ 5 t)x

(k+E  wtd
sm( 5T t). (1)

If we assume that k and k' are very close and that -
w and ' are very close, then (k+&')/2 s approxi-

mately k, and (w+w')/21s approximately w. Thus

h(z,t) can be represented by

H(z,t) = cos (is—’im - gLﬂt) f(z,t)

2 2

where 6k = (k — k')/2 and 6w = (w— w')/2.
This means that the superposition, H (z,t), behaves
as the waveform f(z,t) carrying a slower-moving
“wave packet” G(z,t) = cos((6k/2)z — (8w/2)t).
See Figure 1. : ‘

Since the wave packet (seen as the clumped os-
cillations in Figure 1) has the equation G(z,t) =
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2sin(kz — wt)

h(z,t) = sin(kz — wt) + sin(k't — w't)

Figure 1: Wave and wave packet.

cos((6k/2)z — (6w /2)t), we see that the velocity of
this wave packet is v, = dw/dk. Recall that wave
velocity is the ratio of frequency to wave number.
Now according to DeBroglie, £ = Aw and p = hk,
where E and p are the energy and momentum as-
sociated with this wave packet. Thus we get the
formula v, = §E/ép. In other words, the veloc-
ity of the wave packet is the rate of change of its
energy with respect to its momentum. Now this
is exactly in accord with the well-known classical
laws for a material particle! For such a particle,
E = mv?/2 and p = mw. Thus E = p?/2m and
dE/dp = p/m = v. It is this astonishing con-
cordance between the sitfiple wave model and the
classical notions of energy and momentum that ini-
tiated the beginnings of quantum theory.

2.1 Schrodinger’s Equation

Schrodinger answered the question: Where is the
wave equation for DeBroglie’s waves? Writing an
elementary wave in complex form

¥ =1(z,t) = exp(i(kz ~ wt)),

we see that we can extract DeBroglie’s energy and
momentum by differentiating:

oy -
zhE—Ew“and zh&c = pb.

This led Schrodinger to postulate the identification
of dynamical variables with operators so that the
first equation,

%y

is promoted to the status of an equation of motion
while the second equation becomes the definition of
momentum as an operator:
. 5

p= .zﬁ 5
Once p is-.identified as an operator, the numerical
value of momentum is associated with an eigenvalue
of this operator, just as in the example above. In
our example pyp = fiky.

In this formulation, the position operator is just
multiplication by z itself. Once we have fixed spe-
cific operators for position and momentum, the
operators for other physical quantities can be ex-
pressed in terms of them. We obtain the energy
operator by substitution of the momentum opera-
tor in the classical formula for the energy:

E=%mv2+V
2
=L 1y
2m
K2 2
= ma2 TV

Here V is the potential energy, and its correspond-
ing operator depends upon the details of the appli-
cation.
With this operator identification for E,
Schrodinger’s equation B
2 g2
i Qxﬁ he 0%y

5%~ ama T VY

is an equation in the first derivatives of time and
in second derivatives of space. In this form of the
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theory one considers general solutions to the differ-
ential equation and this in turn leads to excellent
results in a myriad of applications.

In quantum theory, observation is modelled by
the concept of eigenvalues for corresponding opera-
tors. The quantum model of an observation is a pro-
jection of the wave function into an eigenstate. An
energy spectrum {Ej} corresponds to wave func-
tions ¢ satisfying the Schrodinger equation, such
that there are constants Ej with E¢ = Epp. An
observable (such as energy) Eisa Hermitian opera-
tor on a Hilbert space of wave functions. A Hermi-
tian operator acts on the infinite dimensional space
of the wave functions and, like a Hermitian matrix,
is equal to the conjugate of its transpose. Since
Hermitian operators have real eigenvalues, this pro-
vides the link with measurement for the quantum
theory.

