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Reflexivity and Eigenform

 

The Shape of Process

 

1. Introduction

 

“Reflexive” is a term that refers to the pres-
ence of a relationship between an entity and
itself. One can be aware of one’s own
thoughts. An organism produces itself
through its own action and its own produc-
tions. A market or a system of finance is com-
posed of actions and individuals, and the
actions of those individuals influence the
market just as the global information from
the market influences the actions of the indi-
viduals. Here it is the self-relations of the
market through its own structure and the

structure of its individuals that moves its evo-
lution forward. Nowhere is there a way to cut
an individual participant from the market
effectively and make him into an objective
observer. His action in the market is concom-
itant to his being reflexively linked with that
market. It is just so for theorists of the mar-
ket, for their theories, if communicated,
become part of the action and decision-mak-
ing of the market. Social systems partake of
this same reflexivity, and so does apparently
objective science and mathematics. In order
to see the reflexivity of the practice of physical
science or mathematics, one must leave the
idea of an objective domain of investigation

in brackets and see the enterprise as a wide-
ranging conversation among a group of
investigators. Then, at once, the process is
seen to be a reflexive interaction among the
members of this group. Mathematical results,
like all technical inventions, have a certain
stability over time that gives them an air of
permanence, but the process that produces
these novelties is every bit as fraught with cir-
cularity and mutual influence as any other
conversation or social interaction.

How then, shall we describe a reflexive
domain? It is the purpose of this paper to give
a very abstract definition that nevertheless
captures what I believe to be the main con-
ceptual feature of reflexivity. We then imme-
diately prove that eigenforms, fixed points of
transformations, are present for all transfor-
mations of the reflexive domain. This will
encourage us and will give us pause to think
further about the relationship of reflexivity
and eigenform.

The existence of eigenforms will encour-
age us, for we have previously studied them
with the notion that “objects are tokens for
eigenbehavior.” Eigenforms are the natural
emergence of those tokens by way of recur-
sion. So to find the eigenforms dictated by a
larger concept is pleasing. The existence of
fixed points for arbitrary transformations
shows us that the domain we have postulated
is indeed very wide. It is not an objectively
existing domain. It is a clearing in which
structures can arise and new structures can
arise. A reflexive domain is not an already-
existing structure. To be what it claims to be,
a reflexive domain must be a combination of
an existing structure and an invitation to cre-
ate new structures and new concepts. The
new will become platforms from which fur-
ther flights of creativity can be made. Thus in
the course of examining the concept of reflex-
ivity we will find that the essence of the mat-
ter is an opening into creativity; and that will
become the actual theme of this paper.
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Purpose:

 

 The paper discusses the concept of a reflexive domain, an arena where the 
apparent objects as entities of the domain are actually processes and transformations of 
the domain as a whole. Human actions in the world partake of the patterns of reflexivity, 
and the productions of human beings, including science and mathematics, can be seen in 
this light. 
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Methodology

 

 – Simple mathematical models are used to make conceptual 
points. Context – The paper begins with a review of the author’s previous work on 
eigenforms – objects as tokens for eigenbehaviors, the study of recursions and fixed points 
of recursions. The paper also studies eigenforms in the Boolean reflexive models of 
Vladimir Lefebvre. 
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Findings

 

 –The paper gives a mathematical definition of a reflexive 
domain and proves that every transformation of such a domain has a fixed point. (This 
point of view has been taken by William Lawvere in the context of logic and category 
theory.) Thus eigenforms exist in reflexive domains. We discuss a related concept called 
a “magma.” A magma is composed entirely of its own structure-preserving 
transformations. Thus a magma can be regarded as a model of reflexivity and we call a 
magma “reflexive” if it encompasses all of its structure-preserving transformations (plus a 
side condition explained in the paper). We prove a fixed point theorem for reflexive 
magmas. We then show how magmas are related to knot theory and to an extension of 
set theory using knot diagrammatic topology. This work brings formalisms for self-
reference into a wider arena of process algebra, combinatorics, non-standard set theory 
and topology. The paper then discusses how these findings are related to lambda calculus, 
set theory and models for self-reference. The last section of the paper is an account of a 
computer experiment with a variant of the Life cellular automaton of John H. Conway. In 
this variant, 7-Life, the recursions lead to self-sustaining processes with very long 
evolutionary patterns. We show how examples of novel phenomena arise in these 
patterns over the course of large time scales. 
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Value

 

 – The paper provides a wider 
context and mathematical conceptual tools for the cybernetic study of reflexivity and 
circularity in systems. 
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This essay begins with a discussion of the
notion of “eigenform” as pioneered by Heinz
von Foerster in his papers (Foerster 1981a–c)
and explored in papers by the author (Kauff-
man 1987, 2003, 2005). We include some of
the material from (Kauffman 2005) in this
paper for the sake of completeness. In (Foer-
ster 1981a) the familiar objects of our exist-
ence can be seen to be nothing more than
tokens for the behaviors of the organism, cre-
ating apparently stable forms. 

In this view, the object is 

 

both

 

 an element
of a world 

 

and

 

 a token or symbol for the pro-
cess of its production/observation. 

An object, in itself, is a symbolic entity,
participating in a network of interactions,
taking on its apparent solidity and stability
from these interactions. We ourselves are
such objects: we, as human beings, are “signs
for ourselves,” a concept originally developed
by the American philosopher, Charles S.
Peirce (Kauffman 2001). Eigenforms are
mathematical companions to Peirce’s work. 

In an observing system, what is observed
is not distinct from the system itself, nor can
one make a complete separation between the
observer and the observed. The observer and
the observed stand together in a coalescence
of perception. From the stance of the observ-
ing system, all objects are non-local, depend-
ing upon the presence of the system as a
whole. It is within that paradigm that these
models begin to live, act and enter into con-
versation with us. 

After this journey into objects and eigen-
forms, we take a wider stance and consider
the structure of spaces and domains that par-
take of the reflexivity of object and process. In
Section 6 we give a definition of a 

 

reflexive
domain

 

. Our definition populates a space
(domain) with entities that could be con-
strued as objects, and we assume that each
object acts as a transformation on the space.
Essentially this means that given entities 

 

A

 

and 

 

B

 

, there is a new entity 

 

C

 

 that is the result
of 

 

A

 

 and 

 

B

 

 acting together in the order 

 

AB

 

 (so
that one can say that “

 

A

 

 acts on 

 

B

 

” for 

 

AB

 

 and
“

 

B

 

 acts on 

 

A

 

” for 

 

BA

 

). This means that the
reflexive space is endowed with a non-com-
mutative and non-associative algebraic
structure. The reflexive space is expandable
in the sense that whenever we define a pro-
cess, using entities that have already been
constructed or defined, then that process can
take a name, becoming a new entity/transfor-

mation of a space that is expanded to include
itself. Reflexive spaces are open to evolution
over time as new processes are invented and
new forms emerge from their interaction. 

Remarkably, reflexive spaces always have
eigenforms for every element/transforma-
tion/entity in the space! The proof is simple
but requires discussion. 

Just as promised, in a reflexive domain,
every entity has an eigenform. From this
standpoint, one should start with the concept
of reflexivity and see that from it emerge
eigenforms. Are we satisfied with this
approach? We are not. In order to start with
reflexivity, we need to posit objects and pro-
cesses. As we have already argued in this essay,
objects are tokens for eigenbehaviors. And a
correct or natural beginning is a process
where objects are seen as tokens of processes. 

By now the reader begins to see that the
story we have to tell is a circular one. We give
a way to understand this circularity in our last
section, where we discuss creativity in recur-
sive processes and the emergence of novelty.

