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I. Introduction.

It is a well-known problem in Boolean algebra to de-
termine whether an algebra A with binary operation + and
unary operation ' is Boolean if it satisfies the axioms

l. x+y=y+x
2. x+(y+z)=(x+y)+z
3. x=(x+y)+x+y"))

(In each axiom it is intended that the equation be satisfied
for all choices of z, y and z from A). See [3] for a statement
and history of this problem — the Robbins Problem.

This is a delicate problem, and it remains unsolved as
of this writing. The purpose of this paper is to show that
the Robbins problem can be fruitfully investigated by using
a simplified notation for formal algebras. In this notation
we conjecture a non-standard model for Robbins algebra in
terms of the language itself. (See section 2 of this paper for
the model.)

This same language allows us to give very clean proofs
of the following results of Winker [8]:

1. If there exists a in A, a Robbins algebra, such that
a + a = a, then A is Boolean.

9. If in a Robbins algebra A there exist a, b such that
a+ b =", then A is Boolean.

3. If in a Robbins algebra A there exist a, b such that
(¢ +b) = b', then A is Boolean.

4. If a Robbins algebra is finite, then it is Boolean.

These results show that any algebra satisfying the Robbins
axioms is very close to being Boolean. Finiteness, or an
instance of absorbtion (a + b = a), or an instance of idem-
potency (a + a = a), will push A into being Boolean.

In section 2, I give the construction of the proposed
rion-Boolean model for Robbins Algebra. This section also
details the different notations available for this model. The
simplest way to express the model is in terms of disjoint col-
lections of rectangles in the plane.” This leads to algebras
that describe modes of combining rectangular patterns. I
call these Box Algebras, and explain how to translate both
Boolean and Robbins algebras into the Box format. The
section ends with a historical note about the relationship
of the Robbins Problem and the axioms for Boolean alge-
bra due to Huntington [4]. <« The formalism that we are
using dovetails also with the work of
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G. Spencer-Brown [7]. Section 2 explains this connection,
and how the old work of Huntington can be applied and
simplified to yield the Primary Algebra of Laws of Form
from a single initial.>> We must proceed in the Box algebra
for the Robbins problem without assuming the presence
of the empty word (a box-equivalent of zero in Boolean
algebra). This issue of prohibiting void substitution is taken
up in section 2. In section 3 we show (in Box notation) that
a Robbins algebra containing an element a such that at+a =
a is necessarily Boolean. Section 4 discusses a quotient of
the model in section 2. This algebra, The Paradoxical
Robbins Algebra - PR, is a model for Robbins algebra
that contains elements J such that J' = J. Hence PR is
certainly non-Boolean if it is non-trivial. I conjecture that
PR is non-trivial.

1I. A Formal Algebra.

Let P denote the collection of all well-formed paren-
thetical expressions using left and right sharp a.pgle brack-
ets. Thus P is defined recursively by the rules:

1. < > belongs to P.

9. If a and b belong to P, then ab (the juxtaposition of a
and b belongs to P.

3. If a belongs to P, then < a > belongs to P.

A partial list of the elements of P begins:

<>, <<>>, K>S, KKLK>>>, <<>L>>, <<B>> <,
S>>, <K>LL>>, ..

Any element of P is uniquely specified by a sequence of
binary bits denoted L and R (but not every such sequence
defines an element of P). Thus L =<, and R => so that
<><<>>= LRLLRR. Call two elements of P equal if
they have identical sequences of bits.

It is clear that the operation of juxtaposition on P
(a,b ————>ab)is associative, and non-commutative
(<><<>> is distinct from <<>><>)

The candidate for a non-Boolean Robbins algebra is
constructed as follows:

Definition 2.1. Let R denote the set of equivalence classes
of elements of P under the equivalence relation generated
by the elementary equivalences indicated below:




1. ab=ba
9. a=<< ab><a<b>>>

(valid whenever a and b belong to P).

Definition 2.2. Endow R with a binary operation via
{a} + {b} = {ab} where {a} denotes the R-equivalence
class of an element a of P. In other words, the sum of two
elements of R is the equivalence class of the juxtaposition
of any two representatives of these elements in P.

Similarly, we endow R with the unary operation

{a} = {<a>}.
Proposition 2.3. R is a Robbins algebra.

Proof. Associativity and commutativity follow directly
from the definitions. I shall verify the third axiom:

A= {a}
={<<ab><a<b>>>}
={<ab><a<b>>}
=({<ab>}+{<a<b>>})
= ({ab} +{a < b>})
= (({a} + (o)) + ({a} + {< 0 >}))
= (({a} + {6})" + ({a} + {8}))
=((A+B) +(A+B")").