It is important to notice that there is no mech-
anism postulated in this theory for how a wave
function is “sent” into an eigenstate by an observ-
able. Just as mathematical logic need not demand
causality behind an implication between proposi-
tions, the logic of quantum mechanics does not de-
mand a specified cause behind an observation. This
absence of an assumption of causality in logic does
not obviate the possibility of causality in the world.
Similarly, the absence of causality in quantum ob-
servation does not obviate causality in the physical
world. Nevertheless, the debate over the interpreta-
tion of quantum theory has often led its participants
into asserting that causality has been demolished in
physics.

Note that the operators for position and momen-
tum satisfy the equation zp — pT = fii. This corre-
sponds directly to the equation obtained by Heisen-
berg, on other grounds, that dynamical variables
can no longer necessarily commute with one an-
other. In this way, the points of view of DeBroglie,
Schrodinger and Heisenberg came together, and
quantum mechanics was born. In the course of this
development, interpretations varied widely. Even-
tually, physicists came to regard the wave function
not as a generalized wave packet, but as a carrier
of information about possible observations. In this
way of thinking, 2p*1p represents the probability of
finding the “particle” (an observable with local spa-
tial characteristics) at a given point in spacetime.

2.2 Dirac Brackets

Recall Dirac’s notation, {alb), [6]. In this notation,
(a| and |b) are vectors and covectors respectively.
Thus (a|b) is the evaluation of (a] by |b), hence it is

a scalar and in ordinary quantum mechanics it is a
complex number. One can think of this as the am-
plitude for the state to begin in “a” and end in “b”.
That is, there is a process that can mediate a transi-
tion from state a to state b. Except for the fact that
amplitudes are complex valued, they obey the usual
laws of probability. This means that if the process
can be factored into a set of all possible interme-
diate states c1,Cz,. .- »Cn, then the amplitude for
a — b is the sum of the amplitudes for a — ¢ — b.
Meanwhile, the amplitude for a — ¢ — b is the
product of the amplitudes of the two subconfigura-
tions @ — ¢; and ¢; — b. Formally we have

(alp) = > _({ale:)(cilb)
where the summation is over all the intermediate

statesi=1,...,n.
In general, the amplitude for mutually disjoint

" processes is the sum of the amplitudes of the indi-

vidual processes. The amplitude for a configuration
of disjoint processes is the product of their individ-
ual amplitudes.

Dirac’s division of the amplitudes into bras {al
and kets |b) is done mathematically by taking a
vector space V (a Hilbert space, but it can be fi-
nite dimensional) for the bras; (a| belongs to V.
The dual space V* is the home of the kets. Thus
|b) belongs to V* so that |b) is a linear mapping
[p) : V — C where C denotes the complex num-
bers. We restore symmetry to the definition by
realizing that an element of a vector space V can
be regarded as a mapping from the complex num-
bers to V. Given (a| : C — V, the corresponding
olement of V is the image of 1 (in C) under this
mapping. In other words, (a(1) is a member of
V. Now we have (a] : C — V and |b) : V — C.
The composition (alb) = {(alb) : C — C is re-
garded as an element of C by taking the specific
value (a[b)(1). The complex numbers are regarded
as the “vacuum”, and the entire amplitude (alb) is a
“yacuum to vacuum” amplitude for a process that
includes the creation of the state a, its transition
to b, and the annihilation of b to the vacuum once
more.

Dirac notation has a life of its own. Let P =
|y)(z| and let (z| ly) = (zly). Then

PP = ly){ally) (=] = ly){ely) (z] = (zly)P.

Up to a scalar multiple, P is a projection opera-
tor. That is, if we let @ = P/(zly), then QQ =
PP/(zly)(zly) = (ely)P/(ly)iely) = P/laly) =
Q. Thus QQ = Q. In this language, the complete-
ness of intermediate states becomes the statement
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that a certain sum of projections is equal to the
identity: suppose that » ,|ci){(c;] = 1 (summing
over 1) with (c;|¢;) = 1 for each i. Then
(afp) = {alld)
= (a] > lei{eillp)
i

= 'Z(allci)(cz'll@
= Z(alcz><cﬂ.lb>

2

Iterating this principle of expansion over a com-

plete set of states leads to the most primitive form

of the Feynman integral [8]. Imagine that the ini-
tial and final states a and b are points on the ver-
tical lines z = 0 and z = n + 1 respectively in
the z-y plane, and that (c(k)i(x), k) is a given point
on the line z = k for 0 < i(k) < m. Suppose
that the sum of projectors for each intermediate
state is complete. That is, we assume that follow-
ing sum is equal to one, for each k from 1 to n:
le(k)1)(e(R)1] + -+ + le(R)m) {c(k)m| = 1.