The paper continues in Section 6 by
studying an allied concept that we call a

 

magma

 

. A magma is a domain with a binary
operation * that allows one to combine ele-
ments 

 

a

 

 and 

 

b

 

 of the domain to form a new
element 

 

a

 

 * 

 

b

 

 of that domain. In the magma
each element 

 

a

 

 is also a mapping of the
domain to itself via left combination:

 

x

 

 

 

→

 

 

 

a

 

 * 

 

x

 

. We assume that each such trans-
formation preserves the structure of the
combinatory operation. Magmas are very
close in concept to reflexive domains. We
define the notion of a reflexive magma and
show that such magmas satisfy a fixed point
theorem and so contain eigenforms. In Sec-
tion 7 we show how magmas arise naturally
in the context of knot theory and a theory of
knot sets. Sections 8 and 9 discuss the rela-
tionships of reflexivity with the lambda cal-
culus of Church and Curry and with Cantor’s
diagonal argument and the Russell paradox.
Section 10 is a minimalist discussion of self-
reference and reflexivity in relation to the
conceptualization of a universe that comes to
observe itself. Section 11 is an account of a

computer experiment with a variant of the
Life cellular automaton of John H. Conway.
In this variant that we have discovered, 7-
Life, the recursions lead to self-sustaining
processes with very long evolutionary pat-
terns. We show how examples of novel phe-
nomena arise over the course of large time
scales. This example will be a later spring-
board for the discussion of the emergence of
novelty from deterministic processes. Here, it
is an example showing how the course of a
process is just as important as its eigenform
or infinite concatenation. 

The paper ends with a discussion of the
wider context of reflexivity. We are acutely
aware that this paper about reflexivity only
gives certain conceptual tools and does not yet
address the actuality of the reflexive condition
of persons and observers who are inextricably
part of the universes that they hope to study.
In so doing they will adopt points of view and
these very points of view will create patterns,
new forms, objects of study and will act as a
veil over the original intent. It is only through
working with many points of view and many
investigations that the particularities of single
lenses will begin to fall away and a wider
understanding will emerge.

 

2. Objects as tokens for 
eigenbehaviors 

 

In his paper 

 

Objects as Tokens for Eigenbehav-
iors

 

, von Foerster (1981a) suggests that we
think seriously about the mathematical struc-
ture behind the constructivist doctrine that

 

perceived worlds are worlds created by the
observer.

 

 At first glance such a statement
appears to be nothing more than solipsism. At
second glance, the statement appears to be a
tautology, for who else can create the rich sub-
jectivity of the immediate impression of the
senses? At third glance, something more is
needed. In that paper he suggests that the
familiar objects of our experience are the fixed
points of operators. These operators 

 

are

 

 the
structure of our perception. To the extent that
the operators are shared, there is no solipsism
in this point of view. It is the beginning of a
mathematics of second order cybernetics.

Consider the relationship between an
observer 

 

O

 

 and an “object” 

 

A

 

. The key point
about the observer and the object is that “the
object remains in constant form with respect

Given 

 

F

 

 in a reflexive domain.
Define 

 

G

 

 by 

 

Gx

 

 = 

 

F

 

(

 

xx

 

).

Then 

 

GG

 

 = 

 

F

 

(

 

GG

 

) and so 

 

GG

 

 is an
eigenform for 

 

F

 

.
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to the observer.” This constancy of form does
not preclude motion or change of shape.
Form is more malleable than the geometry of
Euclid. In fact, ultimately, the form of an
“object” is the form of the distinction that “it”
makes in the space of our perception. In any
attempt to speak absolutely about the nature
of form we take the form of distinction for the
form (paraphrasing Spencer-Brown 1969). It
is the form of distinction that remains con-
stant and produces an apparent object for the
observer. How can you write an equation for
this? The simplest route is to write

 

O

 

(

 

A

 

) = 

 

A

 

.

The object 

 

A

 

 is a fixed point for the
observer 

 

O

 

. The object is an eigenform. We
must emphasize that this is the most schemat-
ically possible description of the condition of
the observer in relation to an object 

 

A

 

. We
only record that the observer as an actor
(operator) manages through his acting to
leave the (form of) the object unchanged.
This can be a recognition of the symmetry of
the object but it also can be a description of
how the observer, searching for an object,
makes that object up (like a good fairy tale)
from the very ingredients that are the
observer herself. This is the situation that
Heinz von Foerster has been most interested
in studying. As he puts it, if you give a person
an undecideable problem, then the answer
that he gives you is a description of himself.
And so, by working on hard and undecideable
problems we go deeply into the discovery of
who we really are. All this is symbolized in the
little equation 

 

O

 

(

 

A

 

) = 

 

A

 

.
And what about this matter of the object as

a token for eigenbehavior? This is the crucial
step. We forget about the object and focus on
the observer. We attempt to “solve” the equa-
tion 

 

O

 

(

 

A

 

) = 

 

A

 

 with 

 

A

 

 as the unknown. Not
only do we admit that the “inner” structure of
the object is unknown, we adhere to whatever
knowledge we have of the observer and
attempt to find what such an observer could
observe based upon that structure.

We can start anew from the dictum that
the perceiver and the perceived arise together
in the condition of observation. This is a
stance that insists on mutuality (neither per-
ceiver nor the perceived causes the other). A
distinction has emerged and with it a world
with an observer and an observed. The dis-
tinction is itself an eigenform. 

 

3. Compresence 
and coalescence

 

We identify the world in terms of how we
shape it. We shape the world in response to
how it changes us. We change the world and
the world changes us. Objects arise as tokens
of a behavior that leads to seemingly
unchanging forms. Forms are seen to be
unchanging through their invariance under
our attempts to change, to shape them.

For an observer there are two primary
modes of perception – 

 

compresence 

 

and 

 

coa-
lescence

 

. Compresence connotes the coexist-
ence of separate entities together in one
including space. Coalescence connotes the
one space holding, in perception, the observer
and the observed, inseparable in an unbroken
wholeness. Coalescence is the constant condi-
tion of our awareness. Coalescence is the
world taken in simplicity; compresence is the
world taken in apparent multiplicity.

This distinction between compresence
and coalescence, drawn by Henri Bortoft
(1971), can act as a compass in traversing the
domains of object and reference. 

 

Eigenform is
a first step towards a mathematical description
of coalescence

 

. In the world of eigenform, the
observer and the observed are one in a process
that recursively gives rise to each.

 

4. The eigenform model

 

We have seen how the concept of an object has
evolved to make what we call objects (and the
objective world), processes that are interde-
pendent with the actions of observers. The
notion of a fixed object has become a notion
of a process that produces the apparent stabil-
ity of the object. This process can be simpli-
fied in a model to become a recursive process
where a rule or rules are applied time and time
again. The resulting object of such a process is
the 

 

eigenform

 

 of the process, and the process
itself is the 

 

eigenbehavior.

 

 
In this way we have a model for thinking

about object as token for eigenbehavior. This
model examines the result of a simple recur-
sive process carried to its limit. For example,
suppose that

That is, each step in the process encloses
the results of the previous step within a box.
Here is an illustration of the first few steps of
the process applied to an empty box, 

 

X

 

:

If we continue this process, then successive
nests of boxes resemble one another, and in
the limit of infinitely many boxes, we find that 

The infinite nest of boxes is invariant
under the addition of one more surrounding
box. Hence this infinite nest of boxes is a fixed
point for the recursion. In other words, if 

 

X

 

denotes the infinite nest of boxes, then

 

X

 

 = 

 

F

 

(

 

X

 

). 

This equation is a description of a state of
affairs. The form of an infinite nest of boxes is
invariant under the operation of adding one
more surrounding box. The infinite nest of
boxes is one of the simplest eigenforms.

Remark. On reading the above description
of the limiting process 

 

X

 

 

 

→

 

 

 

F

 

(

 

X

 

) 

 

→

 

 

 

F

 

(

 

F

 

(

 

X

 

)) 

 

→

 

 …

the reader may find herself thinking along the
following lines: “Doesn’t he mean to put those
three dots in the nested boxes on the 

 

outside

 

 of
the boxes rather than on the inside? After all,

F(X) =

F(X)

F(F(X)) F(F(F(X)))

X

X = F(F(F(…))) = …

F(X) = … = X
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the operation 

 

F

 

 surrounds 

 

X

 

 with a square, so
at each stage, a square is added from the out-
side. Shouldn’t the picture then be like this
one below?”