This completes the proof of the Proposition.

Conjecture 2.3. R is a non-Boolean Robbins algebra.

Discussion. ,

In terms of the parenthesis structures, this is a concrete
conjecture about the equivalence classes generated by the
equivalence

a=<<ab><a<b>>>.

That is, we can put commutativity and associativity into
the background and concentrate on the remaining equiva-
lence that generates this model. One way to put commuta-
tivity and associativity into the background is to choose a
notation for the parenthesis structures that facilitates see-
ing them. In particular we could replace each left /right pair
of parentheses by a box or rectangle as shown below

(4] B

<<A>B>

The advantage of the rectangles is that no search is needed
to find the regions that are delimited by the parentheses.
Secondly, we can regard commutavity as a topologi-
cal relation in this notation: A given collection of dis-
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joint rectangles in the plane is equivalent to another if there
is a homeomorphism of the plane taking one collection to
the other. In this way commutativity and associativity are
truly in the background from the beginning. In rectangle
form, the Robbins equivalence becomes the

Robbins Box Axiom:

®<—

0%k ® X

where the disc and the star stand for any two non-empty
collections of disjoint rectangles.

With commutativity and associativity in the back-
ground, the Robbins problem is thrown into sharp relief as
the question whether the equivalence generated by this re-
placement on (topological) collections of rectangles reduces
to a Boolean pattern. In particular we would like to show
that it is never the case that

[ Jand[ ][]
are equivalent.

It might seem that some simple counting argument
would show this to be the case, and dispose of the Rob-
bins problem at once! This does not yet seem to be the
case.

The algebra BR.

To summarize, we have proposed an equivalence rela-
tion on the non-empty topological collections of disjoint
rectangles in the plane. With this equivalence relation,
generated by the Robbins Box Axiom, the equivalence
classes have the structure of a Robbins Algebra. Call this

algebra BR. WE CONJECTURE THAT BR IS NOT

BOOLEAN.

Some History.

In looking at the Robbins problem it helps to recall its
historical context. In a 1933 paper [4] Huntington pointed
out that Boolean algebra could be axiomatized by three
axioms: commutativity, associativity, and one more.

Huntington’s Axioms for Boolean Algebra

1. x+y=y+x

2. x+(y+z)=x+y)+z

3. X = (xl +y)l + (xl +yl)l
Here it is assumed that the algebra is endowed with binary
operation +, and unary operation '. The axioms apply to
all z, y and z in the set under discussion. It is not assumed

that there is a zero element. That is, Huntington does not
assume that there exists an element 0 such that 0+z = z for




all z. Part of his tour-de-force of derivation was to produce
a zero element from this minimal set of axioms.

The Robbins problem replaces Huntington’s third ax-
iom with a plausible stand-in, and creates a subtle diffi-
culty! What is the nature of this difficulty? A look at
Huntington’s derivation will help.

Lemma. Under Huntington’s axioms, x + x' =y + y’ for
any choice of x and y.

Proof.

X _l_xl — (xl +yl)l + (xl +yli)l +xl
— (xl + yl)’ + (x' + yll)l + (xH + yl)l + (xll + yll)l
=(yl+xl)l+(yll+xl)l+(yl+xfl)l+(yll+xll)l
— (yl +xl)l +(yl +xll)l +(yll +xl)l +(yll +xl’)’
=y+y.

The first two lines use the third axiom; the next two use

commutativity and associativity. Then the third axiom is

applied in reverse. This completes the proof of the Lemma.
Huntington then goes on to define zero via

0= (a+a') for any a,

and he shows that this really is a zero, and that the al-
gebra is Boolean. The crux of the matter appears to be
the fact that Huntington’s third axiom divides on the right
hand side into two moveable pieces: (z' +y)' and (z' +y')'.
Robbins axiom does not have this property, and it is very
difficult to start any process of derivation.

Another difficulty, even within this standard context is
the complexity of the standard notation with its profusion
of parentheses and other marks. For example, consider the
appearance of Huntington’s Lemma in the box notation:

Huntington Box Axiom

[4]B

(plus implicit commutativity and associativity
of juxtaposition)

A=

The same Lemma then appears as follows:

Lemma 1. Assuming the Huntington Box Axioms, the fol-
lowing identity holds for any A and B in the algebra:

A[A]=B[B].

Proof.

A A -

A
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Thus we re-write the first expression in vertical form, and
then expand each of its terms horizontally. We then read
the two apparent vertical columns, and interpret each col-
umn as an instance of the Huntington Box Axiom.