Applying the completeness iteratively, we obtain
the following expression for the amplitude {a[b):

(alt) =
3 S ale(Wsn) e le(@)ico) -+ (em)igmlb)

where the sum is taken over all i(k) ranging between
1 and m, and k ranging between 1 and n. Each term

in this sum can be construed as a combinatorial

path from a to b in the two-dimensional space of
the z-y plane. Thus the amplitude for going from
a to b is seen as a surnmation of contributions from
all the “paths” connecting a to b. Feynman used
this description to produce his famous path integral
expression for amplitudes in quantum mechanics.
His path integral takes the form

/ dP exp(iS)

where 1 is the square root of minus one, the integral
is taken over all paths from point a to point b, and
S is the action for a particle to travel from a to
b along a given path. For the quantum mechanics
associated with a classical (Newtonian) particle the
action S is given by the integral along the given
path from a to b of the difference T — V' where T
is the classical kinetic energy and V is the classical
potential energy of the particle.

The beauty of Feynman’s approach to quantum
mechanics is that it shows the relationship between

the classical and the quantum in a particularly

: transparent manner. Classical motion corresponds

to those regions where all nearby paths contribute
constructively to the summation. This classical
path occurs when the variation of the action is null.
To ask for those paths where the variation of the ac-
tion is zero is a problem in the calculus of variations,
and it leads directly to Newton’s equations of mo-
tion. Thus with the appropriate choice of action,
classical and quantum points of view are unified.

The drawback of this approach lies in the un-
availability at the present time of an appropriate
measure theory to support all cases of the Feynman
integral.

To summarize, Dirac notation shows at once how
the probabilistic interpretation for amplitudes is
tied to the vector space structure of the space of
states of the quantum mechanical system. Our
strategy for bringing forth relations between quan-
tum theory and topology is to pivot on the Dirac
bracket. The Dirac bracket intermediates between
notation and linear algebra. In a very real sense,
the connection of quantum mechanics with topology
is an amplification of Dirac notation.

The next two sections discuss how topological in-
variants in low-dimensional topology are related to
amplitudes in quantum mechanics. In these cases
the relationship with quantum mechanics is primar-
ily mathematical. Ideas and techniques are bor-
rowed. It is not yet clear what the effect of this
interaction will be on the physics itself.

3 Knot Amplitudes

At the end of section 2 we said: the connection of
quantum mechanics with topology is an amplifica-
tion of Dirac notation.

Consider first a circle in a spacetime plane with
time represented vertically and space horizontally,
as shown in Figure 2. The circle represents a vac-
uum to vacuum process that includes the creation
of two “particles” (Figure 3), and their subsequent
annihilation (Figure 4).

X

Figure 2: A circle in a spacetime plane.
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Figure 3: Creation of two particles.

C

T cap

VeV

Figure 4: Annihilation of two particles.

In accord with our previous description, we could
divide the circle into these two parts (creation as
shown in Figure 3 and annihilation as shown in Fig-
ure 4) and consider the amplitude (a[b). Since the
diagram for the creation of the two particles ends
in two separate points, it is natural to take a vector
space of the form V' ® V as the target for the bra
and as the domain of the ket.

We imagine at least one particle property be-
ing catalogued by each dimension of V. For ex-
ample, a basis of V' could enumerate the spins of
the created particles. If {e,} is a basis for V' then
{e, ® ey} forms a basis for V®V. The elements of
this new basis constitute all possible combinations
of the particle properties: Since such combinations
are multiplicative, the tensor product is the appro-
priate construction.

In this language the creation ket is a map cup,

cup=(a|: C =V ®Y,
and the annihilation bra is a mapping cap,
cap=[b): VoV - C.