“I have illustrated the new picture with
the three dots on the left, the right, the top
and the bottom to show how in this way of
thinking the nest of boxes grows outward and
consequently it grows in all these directions.
If we take this construction to infinity, then it
will either fill the plane with boxes, or the
widths between successive boxes will have to
grow smaller and smaller, just as, with the
three dots inside, you had to make the boxes
smaller and smaller. But really, this second
picture is quite different from the first pic-
ture. In fact if we 

 

do

 

 make the second picture,
and imagine that it is a solution to the equa-
tion F(X) = X, it does not seem to be a solu-
tion! Look at the picture below.”

“Now I have put a box around the out-
wardly growing infinite nest of boxes, but
this means that I have allowed an infinite
number of boxes to grow there (going out but
staying in a finite amount of space by crowd-
ing one next to another) and then I put one
more box around all of them. The result is not
the same! This is a new form of boxes.

So with the outward growth, I make new
infinities, but I do not solve the equation

X = F(X). Now I see what you were doing
with the inward nest of boxes. You let it grow
inwardly and obtained a limit form that did
not see the one box more that you put around
the outside. I had to try this other method in
order to see what you were doing. And I am
sure that other readers will have to experi-
ment in this way and in new ways to really
understand this construction of eigenforms.”

Comment on the remark. Indeed the patient
reader was right that there is more than one
way to go to infinity. A simpler example can
be seen in the equation x = ax where we solve
it by letting x = aaa…, an infinite repetition of
a’s going off to the right. 

Then ax = a(aaa…) = aaaa… = aaa… = x.
But if we do it in the other order and take

xa, we find that 

xa = aaaa…a

which means an infinite row of a’s followed by
one more a.

And we see that in this way of thinking xa
is not equal to ax.

Similarly, y = …aaa is not a solution to
ay = y but it is a solution to ya = a. This may
seem a bit strange and abstract, so it is better
to think with the boxes (I think). But in ordi-
nary mathematics we use this same sort of
infinite construction. For example, we write

x = 1 + a + aa + aaa + aaaa + …

and rewrite it in the form

x = 1 + a(1 + a + aa + aaa + …) = 1 + ax

and conclude that 

x – ax = 1, 
x(1 – a) = 1, 

x = 1 / (1 – a).

Hence

1 / (1 – a) = 1 + a + aa + aaa + aaaa + …

Here we are using aa for the product of a
with itself, so these can be numbers. And one
can verify that indeed if a is a number and the
absolute value of a is less than one, then this
formula is true. For example, if a = 1 / 2, then
1 / (1 – (1 / 2)) = 2 and the formula asserts that

2 = 1 + 1/2 + 1/4 + 1/8 + 1/16 + …

This is true, and the reader should ask her-
self how she knows that it is true! The reader
will also be interested in seeing what happens

when a is bigger than or equal to 1 in absolute
value. For example, if a = 2, then our formula
would seem to say that 

–1 = 1 + 2 + 4 + 8 + 16 + 32 + …

Is there some truth in this absurdity?
We can see what has actually happened by

making a closer analysis.
Let X = 1 + 2 + 4 + … + 2N where 2N means

2 multiplied by itself N times. Then we have

X = 1 + 2(1 + 2 +… + 2N–1), 

X = 1 + 2(1 + 2 +… + 2N–1 + 2N) – 2(2N),

X = 1 + 2X – 2N + 1, 

So we have

X – 2X = 1 – 2N + 1, 

which is the same as saying

X = –1 + 2N + 1.

Do you see what has happened? We are
interested in finding out what happens when N
goes to infinity. But here if we ignore the term
2N+1 we will get the wildly wrong answer of –1.
You have to take infinity with a grain of salt as
well as looking at it as the vastness of all the
grains of sand on the beach. End of comment.

A further comment. Perhaps you thought that
we showed that the equation: –1 = 1 + 2 + 4 +
… is wrong. There is a point of view in which
it is right! Consider that in binary arithmetic
we represent 1 by 1, 2 by 10, 4 by 100, 8 by 1000
and so on. Then 1 + 2 + 4 + 8 is represented in
binary by 1111, and when you add 1 to 1111
you find a series of carrys taking you to the
answer 10000. Suppose you had a computer
that could only handle binary numbers up to
four bits. Then when you added 1 to 1111 you
would get 0000, since the computer would
throw away the last bit. In this sense 1111 rep-
resents –1 in such a limited computer, and in
the same way the infinite sum 1 + 2 + 4 + 8 +
… represents –1 in an infinite computer that
is not prepared to have bits beyond the first
infinity! 

In the process of observation, we interact
with ourselves and with the world to produce
stabilities that become the objects of our per-
ception. These objects, like the infinite nest of
boxes, may go beyond the specific properties
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of the world in which we operate. They attain
their stability through the limiting process
that goes outside the immediate world of
individual actions. We make an imaginative
leap to complete such objects to become
tokens for eigenbehaviors. It is impossible to
make an infinite nest of boxes. We do not
make it. We imagine it. And in imagining that
infinite nest of boxes, we arrive at the eigen-
form. 

The leap of imagination to the infinite
eigenform is a model of the human ability to
create signs and symbols. In the case of the
eigenform X with X = F(X), X can be regarded
as the name of the process itself or as the name
of the limiting process. Note that if you are
told that 

X = F(X), 

then, substituting F(X) for X, you can write

X = F(F(X)).

Substituting again and again, you have

X = F(F(F(X))) = F(F(F(F(X)))) = 
F(F(F(F(F(X))))) = …

The process arises from the symbolic
expression of its eigenform. In this view, the
eigenform is an implicate order for the process
that generates it. (Here we refer to implicate
order in the sense of David Bohm 1980). 

Sometimes one stylizes the structure by
indicating where the eigenform X reenters its
own indicational space with an arrow or other
graphical device. See the picture below for the
case of the nested boxes.

Does the infinite nest of boxes exist? Cer-
tainly it does not exist on this page or any-
where in the physical world with which we are
familiar. The infinite nest of boxes exists in the
imagination. It is a symbolic entity.

The eigenform is the imagined boundary
in the reciprocal relationship of the object
(the “It”) and the process leading to the object
(the process leading to “It”). In the diagram

below we have indicated these relationships
with respect to the eigenform of nested boxes.
Note that the “It” is illustrated as a finite
approximation (to the infinite limit) that is
sufficient to allow an observer to infer/per-
ceive the generating process that underlies it.

Just so, an object in the world (cognitive,
physical, ideal, etc.) provides a conceptual
center for the exploration of a skein of rela-
tionships related to its context and to the
processes that generate it. An object can have
varying degrees of reality, just as an eigenform
does. If we take the suggestion to heart that
objects are tokens for eigenbehaviors, then an
object in itself is an entity, participating in a
network of interactions, taking on its appar-
ent solidity and stability from these
interactions. 

An object is an amphibian between the
symbolic and imaginary world of the mind
and the complex world of personal experi-
ence. The object, when viewed as a process, is
a dialogue between these worlds. The object,
when seen as a sign for itself, or in and of itself,
is imaginary.

Why are objects apparently solid? Of
course you cannot walk through a brick wall
even if you think about it differently. I do not
mean apparent in the sense of thought alone.
I mean apparent in the sense of appearance.
The wall appears solid to me because of the

actions that I can perform. The wall is quite
transparent to a neutrino, and will not even be
an eigenform for that neutrino.

This example shows quite sharply how the
nature of an object is entailed in the proper-
ties of its observer.

The eigenform model can be expressed in
quite abstract and general terms. Suppose
that we are given a recursion (not necessarily
numerical) with the equation

X(t + 1) = F(X(t)).