This proof has the same perceptual effect as the
double-take we experience on viewing the figure below:

In this figure, we see two men sitting - one vertical, the
other inverted. Or we see two men lying horizontally - one
upright, one upside down!

We have made a transition (notational transition) to
a “box algebra” that is essentially equivalent to the usual
form of Boolean-type algebra. The notation is useful in
that it allows easy access to certain patterns. On the other
hand, there are some non-standard features of this algebra
just below the surface.

The first non-standard feature is that we have allowed
the empty box as an element of the mathematical system
under discussion. Since “putting a box around it” is the
image in the box algebra of the unary operation a' in the
ordinary algebra, this suggests that we regard an empty
box as the result of applying’ the unary operation to the
“void”.

@ — 4
O -

The issue is illustrated in the diagram above. We have
adopted the correspondence of “A with a box around it”
with “A prime”. Thus an empty box appears to correspond
to a “lonely prime”.

To put the matter simply, the box algebra admits the
concept of an empty word, while it is not common to use an
empty word in an axiomatization for a Boolean or quasi-
Boolean algebra. In the ordinary algebra, the empty word
is a bit awkward, leading to lonely primes and empty paren-
theses (e.g. ()’). In box algebra the void is always present
within the smallest box. Let us call the empty word in box
algebra the void.

To allow the void into the box algebra is equivalent to
having a zero element in the ordinary algebra. That is, we
could allow the substitution of a void in the axioms.
For example, in the Huntington Box Axiom we could allow




as a special case:

This creates an equivalence between the void and particular
combinations of symbols in the algebra.

By allowing void substitution, we obtain a simplified
version of Huntington’s axiomatics for Boolean algebra. By
way of illustration of these methods, I shall continue in
the rest of this section to derive some consequences from
the Huntington Box Axioms, with void substitution al-
lowed. In the next section we shall consider the Robbins
problem in the context of the box algebra. There we must
not allow void substitution, since this trivializes the prob-
lem.

The Final Change in Notation. A half box is obtained
from a box by erasing the left-hand and bottom edges
of that box.

—>

The box with left edge and bottom edge removed will be
called the mark. Any question of usage for the mark
is referred to the corresponding question for the
box. Thus there is no inherent ambiguity about whether a
given expression is inside or outside a given mark. An ex-
pression in marks is well-formed if the corresponding boxed
expression is well formed. The boxed expression is obtained
by adding the left and bottom edges to each mark.

I shall use the marks notation throughout the rest of
the paper. In particular the basic Huntington Box Axiom
becomes

a=al Bl 471 Bl (H)
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in the form of the mark. I shall denote this axiom by (H).
Lemmal.a a|=b b]

Proof. This is a restatement of Lemma 1 as given above,
into the mark notation.

Lemma 2. m =a

Proof.

atl=allla1l sTil=T1l (1)

~zil=1l =l (L1)

=a (H)
Remark. In composing these derivations, I shall not (al-
ways) refer to uses of commutativity or associativity. Thus
in the above demonstration, the first step is a direct ap-
plication of (H); the second step uses Lemma 1 (L1) with
b= gl_l, c= ;l so that b} b = E[ c; the last step is a reverse
application of (H) with an implicit use of commutativity.

Note that neither Lemma 2 or Lemma 1 use void
substitution.

Lemma 3. a ;' = _l
Proof. Since a ;l = b b]for any a and b, by Lemma 1, we
conclude that

a a]l="]

via void substitution for b.

Lemma 4. a ;I =

'Proof. Cross both sides of the statement of Lemma 3. Ap-

ply Lemma 2 with void substitution for a.
Lemma 5. aa=a
Proof.

aa =

—aal

(L2)

HE

(L4)

al
all a[la (L2)

(H)
(L2)

- 2)2)

Lemma 6. a | b l= a

Proof.
albla=alblalblalb]] (H)
=alblalb]] ()
=a (H)

Lemma 7. a|b=12ab |b

alb=al|b| al]B1lb (H)

=a|lb|b (L6)
=ab|b (L2)

Lemma 8. mW”:a_lb_”c
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in the form of the mark. I shall denote this axiom by (H).
Lemmal. a a|=b _ b}

Proof. This is a restatement of Lemma 1 as given above,
into the mark notation.

Lemma 2. ﬁl =a

Proof.

N=a1=1] =nlanl (H)

-a1l=1l == (L1)

=a (H)
Remark. In composing these derivations, I shall not (al-
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in the above demonstration, the first step is a direct ap-
plication of (H); the second step uses Lemma 1 (L1) with
b = ;_“, c= ;[ so that b] b = E[ c; the last step is a reverse
application of (H) with an implicit use of commutativity.