The first hint of topology comes when we real-
ize that it is possible to draw a much more com-
plicated simple closed curve in the plane that is
nevertheless decomposed with respect to the ver-
tical direction into many cups and caps. In fact,
any non-self-intersecting differentiable curve can be
rigidly rotated until it is in general position with
respect to the vertical. It will then be seen to be
decomposed into these minima and maxima. Our
prescriptions for amplitudes suggest that we regard

kQV
Tcap@l 14
Vevev Y Tl
Tl@cup v

Vek

Figure 5: Diagrammatic representation of the in-
verse relation.

any such curve as an amplitude via its description
as a mapping from C to C.

Each simple closed curve gives rise to an ampli-
tude, but any simple closed curve in the plane is
isotopic to a circle, by the Jordan Curve Theorem.
If these are topological amplitudes, then they should
all be equal to the original amplitude for the cir-
cle. Thus the question: What condition on creation
and annihilation will insure topological amplitudes?
The answer derives from the fact that all isotopies
of the simple closed curves are generated by the
cancellation of adjacent maxima and minima as il-
lustrated in Figure 6.

In composing mappings it is necessary to use the
identifications

(V®V)®V=V®(V®V)
and
Vek=kV =V

Thus in the illustration above, the composition on
the left is given by

V= Vek 2% ye(VeV)
=(VeV)eV 2%, keV=V.

This composition must equal the identity map
on V (denoted 1 here) for the amplitudes to have a
proper image of the topological cancellation. This
condition is said very simply by taking a matrix
representation for the corresponding operators.



168

Geometry at Work

Figure 6: Cancellation of an adjacent maximum
and minimum. '

Vev

I~ X

VeV
'q\ VeV
Vo

Vev

>

Figure 7: A knot with crossings.

Specifically, let {ej,ez,...,e,} be a basis for V.
Let ey = €, ® ep denote the elements of the tensor
basis for V ® V. Then there are matrices Mg, and
M® such that cup(l) = Y Mgpeqp with the sum-
mation taken over all values of a and b from 1 to
n. Similarly, cap is described by cap(eqs) = M.
Thus the amplitude for the circle is caplcup(1)] =
cap Y. Mupeap = 5 My M. In general, the value
of the amplitude on a simple closed curve is ob-
tained by translating it into an “abstract tensor ex-
pression” in the M,y and M @b and then summing
over these products for all cases of repeated indices.

Returning to the topological conditions we see
that they are just that the matrices (Mg) and
(M®) are inverses in the sense that 3 M, M%® =
I? and 5" M*% M, = I¢ are the identity matrices.

In Figure 6, we show the diagrammatic represen-
tative of the equation Y M ;M® = I?.

In the simplest case, cup and cap are represented
by 2 x 2 matrices. The topological condition implies
that these matrices are inverses of each other. Thus
the problem of the existence of topological ampli-
tudes is very easily solved for simple closed curves
in the plane.

Now we go to knots and links. Any knot or

link can be represented by a picture that is con-
figured with respect to a vertical direction in the
plane. The picture will decompose into minima
(creations), maxima (annihilations), and crossings
of the two types shown in Figure 8. (Here I con-
sider knots and links that are unoriented. They do
not have an intrinsic preferred direction of travel.)
In Figure 7, next to each of the crossings we have
indicated mappings of V® V to itself, called R and
R respectively. These mappings represent the tran-
sitions corresponding to these elementary configu-
rations.

That R and R really must be inverses follows
from the isotopy shown in Figure 8. (This is the
second Reidemeister move.)

We now have the vocabulary of cup, cap, R, and
R. Any knot or link can be written as a composi-
tion of these fragments, and .consequently a choice
of such mappings determines an amplitude for knots
and links. In order for such an amplitude to be
topological, we want it to be invariant under the
list of local moves on the diagrams shown in Fig-
ure 10. These moves are an augmented list of the
Reidemeister moves, adjusted to take care of the
fact that the diagrams are arranged with respect
to a given direction in the plane. The equivalence
relation generated by these moves is called regular
isotopy. It is one move short of the relation known
as ambient isotopy. The missing move is the first
Reidemeister move shown in Figure 9.