Here X(t) denotes the condition of obser-
vation at time t. X(t) could be as simple as a
set of nested boxes, or as complex as the entire
configuration of your body in relation to the
known universe at time t. Then F(X(t))
denotes the result of applying the operations
symbolized by F to the condition at time t. You
could, for simplicity, assume that F is inde-
pendent of time. Time independence of the
recursion F will give us simple answers and we
can later discuss what will happen if the
actions depend upon the time. In the time-
independent case we can write

J = F(F(F(…)))

– the infinite concatenation of F upon itself.
Then 

F(J) = J

since adding one more F to the concatenation
changes nothing.

Thus J, the infinite concatenation of the
operation upon itself leads to a fixed point for
F. J is said to be the eigenform for the recur-
sion F. We see that every recursion has an
eigenform. Every recursion has an (imagi-
nary) fixed point.

We end this section with one more exam-
ple. This is the eigenform of the Koch fractal
(Mandelbrot 1982). In this case one can write
symbolically the eigenform equation

K = K { K K } K

to indicate that the Koch Fractal reenters its
own indicational space four times (that is, it is
made up of four copies of itself, each one-
third the size of the original. The curly brack-
ets in the center of this equation refer to the
fact that the two middle copies within the
fractal are inclined with respect to one
another and with respect to the two outer
copies. In the figure below we show the geo-
metric configuration of the reentry.

… =

The It

The Process leading to It
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In the geometric recursion, each line seg-
ment at a given stage is replaced by four line
segments of one third of its length, arranged
according to the pattern of reentry as shown
in the figure above. 

The recursion corresponding to the Koch
eigenform is illustrated in the next figure.
Here we see the sequence of approximations
leading to the infinite self-reflecting eigen-
form that is known as the Koch snowflake
fractal.

Five stages of recursion are shown. To the
eye, the last stage vividly illustrates how the
ideal fractal form contains four copies of
itself, each one-third the size of the whole.
The abstract schema

K = K { K K } K 

for this fractal can itself be iterated to produce
a “skeleton” of the geometric recursion:

K = K { K K } K 
= K { K K } K { K { K K } K K { K K } K } K { 

K K } K = …

We have only performed one line of this
skeletal recursion. There are sixteen K’s in this
second expression, just as there are sixteen
line segments in the second stage of the geo-

metric recursion. Comparison with this sym-
bolic recursion shows how geometry aids the
intuition. The interaction of eigenforms with
the geometry of physical, mental, symbolic
and spiritual landscapes is an entire subject
that is in need of deep exploration. 

It is usually thought that the miracle of rec-
ognition of an object arises in some simple
way from the assumed existence of the object
and the action of our perceiving systems. This
is fine tuning to the point where the action of
the perceiver and the perception of the object
are indistinguishable. Such tuning requires an
intermixing of the perceiver and the perceived
that goes beyond description. Yet at the math-
ematical levels, such as number or fractal pat-
tern, part of the process is slowed down to the
point where we can begin to apprehend the
process. There is a stability in the comparison,
in the correspondence that is a process hap-
pening at once in the present time. The closed
loop of perception occurs in the eternity of
present individual time. Each such process
depends upon linked and ongoing eigenbe-
haviors and yet is seen as simple by the per-
ceiving mind. The perceiving mind is itself an
eigenform.

Mirror-mirror
In the next figure we illustrate how an eigen-
form can arise from a process of mutual
reflection. The figure shows a circle with an
arrow pointing to a rectangle and a rectangle
with an arrow pointing toward a circle. For
this example, we take the rule that an arrow
between two entities (P → Q) means that the
second entity will create an internal image of
the first entity (Q will make an image of P). If
P → Q and Q → P, then each entity makes an
image of the other. A recursion will ensue.
Each of P and Q generates eigenforms in this
mutuality.

In this example we can denote the initial
forms by C (for circle) and B (for box). We
have C → B and B → C. The rule of imaging
is (symbolically): 

If P → Q then P → QP.
If P ← Q, then PQ ← Q.

We start with the mutual reference C ↔ B.
This condition of mutual mirroring can be

described by two operators C and B: 

C(P) = CP corresponds to C → P.
B(Q) = BQ corresponds to Q ← B.

Solving the eigenform equations

C(Y) = X, 
B(X) = Y, 

we have the mirror-mirror solution

X = BCBCBCBC…, 
Y = CBCBCBCB…, 

just as in the figure.
We are quite familiar with this form of

mutual mirroring in the physical realm where
one can have two facing mirrors, and in the
realm of human relations where the complex-
ity of exchange (mutual mirroring) between
two individuals leads to the eigenform of their
relationship. 

5. Boolean self-reference 
and the work of 
Vladimir Lefebvre

Vladimir Lefebvre (1982) models ethical situ-
ations involving multiple reflections (I think
about your thoughts about me, while you
think about my thoughts about you.) using
Boolean algebra and a graphical formalism. 

The crux of this endeavor begins with
examining self-referential equations in the
Boolean context. In this context we have the
arithmetic of 0 and 1 with 1 + 1 = 1 and oth-
erwise 0 and 1 behaving as in ordinary arith-
metic, with complementation (a → a´) inter-
changing them: 0´ = 1 and 1´ = 0. 

In interpreting Boolean algebra for logic,
we take a + b to mean “a or b” and ab to mean
“a and b.” 

Thus we take 1 as T (True) and 0 as F
(False). 

Note that a > b (a implies b) is represented
by a´ + b in this system.

K = K { KK } K

then

then

then
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A very simple form of Boolean self-refer-
ence is the equation

x = x.

This just says that x is equal to x. It is like
the biblical “I am that I am.”

A diabolical form of Boolean self reference
is the equation

x = x´.

This says that x is equal to not x, and can
be interpreted as the statement of the liar who
asserts that he is lying, “I am a liar.” I like to
think of the solution to this equation as an os-
cillation between 0 and 1.

After all, if x = 0, then x = x´ = 0´ = 1 and if
x = 1, then x = x´ = 1´ = 0.

So x oscillates just like a buzzer of a door-
bell.

The simplest general form of a Boolean
self-referential equation is

x = ax + bx´.

What are the possibilities?
We can have 

[ x = x + x´ = 1 (constantly true), 
[ x = 1x + 0x´ = x (self-affirming), 
[ x = 0x + 1x´ = x´ (self-denying), 
[ x = 0x + 0x´ = 0 (just false).

Thus there does not seem to be a lot of
structure in this simplest version of self-refer-
ence. However, we should think a bit further
and realize that a and b can be propositions
that have relative truth values and we may not
need to know the actual truth values of a and
b. Consider the equation

x = (b´ + c)x + cx´.

If x = 0, then we have 0 = c.
So we conclude that for x = 0 to be a solu-

tion, this equation reduces to x = x or x = 0.
However, if x = 1 is a solution, then we have 1
= b´ + c, and the equation will have a solution
just so long as b implies c is true. In either case
the equation has a non-oscillatory solution.
This is the form of the self-referential equa-
tion at the base of Lefebvre’s analysis of ethics
and reflectivity. 

The next thing to notice is that (a > b) > c
= (a´ + b)´ + c = ab´ + c = (b´ + c)a + ca´.

Thus we have 

a = (a > b) > c 

as an allowable self referential Boolean equa-
tion.

Lefebrve interprets the right hand side of
this equation as “c thinks of b thinking of a.”
Thus the self-reference is “a is thinking of c
thinking of b thinking of a.” 

Lefebvre takes ba as notation for “a implies
b.” Thus

ba = b + a´

and ba stands for a > b, which is interpreted as
“b is thinking about a” or “b has an internal
image of a.” 

Thus our self-referential equation be-
comes a = cx where x = ba.

Using Laws of Form
Here is a second take on this theme, using
Laws of Form (Spencer 1969) bracket nota-
tion. In the Laws of Form notation, we take
a´ = 〈a〉 and ab stands for a + b while the con-
junction ab in Boolean algebra becomes
〈〈a〉〈b〉〉 in accordance with DeMorgan’s Law.
We also have 0 as the void state in Laws of
Form and 1 = 〈 〉, the marked state, a single
crossing from the void. Then the Boolean
arithmetic of 0 and 1 corresponds to the Laws
of Calling 〈 〉 〈 〉 = 〈 〉 and Crossing 〈〈 〉〉 = “void.”