Note that neither Lemma 2 or Lemma 1 use void
substitution.

Lemma 3. a ﬂ: —l

Proof. Since a ;l = b b] for any a and b, by Lemma 1, we
conclude that
a al=]

via void substitution for b.

Lemma 4. a al|=

Proof. Cross both sides of the statement of Lemma 3. Ap-

ply Lemma 2 with void substitution for a.

Lemma 5. aa=a

Proof.

(L2)

=
aall aal (L)
—allall atlall (12)
all

(H)
(L2)

Lemma 6. a | b l= a

Proof.
a[bla=albla[b]a[b]] (H)
=alblab]] (5)

Lemma 7. a |b=ab |b

alb=a[]b| af]B1lb ()

=allb|b (L6)
=ab|b (L2)

Lemma 8. mml:ﬂb_”c




Proof.

aclbell=acTbelc |aclbelel]
_acTebele] <llalelel bl(i_s!!a)

—3lcblclelell

(HL2,

(L6,L7)
=alblclell (L5)
=alblcle (L2)
—alblle (L7)

This sequence of Lemmas completes the verification
that the Huntington Box Algebra with void substitution
corresponds to a standard Boolean algebra. To see this we
can use the following standard axiomatization of Boolean
algebra:

1. x+y=y+xforall x and y.
2. (x+y)+z=x+(y+2)foral x, y and z.
3. There exists an element 0 such that 0 + x = x for all

X.

4. 0= (x +x") for all x.
5. (x+2z) +(y+2)) = (x'+y") +zforallx,y and z.

In this version of Boolean algebra we introduce the second
binary operation via the definition.

ab = (a' +b')".

The last axiom then is seen to be a distributive law and we
define the element 1 via 1 = a+ a' for any a. I leave it as
an exercise for the reader to see that these axioms generate
ordinary Boolean algebra.

In box or mark notation, with 0 corresponding to the
void, the first three axioms are implicit. The last two are
the contents of Lemma 4 and 8, respectively. This com-
pletes the verification that the Huntington Box Axiom with
void substitution generates Boolean algebra.

The same structure also verifies that the primary alge-
bra of Laws of Form [7] can be derived from a single initial
(In the context of Laws of Form an initial is an axiom added
to implicit commutativity and associativity. Void substitu-
tion is allowed in Laws of Form.). That the primary algebra
of Laws of Form can be derived from only one initial was
first observed by Dr. Rodney Johnson [1], and indepen-
dently proved by Mr. Graham Ellsbury [2]. The present
proof is due to the author [6], and was found in the process
of comparing the Huntington approach with Laws of Form.

The Robbins Axiom. We now look at the Robbins Ax-

iom in mark form:

a=ablabll| (R)

The original Robbins Problem did not allow void substi-
tution. In fact it is easy to see that the Robbins Box
Algebra is Boolean if we allow void substitution:
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1. Let the letter a be replaced by void in R (R stands for
the Robbins Axiom). Then we have

(void) =B 15 11}

for any b. Since any element p of the algebra is of the form
b | (by R) we conclude that

(void) = pp |l [ for any element p.
Use 1. and R to show that m = a for any a:
Tl=a1lalatlalll ®)

| (L)
ala (1)

R)

Once we have that ;—:ﬂ = a, we can deduce the Huntington
Box Axiom from the Robbins Box Axiom. We have already
verified that the Huntington Box algebra is Boolean if void
substitution is allowed. Hence in the presence of void sub-
stitution, the Robbins Axiom gives a Boolean algebra.

I leave it to the reader to check that in standard alge-
bra notation, these same ideas give a proof that a Robbins
algebra with a zero element is Boolean. A zero element, 0,
is an element such that 0+a = a for every a in the algebra.

In the next section we consider the Robbins Box Alge-
bra without void substitution.

II1. Robbins Box Algebra.

Following the conventions set out in section 2, we shall
examine the Robbins Box Algebra without void substitu-
tion. Thus we assume the single Robbins Box Axiom (R),
(in mark notation)

A=AB]| A'B‘lll

plus implicit commutativity and associativity as explained
in the previous section. (I shall refer to this implicit work
as rearrangement.) In this section we will not allow
void substitution. Thus the scope of the axiom is re-
stricted to expressions that are non-empty. In these terms
the Robbins Problem is equivalent to the question whether
the Robbins Box Algebra admits a non-Boolean model. We
have suggested such a model at the beginning of section 2.