In the first Reidemeister move, a curl in the dia-
gram is created or destroyed. Ambient isotopy (gen-
erated by all the Reidemeister moves) corresponds
to knots and links embedded in three-dimensional
space. Two link diagrams are ambient isotopic via
the Reidemeister moves if and only if there is a
continuous family of embeddings in three dimen-
sions leading from one link to the other. The moves
give us a combinatorial reformulation of the spatial
topology of knots and links.

By ignoring the first Reidemeister move, we al-
low the possibility that these diagrams can model
framed links, that is links with a normal vector
field or, equivalently, embeddings of curves that are
thickened into bands. It turns out to be fruitful
to study invariants of regular isotopy. In fact, one
can usually normalize an invariant of regular iso-
topy to obtain an invariant of ambient isotopy. We
shall see an example of this phenomenon with the
bracket polynomial in a few paragraphs.

As the reader can see, we have already discussed
the algebraic meaning of moves 0 and 2. The
other moves translate into very interesting alge-
bra. Move 3, when translated into algebra, is the
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Vev
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VeV

Vev

&

VeV

Y
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a b
VeV )
Tl@l
VeV
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Figure 8: The second Reidemeister move. RPRY = ISI2.

Figure 9: The first Reidemeister move.

famous Yang-Baxter equation. The Yang-Baxter
squation occurred for the first time in problems re-
lated to exactly solved models in statistical mechan-
ics (See [18]). All the moves taken together are di-
rectly related to the axioms for a quasi-triangular
Hopf algebra (aka quantum group). We shall not
go into this connection here.

There is an intimate connection between knot
invariants and the structure of generalized ampli-
tudes, as we have described them in terms of vector
space mappings associated with link diagrams. This
strategy for the construction of invariants is directly
motivated by the concept of an amplitude in quan-
tum mechanics. It turns out that the invariants
that can actually be produced by this means (that
is, by assigning finite-dimensional matrices to the
caps, cups and crossings) are incredibly rich. They
encompass, at present, all of the known invariants
of polynomial type (Alexander polynomial, Jones
polynomial and their generalizations).

Tt is now possible to indicate the construction of
the Jones polynomial via the bracket polynomial as
an amplitude, by specifying its matrices.

The cups and the caps are defined by (Mgp) =
(M%) = M where M is the 2 X 2 matrix (with
i =~-1)

0 1A
M= [ A7 0 ] '

Note that MM = I where [ is the identity matrix.

Reidemeister move 0.

/
( ~Y
N~

Reidemeister move 2.

/}N /’
()

Reidemeister move 3.

\m,\,r/%

Reidemeister move 4.

Figure 10: Local moves under which amplitudes
should be invariant. :
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Note also that the amplitude for the circles is
SMM® = > MM,

= Z(Mab)z
(14)% + (—iA™1)2
—A%? - A2

The matrix R is then defined by the equation
R% = AM®® M4+ AICIS,
or symbolically by
R3Y = AM®° M., + AT'I2I2.
For example, we have the specific evaluation

R} = AM™M,+ A2
= AGA)(EA) + ATH)(D).

Figure 11: Loop value of a crossing.

Since, diagrammatically, we identify R with a
(right-handed) crossing, this equation can be writ-
ten diagrammatically as shown in Figure 11. Taken
together with the loop value of —A% — A~2, we get
Figure 12. These equations can be regarded as a
recursive algorithm for computing the amplitude.

This algorithm is the bracket state model for the.

(unnormalized) Jones polynomial [13]. This model
can be studied on its own grounds. We end this
section with some comments about this algorithm
and its properties.