In Laws of Form notation, “a implies b” is
written as

〈a〉b = b〈a〉.

In Lefebvre’s notation this is the same as 

b〈a〉 = ba.

Thus Laws of Form is a useful alternate
formalism for this theory.

We can interpret b〈a〉 as “b thinks of a.”
Consider the self-referential equation 

a = 〈〈a〉b〉c.

“a is thinking of c thinking of b who thinks
of a.”

This is a self-reference that can be made
inside two-valued primary arithmetic, since it
never oscillates like a = 〈a〉. You can think of
this fixed point in the form of the infinite
reentry:

a = 〈〈〈〈〈〈〈〈〈〈…〉b〉c〉b〉c〉b〉c〉b〉c〉b〉c.

It is amusing to write this in ordinary
Boolean form as a = c + da where d = 〈b〉 and
xy = 〈〈x〉〈y〉〉 and x + y replaces x y (LOF jux-
taposition). Then we get

a = c + da

a = c + d(c + da) = c + dc + d2a

and so on, 

a = c + d2c + d3c + d4c + …

a = “c / (1 – d).”

The infinite reentry expressions in LOF
become an infinite power series in Boolean
algebra. This brings us closer to classical
mathematics and its role in producing imagi-
nary values.

Lefebvre (1982) in his “Algebra of Con-
science” models structures such as

a = 〈b〉a

b = 〈a〉b

as “a thinking about himself with an image of
b” and “b thinking about himself with an
image of a.” 

We can use the LOF notation to represent
the self-referential algebra of Lefebvre, and it
is useful to do this. 

It is important to see how fixed point equa-
tions and reflexivity are intertwined in the
Boolean structure. One might think that
these concepts would not live in the Boolean
context, but of course we do manage to dis-
cuss them in the Boolean context of our own
thought. So Lefebvre’s model is a microcosm
of our condition, and of course this is exactly
the point!

This section is just a small introduction to
Lefebrvre’s theory of reflexivity. It is worth
pointing out that he uses the Boolean back-
ground skillfully when it is required, but uses
the symbolism of reflection on the surface in
a way that corresponds to nested linguistic
statements. For example, a〈a〈a〉〉 represents “a
thinking about a, who has a self-image that
corresponds to the true (external) a.” When
we evaluate this expression we find

a〈a〈a〉〉 = a〈〈 〉〉 = a.

Thus the non-self-doubting a is simply
himself.

On the other hand, a〈a〈 〈a〉 〉〉 represents a
with an image of himself whose image of him-
self is false (〈a〉). Evaluating this expression,
we find

a〈a〈〈a〉〉〉 = a〈a a〉 = a 〈a〉 = 〈 〉.

Thus the individual with a doubting self
image receives a marked value for his skepti-
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cism. What about an individual who directly
doubts himself? Then we have a 〈 〈a〉 〉 = a a =
a. He is in the same boat as the individual
with a self-image who doubts. From these
examples, we see that the Lefebvre system
needs to be examined carefully for its internal
meanings. This will be the subject of another
paper.

6. Reflexive domains and 
the magma
A reflexive domain D is an arena where
actions and processes that transform the
domain can also be seen as the elements that
compose the domain. Every element of the
domain can be seen as a transformation of
the domain to itself.

In actual practice, an element of a domain
may be a person or company (collective of
persons) or a physical object or mechanism
that is seen to be in action. In actual practice
we must note that what are regarded as
objects or entities depends upon the way in
which observers inside or outside the domain
divide their worlds.

It is very difficult to make a detailed math-
ematical model of such situations. Each actor
is an actor in more than one play. His actions
undergo separate but related interpretations,
depending upon the others with whom he
interacts. Mutual feedback of a multiplicity
of ongoing processes is not easily described in
the Platonic terms of pure mathematics.

Nevertheless, we take as a general princi-
ple for a mathematical model that D is a cer-
tain set (possibly evolving in time), and we let
[D, D] denote a selected collection of map-
pings from D to D. An element F of [D, D] is
a mapping F: D → D. 

We shall assume that there is a one-to-one
correspondence 

I: D → [D, D]. 

This is the assumption of reflexivity. Every
element of the reflexive domain is a transfor-
mation of that domain. Each denizen of the
reflexive domain has a dual role of actor and
actant.

Given an element g in D, I(g): D → D is a
mapping from D to D, and for every mapping
F: D → D, there is an element g in D such that
I(g) = F. The reflexive domain embodies a
perfect correspondence between actions and

entities that are the recipients of these
actions. See Dana Scott (1980) for a specific
construction of reflexive domains relevant to
computer science and logic. 

An important precursor to this notion of
reflexive domain in mathematics is the
notion of Gödel numbering of texts. One
chooses a method to encode a text as a spe-
cific natural number (a certain product of
prime powers). Then texts that speak about
numbers can, in principle, speak about other
texts and even about themselves. If a text is
seen as a transformation on the field of num-
bers, then that text is itself a number (its
Gödelian code) and so can be transforming
itself. The precision of this idea enabled
Gödel to construct mathematical systems
that could talk about their own properties
without contradiction and he showed that all
sufficiently rich mathematical systems have
this property. In this way, these systems
become self-limiting due to the possibility of
statements whose coded meaning becomes
“This statement has no proof in the system of
mathematics in which it is written, “while the
surface meaning of the same statement is a
discussion of the properties of certain
numerical relations. The domain of numeri-
cal relations appears innocuous, and yet it
sows the seeds of its own limitations through
this ability to reflect itself through the mirror
of the Gödel coding.

The Gödelian example is not just a piece
of mathematics. It is a reflection with mathe-
matical precision of the condition of our lan-
guage, thought and action. We are always
equipped to comment on our own doings
and in so doing to create new language about
our old language and new language about
our worlds. All our apparent well-thought-
out and directed actions in worlds that seem
to extend outward from us in an objective
way are fraught with the circularity not just
of our meta-comments, but also with the cir-
cular return of the consequences of those
actions and the influence of our very theories
of the world on the properties of that world
itself.

We now prove a fundamental theorem
about reflexive domains.

We show that every mapping F: D → D
has a fixed point p, an element p in D such
that F(p) = p. What does this mean? It means
that there is another way, in a reflexive
domain, to associate a point to a transforma-

tion. The point can be seen as the fixed point
of a transformation and in that way, the
points of the domain disappear into the self-
referential nature of the transformations.

Let me tender persuasions. Suppose that
p = F(p). Then we can regard this equation as
an expression of p in terms of F and itself and
write

p = F(p)
= F(F(p)
= F(F(F(p)))
= F(F(F(F(p))))

and continue in this fashion until the appear-
ance of p on the right hand side is lost in the
depths of the composition of F upon itself.

p = F(F(F(F(F(F(F(F(F(F(…)))))))).

The infinite composition of F upon itself
is invariant under one more composition
with F and so F(p) = p is consistent with this
process.

To show that an entity p is a fixed point for
a process F is to show that p can be formally
identified with the infinite concatenation of
F upon itself. This is an image of the way
objects become tokens for eigenbehaviors, in
the language of Heinz von Foerster. 

Here we show that eigenforms exist in
reflexive domains without an infinite limit.
The interested reader should compare this
argument with the work of William Lawvere
(1972). Lawvere proves a more general result
in the context of Cartesian closed categories.
We have taken his argument and shaped it
particularly for this discussion of reflexivity.

Fixed Point Theorem. Let D be a reflexive
domain with 1–1 correspondence F: D → [D,
D]. Then every F in [D, D] has a fixed point.
That is, there exists a p in D such that F(p) = p.

Proof. Define G: D → D by the equation Gx =
F(I(x)x) for each x in D. 

Since I:D → [D, D] is a 1 – 1 correspon-
dence, we know that G = I(g) for some g in D. 

Hence Gx = I(g)x = F(I(x)x) for all x in D. 
Therefore, letting x = g, I(g)g = F(I(g)g)

and so p = I(g)g is a fixed point for F. 