In all further discussions, the Robbins Box Algebra
shall refer to the algebra with the axiom (R), and void sub-
stitution forbidden. Here is a proof of Winker’s Theorem

(8].

Theorem A. If there is an element a in the Robbins Box
Algebra such that aa = a, then there exists an element f in
the algebra such that fx = x for all x. Hence the algebra
is Boolean.




Proof. The proof of this Theorem will proceed by a series
of Lemmas. Under the hypothesis of the Theorem, let

f=a Ei_l l
Let
e=aal
We will show that this definition of f fits the bill.
Ll. ea=a
Dem.
ea=aaja (def of €)
=aaal (rearrange)
—adl ae=n
=e (def of e.)
L2. ea|=ee
Dem.
eal=aalal (def)
=aaalal (aa=a)
—aalaa]
(rearrange)
=ee (def)
L3. a=a|f I
Dem.
a=aalaall (R)
=aa |f (def)
=a|f I (aa=a.)
L4. a—l =ee|a l
Dem.
Tl=aTelatell ®)
=ajelalr] (E1=1)
—aklal (L3.)
=ee|a ‘ (L2.)
L5. a= —e?a—l ;—l
Dem
a=ace]acel|] (R)
=aee |a | (L4.)
_=Ta (L)

16. ce|=ala|=f
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Dem.

el=celaleelalll (R)
—alal (L4., L5.)
L7. fa]=al
Dem.
fal=eela I (L6.)
=a (L4.)
L8. fa=a
Dem
fa=faal|fa a—l (R)
=fa|faal (aa=a)
=a|faal | (L7.)
=aa|faal l (aa=a)
_atalllatalll (L3.)
=a (R.)
L9. ef =e
Dem
ef = aZ\_l f (def)
- (af=abyL8.)
=e (def)
L10. fa|=a]
Dem.
ral=ralaltalal[l ®)
—felfalall (def)
(L9. and def)
=a|fal If I (rearrange)
=E;]fa‘|la_|a|| (def)
_Ttrallattatlll a3
=a (R)
Lil. ff=f
Dem.

ff=f—fa_|ffa_|” (R)

—altalll (L8., L10.)
—alal (L3.)

L12. xf = x for any x.




Dem.

xf=xte]xfe]]) (R)
—xe]xff]| (def, L9.)
=xelxf]] (L11.)
=xe|xel] (def)

=x (R)

This completes the proof of Theorem A.

By an extension of these techniques we can prove the
Box-Theoretic analogs of Winker’s other results [8] about
the Robbins Problem. That is, we can show that a Robbins
Box Algebra containing a pair of elements a and b such
that a + b = b is necessarily Boolean. It is then immediate
that a non-Boolean Robbins algebra must be infinite. The
exposition of these results will be given in a sequel to this

paper.
IV. Epilogue on Paradoxical Values.

For the reader who sees some plausibility in the conjec-
ture that the box algebra BR of section 2 is a non-Boolean
Robbins algebra, I will here offer a modification of that alge-
bra that still appears to be a non-Boolean model. Call this
model PR - the Paradoxical Robbins Algebra. As be-
fore, the elements of PR are equivalence classes of topolog-
ical classes of disjoint collections of rectangles in the plane.
The equivalence relation is generated by the Robbins Box
Axiom (as before) plus the extra equivalence relation gen-
erated by the specific relation:

[ l=

It must be understood that this relation is to be taken quite
literally — each situation must occur isolated within a topo-
logical disk in the plane of any larger expression. Thus, a
box around an empty box is equivalent to a box. We can
conclude that a nest of boxes is equivalent to a single box -
by applying the relation repeatedly to the two inner-most
boxes. However, we can conclude nothing about a box sur-
rounding the juxtaposition of two or more boxes.

The algebra PR contains elements J such that J' = J.
(Let J denote the equivalence class of the empty box. Re-
call that the unary operation in the model is obtained by
“putting a box around it”.) Thus PR contains “paradox-
ical” elements, and is necessarily non-Boolean if it is non-
trivial. I conjecture that PR is indeed non-trivial.

One final remark — We can not have a non-standard
Robbins Algebra with 2" = ¢’ for all z in the algebra. The
axioms for the Robbins algebra imply that any element of
the algebra is of the form y' for some y in the algebra. Thus
z =1y and y' = y" for all y implies that " =y"' =y’ ==.
Hence z" = z for all z, and this makes the Robbins algebra
Boolean. '

The upshot is that Robbins algebra does not make a
good context for an intuitionistic type logic, but it does
seem to provide room for paradoxical elements invariant
under the analogue of negation.
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