3.1 The Bracket Model

If we were to start with just the calculational formu-
las as indicated above but with arbitrary coefficients

—_ _A2__A—2

Figure 12: Loop value of —A% — A~2,

A and B for the two smoothings, and an arbitrary
loop value d, then it is easy to see that the resulting
method of calculating a three-variable polynomial
(in the commuting variables 4, B, and d) from a
link diagram is well defined, although not neces-
sarily invariant under the Reidemeister moves. It is
then an interesting exercise to see that asking for in-
variance under just the second Reidemeister move
essentially forces B = A™! and d = —A% — A2,
Thus the parameters arising from the algebra that
we have sketched actually come directly from the
topology. It is equally easy to see the resulting Lau-
rent polynomial is a well-defined invariant of regu-
lar isotopy. Let’s denote that invariant by (K), the
(unnormalized) bracket polynomial of K. In this
version of the bracket we have (0) = —A2 — 42
where O denotes a circle in the plane. If we define
Fx(4) = (-A%)~E)(K)/(0) where w(K) denotes
the sum of the signs of the crossings in an oriented
link K (See [13] or [16].), then fx (A) is an invariant
of ambient isotopy and the original Jones polyno-
mial [11] Vk(t) is given by the formula

V() = fa(t™/4).

The bracket model for the Jones polynomial is quite
useful both theoretically and in terms of practical
computations. One of the neatest applications is to
simply compute fx(A) for the trefoil knot T (see
Figure 12) and determine that fx(A) is not equal to
fx(A~1). This shows that the trefoil is not ambient
isotopic to its mirror image, a fact that is quite
tricky to prove by classical methods.

.4 Topological Quantum Field

Theory—First Steps

In order to further justify this idea of the ampli-
fication of Dirac notation, consider the following
scenario. Let M be a 3-dimensional manifold. Sup-
pose that F' is a closed orientable surface inside M
dividing M into two pieces, M; and M,. These
pieces are 3-manifolds with boundary. They meet
along the surface F. Now consider an amplitude
(My|M;) = Z(M). The form of this amplitude
generalizes our previous considerations, with the
surface F' constituting the distinction between the
“preparation” M; and the “detection” M,. This
generalization of the Dirac amplitude (a|b) ampli-
fies the notational distinction consisting in the ver-
tical line of the bracket to a topological distinction
in a space M. The amplitude Z(M) will be said
to be a topological amplitude for M if it is a topo-
logical invariant of the 3-manifold M. Note that
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a topological amplitude does not depend upon the
choice of surface F that divides M.

From a physical point of view the independence of
the topological amplitude of the particular surface
that divides the 3-manifold is the most important
property. An amplitude arises in the condition of
one part of the distinction carved in the 3-manifold
acting as “the observed” and the other part of the
distinction acting as “the observer”. If the am-
plitude is to reflect physical (read topological) in-
formation about the underlying manifold, then it
should not depend upon this particular decompo-
sition into observer and observed. The same re-
marks apply to 4-manifolds and interface with ideas
in relativity. We mention 3-manifolds because it
is possible to describe many examples of topolog-
ical amplitudes in three dimensions. The matter
of 4-dimensional amplitudes is a topic of current
research. The notion that an amplitude be inde-
pendent of the distinction producing it is prior to
topology. Topological invariance of the amplitude
is a convenient and fundamental way to produce
such an independence.

This sudden jump to topological amplitudes has
its counterpart in mathematical physics. In [21] Ed-
ward Witten proposed a formulation of a class of
3-manifold invariants as generalized Feynman inte-
grals taking the form Z(M) where

Z(M) = / dAexp (%S(M, A)).

Here M denotes a 3-manifold without boundary
and A is a gauge field (also called a gauge potential
or gauge connection) defined on M. The gauge field
is a one-form on M with values in a representation
of a Lie algebra. The group corresponding to this
Lie algebra is said to be the gauge group for this par-
ticular field. In this integral the “action” S(M, A)
is taken to be the integral over M of the trace of the
Chern-Simons three-form CS = AdA 4+ (2/3)AAA.
(The product is the wedge product of differential
forms.)

Instead of integrating over paths, the integral
Z(M) integrates over all gauge fields modulo gauge
equivalence. This generalization from paths to
fields is characteristic of quantum field theory.
Quantum field theory was designed in order to ac-
complish the quantization of electromagnetism. In
quantum electrodynamics the classical entity is the
electromagnetic field. The question posed in this
domain is to find the value of an amplitude for start-
ing with one field configuration and ending with
another. The analogue of all paths from point a to
point b is “all fields from field A to field B”.