Q.E.D.

We shall discuss this proof and its mean-
ing right now in a series of remarks, and later
in the paper in regard to examples that will be
constructed.
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Remark 1
Suppose that we reduce the notational com-
plexity of our description of the reflexive
domain by simply saying that for any two enti-
ties g and x in the domain there is a new entity
gx that is the result of the interaction of g and
x. (We think of gx as I(g)x = I(g) applied to x.)

In mathematical terms, we define

gx = I(g)x.
Then the proof of the fixed point theorem

appears in a simpler form: we define Gx =
F(xx) and note that GG = F(GG).

Thus GG is the fixed point for F!
I like to call G “F’s Gremlin” (Kauffman

2001).1

This is an apt description of our G. At first
G looks quite harmless. Applying G to any A
we just apply A to itself and apply F to the
result. GA = F(AA). The dangerous mixture
comes when it is possible to apply G to itself!
Then GG = F(GG), and GG is sitting right in
there surrounded by F and you cannot stop
the action. Off goes the recursion
GG = F(GG)

= F(F(GG))
= F(F(F(F(GG))))
= F(F(F(F(F(F(F(F(GG))))))))
The diabolical nature of the Gremlin is

that he represents a process that once started,
is hard to stop.

Gremlins seem innocent. They just dupli-
cate entities that they meet, and set up an
operation of the duplicate on the duplicand.
But when you let a gremlin meet a gremlin
then strange things can happen. It is a bit like
the story of the sorcerer’s apprentice. A recur-
sion may happen whether you like it or not.

Such are the processes by which we make
the world into a field of tokens and symbols
and forget the behaviors and processes and
reflexive spaces from which they came. Fixed
points and self-references are the unavoidable
fruits of reflexivity, and reflexivity is the natu-
ral condition in a universe where there is no
complete separation of part from the whole. 

Remark 2
A reflexive domain is a place where actions
and events coincide. An action is a mapping
of the whole space because there is no intrin-
sic separation of the local and the global.
Feedback is an attempt to handle the lack of
separation of part and whole by describing
their mutual influence.

When we define a new element g of D via
gx = F(x) for any mapping F: D → D, and we
have a notion of the combination of elements
of D: a, b → ab, then we can define gx = F(xx)
and so get gg = F(gg). Here we have not made
a big separation between the elements of D
and the mappings, since each element g of D
gives the mapping I(g)x = gx. But in fact, we
could define ab = I(a)b in a reflexive domain.

Whenever anyone comes up with a trans-
formation, we make that transformation into
an element of the domain by the definition gx
= F(x). We transmute verbs to nouns. The
reflexive domain evolves.

The space is not given a priori. The space
evolves in relation to actions and definitions.
The road unfolds before us as we travel.

Remark 3
We create languages for evolving concepts.
The outer reaches of set theory (and category
theory) lead to clear concepts, but these con-
cepts are not themselves sets or categories. A
good example is the famous Russellian con-
cept of sets that are not members of them-
selves. Russell’s concept is not a set. Another
example is the concept of set itself. There is no
set that is the set of all sets.

This very limitation on the notion of a set
is its opening. It shows us that set theory can
be an evolving language. Language and con-
cepts expand in time.

Here is a transformation on sets: F(X) =
{X}. The transform of a set X is the singleton
set whose member is X. If X is not a member
of itself, then F(X) is also not a member of
itself. But a fixed point of the transformation
F is an entity U such that {U} = U. We have
shown that within the domain of sets that are
not members of themselves, there is no fixed
point for the transformation X → {X}. This
fragment of set theory (sets that are not mem-
bers of themselves) is not yet a reflexive
domain. We shall allow sets that are members
of themselves if we wish to have a set theory
with reflexivity.

Remark 4: Transcendence
The leap to infinity via self-reference, the pro-
duction of the finite base of a new level of
infinity, the completion of an incompletion,
the emergence of eternity from the world of
time – all these metaphors are intimately
related to the going back and forth between a
process and its eigenform. 

How then is observation different from
action?

If observation is a form of recursion cou-
pled with the production of the finite base of
the limiting form, then observation is a tran-
scendence to a new level. The model of obser-
vation as a simple eigen-vector must be
shifted to a model of observation as the act of
producing an eigenform.

It is not enough to produce an eigenform.
The fixed point is itself an active element and
can itself engage in transformation.

In the creation of spaces of conversation
for human beings, we partake of a reflexivity
of action and apparent object, where it is seen
that every local manifestation of process,
every seemingly fixed entity in a moving
world is an indicator of global transforma-
tion. The local and the global intertwine in a
reflexive and cybernetic unity. 

Retuning (returning/tuning/retuning) to
thoughts of reflexivity, one creates by going
outside oneself, but the creation returns in the
form of a conversation with one’s self. There
is a feedback loop between the person/
designer and the world that she makes.

Each one acts in the creation of the other.
Priorities may be assigned, but it is the loop
that interests us, and the possibility of the sta-
bility (or at least temporal persistence) of
what is created in that loop. 

Remark 5: The magma as 
reflexive domain
A magma is an algebraic system with a binary
operation a * b that is left-distributive: 
a * (b * c) = (a * b) * (a * c). This means that
every element of the magma is a structure pre-
serving mapping of the magma to itself (via
left multiplication). A magma is composed of
its own symmetries. 

It may help the reader to see how elements
of a magma become mappings of the magma
to itself, preserving the combinational struc-
ture. Let A(x) = a * x for a given element a in
a magma M.

Then A: M → M and A(x * y) = a * (x * y)
= (a * x) * (a * y) = A(x) * A(y).

Thus for all x and y in M we have A(x * y)
= A(x) * A(y). Each element of the magma
gives rise, by left multiplication, to a struc-
ture-preserving mapping of the magma to
itself.

Here is an example of a magma. Let TRI =
{a, b, c} be a set with three elements a, b and c. 
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Define a * a = a, b * b = b and c * c = c.
And define a * b = c = b * a, a * c = b = c * a
and b * c = a = c * b. 

In other words, each element combines
with itself to produce itself, and any pair of
distinct elements combine to produce the
remaining element that is different from
either of them. The reader can verify that TRI
is indeed a magma. For example, 

a * (b * c) = a * (a ) = a
(a * b) * (a * c) = (c) * (b) = a.

Note also that the multiplication in this
magma is not associative:

a * (a * b) = a * c = b
(a * a) * b = a * b = c.

We will return to this magma in the next
section and see that TRI is intimately related
to the simplest knot, the trefoil knot.

Another example to think about is OM,
the free magma generated by one element J.
Here we consider all possible expressions and
ways that b can combine with itself and with
other elements generated from itself.
Remarkably, the free magma is an infinitely
complex structure. For example, note the fol-
lowing consequences of the distributive law
(here using XY instead of X * Y):

J(JJ) = ((JJ)(JJ)) 
= ((JJ)J)((JJ)J)

= (((JJ)J)(JJ))(((JJ)J)J)).

In the free magma an infinite structure is
generated from one element and all its pat-
terns of self-interaction.

Suppose further that we assume that every
structure-preserving mapping of the magma
M is represented by an element of the magma
M. This will place us in the position of creat-
ing from the magma something like a reflex-
ive domain. 

In the next section we shall see that mag-
mas arise very naturally in the topology of
knots and links in three-dimensional space.
This is an excellent way to think about them,
and it provides a way to think about reflexiv-
ity in terms of topology. Here we take an
abstract point of view and see when the struc-
ture-preserving nature of elements of a
magma leads to the analog of a reflexive
domain.

I shall call a magma M reflexive if it has the
property that every structure-preserving
mapping of the algebra is realized by an ele-

ment of the algebra and (x * x) * z = x * z for
all x and z in M. 

A special case of this last property would
be where x * x = x for all x in M. We shall see
this property come up in the knot theoretic
interpretations of the next section.

Suppose that M is a reflexive magma. Does
M satisfy the fixed point theorem? We find
that the answer is, yes.

Fixed Point Theorem for Reflexive Magmas.
Let M be a reflexive magma. Let F: M → M be
a structure-preserving mapping of M to itself.
Then there exists an element b in M such that
F(p) = p.

Proof. Let F: M → M be any structure-pre-
serving mapping of the magma M to itself.
This means that we assume that F(x * y) =
F(x) * F(y) for all x and y in M. 

Define G(x) = F(x * x) and regard G: M →
M. Is G structure preserving? We must com-
pare G(x * y) = F((x * y) * (x * y)) = F(x * (y *
y)) with G(x) * G(y) = F(x * x) * F(y * y) =
F((x * x) * (y * y)).

Since (x * x) * z = x * z for all x and z in M,
we conclude that G(x * y) = G(x) * G(y) for all
x and y in M.

Thus G is structure preserving and hence
there is an element g of M such that G(x) =
g * x for all x in M. Therefore we have g * x =
F(x * x), whence g * g = F(g * g). For p = g * g,
we have p = F(p). This completes the proof.

Q.E.D.
This analysis shows that the concept of a

magma is very close to our notion of a reflex-
ive domain. The examples of magmas related
to knot theory, given in the previous section,
show that magmas are not just abstract struc-
tures, but are related directly to the properties
of space and topology in the worlds of com-
munication and perception in which we live. 

7. Knot sets, topological 
eigenforms and the left-
distributive magma

We shall use knot and link diagrams to repre-
sent sets. More about this point of view can be
found in the author’s paper “Knot Logic”
(Kauffman 1995). In this notation the
eigenset Ω satisfying the equation

Ω = {Ω}

is a topological curl. If you travel along the
curl you can start as a member and find that
after a while you have become the container.

Further travel takes you back to being a
member in an infinite round. In the topolog-
ical realm, Ω does not have any associated
paradox. This section is intended as an intro-
duction to the idea of topological eigenforms, a
subject that we shall develop more fully else-
where.

Set theory is about an asymmetric relation
called membership. 

We write a ε S to say that a is a member of
the set S. In this section we shall diagram the
membership relation as follows:

This is knot-set notation.
In this notation, if b goes once under a, we

write a = {b}. If b goes twice under a, we write
a = {b, b}. This means that the “sets” are
multi-sets, allowing more than one appear-
ance of a member. For a deeper analysis of the
knot-set structure see (Kauffman 1995).

This knot-set notation allows us to have
sets that are members of themselves, 

and sets can be members of each other.

Here a mutual relationship of a and b is
diagrammed as a topological linking. 

b
a

a

a ε b

Ω

Ω = {Ω}
Ω ε Ω

b

a

a = {b}
b = {a}

a = {b, b}
b = {c, c}
c = {a, a}b

a

c
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Here are the Borromean Rings. The Rings
have the property that if you remove any one
of them, then the other two are topologically
unlinked. They form a topological tripartite
relation. Their knot-set is described by the
three equations in the diagram.

Thus we see that this representative knot-
set is a “scissors-paper-stone” pattern. Each
component of the Rings lies over one other
component, in a cyclic pattern. 

Remark. The connection between this for-
malism and epistemic logic (Hintikka 1962)
should be further explored. In epistemic logic
the basic expressions are of the form KaKbp
(“a knows that b knows that p”). 

One specific thing to explore is the prob-
lem of common knowledge, which can only
be reduced to an infinite number of K’s as in 

E = KaKbKaKbKaKb…

denoting that “a knows that b knows that a
knows that…”

We can write this as 

E = KaF

F = KbE 

indicating that

E = “a knows F”

F = “b knows E.”

Together these statements indicate com-
mon knowledge or mutuality for a and b.
Conversely, we can take the linked sets A = {B}
and B = {A} as a statement of common knowl-
edge.

Another avenue that should be explored is
the relationship between knot set theory and
Aczel’s theory of self-referential and non-
wellfounded sets (Aczel 1988) and the related
treatment by Barwise and Moss (1996).

Quandles and 
colorings of knot diagrams
There is an approach to studying knots and
links that is very close to our knot sets, but
starts from a rather different premise.

In this approach each arc of the diagram
receives a label or “color.” An arc of the dia-
gram is a continuous curve in the diagram
that starts at one undercrossing and ends at
another undercrossing. For example, the tre-
foil diagram in the following illustartion has
three arcs.

Each arc corresponds to an element of a
“Trefoil Color Algebra” IQ(T), where T
denotes the trefoil knot. The algebra is gener-
ated by colors a, b and c with the relations

a * a = a, 
b * b = b, 
c * c = c, 

a * b = b * a = c, 
b * c = c * b = a, 
a * c = c * a = b.

Each of these relations in the diagram
above is a description of one of the crossings
in T. The full set of relations describes the col-
oring rules for an algebra that contains these
relations and allows any two elements to be
combined to a third element. This three-ele-
ment algebra is particularly simple. If two col-
ors are different, they combine to form the
remaining third color. If two colors are the
same, they combine to form the same color.

When we take an algebra of this sort, we
want its coloring structure to be invariant
under the Reidemeister moves (illustrated
below). 

This means that when you make a new dia-
gram from the old diagram by a topological
move, the resulting new diagram inherits a
unique coloring from the old diagram. Then
one can see from this that the trefoil must be
knotted since all diagrams topologically
equivalent to it will carry three colors, while an
unknotted diagram can carry only one color.

As the next diagram shows, invariance of
the coloring rules under the Reidemeister
moves implies the following global relations
on the algebra:

x * x = x
(x * y) * y = x

(x * y) * z = (x * z) * (y * z)

for any x, y and z in the algebra (set of colors)
IQ(T).

An algebra that satisfies these rules is called
an Involutory Quandle (Kauffman 1995),
hence the initials IQ. Perhaps the most
remarkable property of the quandle is its
right-distributive law corresponding to the
third Reidemeister move, as illustrated below.
The reader will be interested to observe that in
a multiplicative group G, the following oper-
ation satisfies all the axioms for the quandle:
g * h = hg–1h.

In an additive and commutative version of
this axiom we can write a * b = 2b – a. Here
the models that are most useful to the knot
theorist are to take a and b to be elements of
the integers Z or elements of the modular
number system Z / dZ = Zd for some appro-
priate modulus d. The knot being analyzed
restricts the modular possibilities. In the case
of the trefoil knot the only possibility is d = 3,
and in the case of the Figure Eight knot
(shown after the Reidemeister moves below)
the only possibility is d = 5.

This analysis then shows that there cannot
be any sequence of Reidemeister moves con-
necting the Trefoil and the Figure Eight. They
are distinct knot types.

y

z

x

z = x * y

b

a

c

b = a * c
c = b * a
a = c * b

T

x * x x

xx

x

x * x = x

I.

x

xy

(x * y) * y

x * y x

(x * y) * y = x

II.

y z

x (x * z) * (y * z)

x * z
y * z

x * y
x (x * y) * z

y * z

(x * y) * z = (x * z) * (y * z)

III. y z
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Here is the example for the Figure Eight
Knot.

We have shown how an attempt to label the
arcs of the knot according to the quandle rule 

a * b = 2b – a leads to a labelling of the Figure
Eight knot in Z/5Z. In our illustration we have
shown that there is a compatible coloring
using four out of the five elements of Z/5Z. If
you apply Reidemeister moves to the diagram
for the Figure Eight knot you will see that
other versions of the knot require all five col-
ors. It is interesting to prove that there is no
diagram of the Figure Eight knot that can be
colored in less than four colors.

It should be noted that the knot diagrams
give a remarkable picture of non-associative
algebra structure and that each arc-label a in
a diagram is both an element of the algebra
and a transformation of the algebra to itself
via the mapping Oa(x) = x * a. 

Note that the right distributivity of this
operation has the equation

Oa(x * y) = (x * y) * a = (x * a) * (y * a) = 
Oa(x) * Oa(y)

That is, we have

Oa(x * y) = Oa(x) * Oa(y).