Witten’s integral Z(M) is, in its form, a typi-
cal integral in quantum field theory. In its content
Z(M) is highly unusual. The formalism of the inte-
gral and its internal logic support the existence of
a large class of topological invariants of 3-manifolds
and associated invariants of knots and links in these
manifolds.

Invariants of three-manifolds were initiated by
Witten as functional integrals in [21] and at the
same time defined in a combinatorial way by
Reshetikhin and Turaev in [20]. The Reshetikhin-
Turaev definition proceeds in a way that is quite
similar to the definition that we gave for the bracket
model for the Jones polynomial in section 2. Itis an
amazing fact that Witten’s definition seems to give
the very same invariants. We are not in a position
to go into the details of this correspondence here.
However, one theme is worth mentioning: For k
large, the Witten integral is approximated by those
connections A for which S(M, A) has zero varia-
tion with respect to change in A. These are the
so-called flat connections. It is possible in many ex-
amples to calculate this contribution via both the
functional integral and by the combinatorial defini-
tion of Reshetikhin and Turaev. In all cases, the
two methods agree (see, e.g., [9]). This is one of
the pieces of evidence in a puzzle that everyone ex-
pects will eventually justify the formalism of the
functional integral. Note how this case corresponds
exactly to the relation of classical and quantum
physics as it was discussed in Section 2.
~ In order to obtain invariants of knots and links
from Witten’s integral, one adds an extra bit of
machinery to the brew. The new machinery is the
Wilson loop. The Wilson loop is an exponentiated
version of integrating the gauge field along a loop
K. We take this loop K in three space to be an em-
bedding (a knot) or a curve with transversal self-
intersections. It is usually indicated by the sym-
bolism tr(Pexp([y A)). Here the P denotes path
ordered integration—that is, we are integrating and
exponentiating matrix valued functions, and one
must keep track of the order of the opérations. The
symbol tr denotes the trace of the resulting matrix.

With the help of the Wilson loop function on
knots and links, Witten [21] writes down a func-
tional integral for link invariants in a 3-manifold

M:
Z(M,K)=

/ dAexp (i—];-S(M, A)) - (Pe@ ( /K A)) .

Here S(M,A) is the Chern-Simons Lagrangian, as
in the previous discussion.
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Geometry at Work

If one takes the standard representation of the Lie
algebra of SU(2).as 2 x 2 complex matrices, then it
is a fascinating exercise to see that the formalism of
Z(5%, K) (where S® denotes the three-dimensional
sphere) yields up the original Jones polynomial with
the basic properties as discussed in section 2. See
Witten’s paper [21], or [16] or [17] for discussions
of this part of the heuristics.

This approach to link invariants crosses bound-
aries between different methods. There are close
relations between Z(S3, K) and the invariants de-
fined by Vassiliev (See [3, 17].), to name one facet
of this complex crystal.

This deep relationship between topological in-

variants in low-dimensional topology and quantum

field theory in the sense of Witten’s functional inte-
gral is really still in its infancy. There will be many
surprises in the future as we discover that what has
so far been uncovered is only the tip of an iceberg.

5 Caboose

We have, in this short paper, given an almost un-
broken line of argument from the beginnings of
quantum mechanics to the construction of topo-
logical quantum field theories and link invariants
associated with quantum amplitudes. While the
approach using the formalism of the functional in-
tegral gives a direct route into the heart of the
subject, it involves a significant number of leaps of
faith. These leaps are slowly being filled by rigor-
ous mathematics. The algebraic approach via am-
plitudes is rigorous in its inception and has given
rise to beautiful new theories of invariants of knots,
links, and three-manifolds.

One of the most exciting prospects for these new
invariants is the possibility of their application in
quantum gravity. See [2] for an account of these
developments. Many other applications are possi-
ble, and the subject is just beginning. For a survey
of past and present applications of knots and links
we refer the reader to [7].
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