The right distributive law tells us that
each quandle operation is a quandle homo-
morphism. That is, each quandle operation is
a structure-preserving mapping of the quan-
dle to itself. This is an underlying algebraic
meaning of the third Reidemeister move.
Since the mappings Oa are invertible, we see

that any quandle Q is in 1–1 correspondence
with a certain collection of automorphisms
of itself. In this sense a quandle is a reflexive
domain with a limitation on the allowable
collection of self-mappings. In fact we have a
very simple fixed point theorem for quandles
since 

Oa(a) = a * a = a.

Every element of the quandle is fixed by its
own automorphism.

Since we take [Q, Q] to be the set of map-
pings of Q to itself of the form Oa(x) = x * a,
we see that any quandle is a reflexive domain
of a restricted sort. (Not every set theoretic
mapping of Q to Q is realized in the above
manner.)

How far is the quandle from being a reflex-
ive space in the full sense of the word? Let us
look at the fixed point construction. We
define

G(x) = (x * x) * F 

for a given element F of the quandle. 
Is it then the case that (x * x) * F = x * g for

some g in the quandle? 
The answer is, yes, but for a very simple

reason: 
We have x * x = x so that (x * x) * F = x * F

and consequently (F * F) * F = F * F. In fact,
F * F = F, so F is already its own fixed point.
We therefore see that in a quandle the fixed
point theorem is satisfied automatically due
to the axiom x * x = x for all x. 

On the other hand, if F:Q → Q is an arbi-
trary mapping from Q to Q, then we cannot
expect that F will have a fixed point. For
example, in the trefoil quandle TRI, suppose
we define F(a) = b, F(b) = c and F(c) = a. Then
F has no fixed point. Note that F is a structure-
preserving mapping. (In this case the compo-
sition of F with itself three times fixes every-
thing. If we make transformations that are
permutations of finite sets, then they may be
fixed-point free, but some powers of them will
certainly have fixed points.) 

We have F(x * y) = F(x) * F(y) for all x and
y in TRI. For example, F(a * b) = F(c) = a =
b * c = F(a) * F(b). 

In order to extend TRI to a reflexive (right-
distributive) magma we would have to add an
element f to the algebra such that x * f = F(x)
for each x in TRI, take the consequences of
that and continue. We leave the exploration of
this extension to the reader.

Left distributivity
We have written the quandle as a right-dis-
tributive structure with invertible elements. It
is mathematically equivalent to use the for-
malism of a left distributive operation. In left
distributive formalism we have A * (b * c) =
(A * b) * (A * c). This corresponds exactly to
the interpretation that each element A in Q is
a mapping of Q to Q where the mapping A[x]
= A * x is a structure-preserving mapping
from Q to Q.

A[b * c] = A[b] * A[c].

We can ask of a domain that every element
of the domain is itself a structure-preserving
mapping of that domain. This is very similar to
the requirement of reflexivity and, as we have
seen in the case of quandles, can often be real-
ized for small structures such as the Trefoil
quandle. 

As said before, a magma is a domain M
with an operation * that is left distributive.
Magmas are more general than the link dia-
grammatic quandles. We take only the analog
of the third Reidemeister move and do not
assume any other axioms A magma with no
other relations than left-distributivity is
called a free magma. 

The search for structure-preserving map-
pings can occur in rarefied contexts. See, for
example, the work of Laver and Dehornoy
(2000; Kauffman 1995), who studied map-
pings of set theory to itself that would pre-
serve all definable structure in the theory.
Dehornoy realized that many of the problems
he studied in relation to set theory were acces-
sible in more concrete ways via the use of
knots and braids. Thus the knots and braids
become a language for understanding the for-
mal properties of self-embedded structures. 

Structure-preserving mappings of set the-
ory must begin as the identity mapping since
the relations of sets are quite rigid at the
beginning. (You would not be able to map an
empty set to a set that was not empty for
example, and so the empty set would have to
go to itself.) The existence of non-trivial
structure-preserving mappings of set theory
questions the boundaries of definability and
involves the postulation of sets of very large
size. See Piechocinska (2005) for a good
exposition of the philosophical issues about
such embeddings and for an approach to
wholeness in physics that is based on these
ideas.

0

1 2

3

5

2 × 1 – 0 = 1
2 × 2 – 1 = 3
2 × 3 – 1 = 5
→ 0 = 5

Z / 5Z = {0, 1, 2, 3, 4 } with 0 = 5

b

c = 2b – a = a * b

a



Volume 4 · Number 3 · July 2009 133

concepts in second-order cybernetics
Mathematical 

It is worth making a remark here about
sets. Consider the collection Aleph of all sets
whose members are themselves sets and such
that any investigation into membership will
just reveal more sets as members. Typical ele-
ments of Aleph are the empty set { }, the set
whose member is the empty set { { } } and of
course various curious constructs that have
infinitely many members such as { { }, {{ }},
{{{ }}}, {{{{ }}}}, … } and we may even con-
sider sets that are members of themselves
(eigen-sets!) such as { { { { { … } } } } }.

The key thing to understand about Aleph
as a class of sets is that any member of Aleph
is, by definition, a subset of Aleph. And any
subset of Aleph is, by definition, a member of
Aleph. This is a beautiful property of the
class Aleph, and it is a paradoxical property
if we imagine that Aleph is a set! For if Aleph
is a set, then we have just shown that Aleph is
in 1–1 correspondence with the set of subsets
P(Aleph) of Aleph. If X is any set then we
denote the set of subsets of X by P(X). Can-
tor’s Theorem (proved here in Section 8 and
related in that section to the fixed point the-
ory of reflexive domains) tells us that for any
set X, P(X) is larger than X.

This means that there cannot be a 1–1 cor-
respondence between Aleph and P(Aleph) if
Aleph is a set. 

We can only conclude that Aleph is not a
set. It is a class, to give it a name. It is an
unbroken wholeness whose particularities
we can always consider, but whose totality
will always elude us. The way that the totality
of Aleph eludes us is right before our eyes.
Any particular element of Aleph is a set and
is a collection of sets as well. But we cannot
complete Aleph. Any attempt to approxi-
mate Aleph as a set will always have some
subsets that have not been tallied inside itself
and so the set of subsets of the approxima-
tion will grow beyond that approximation to
a new and larger domain of sets. Philosoph-
ically, this observation of the unreachability
of Aleph, the set of all sets, as a set itself is
very interesting and important. We see here
how a perfectly clear mathematical concept
may always remain outside the bounds of the
formalities to which it refers and yet that
concept is indeed composed of these formal-
ities. It is the leading presence of the ulti-
mately huge and unattainable Aleph that

leads us to consider exceeding large sets in
the pursuit of a flexibility in the self-embed-
dings of set theory. At the end of Section 8,
we take an alternative view of Aleph and con-
sider what would have to change if Aleph
were admitted to be a set.

Enough said about the abstract reaches of
the magma.

We should not expect that any given
structure is a reflexive space. But it is possible
to create languages that can expand indefi-
nitely and thus partake of the ideal of reflex-
ivity.

8. Church and Curry

In this section we point out how the notion
of a reflexive domain first appeared in the
work of Alonzo Church and Haskell Curry
(Barendregt 1984) in the 1930s. This method
is commonly called the “lambda calculus.”
The key to lambda calculus is the construc-
tion of a self-reflexive language, a language
that can refer and operate upon itself. In this
way eigenforms can be woven into the con-
text of languages that are their own metalan-
guages, hence into the context of natural lan-
guage and observing systems.

In the Church-Curry language (the
lambda calculus), there are two basic rules:

1. Naming. If you have an expression in the
symbols in lambda calculus then there is
always a single word in the language that
encodes this expression. The application of
this word has the same effect as the applica-
tion of the expression itself. 

2. Reflexivity. Given any two words, A and B,
in the lambda calculus, there is permission to
form their concatenation AB, with the inter-
pretation that A operates upon or qualifies B.
In this way, every word in the lambda calcu-
lus is both an operator and an operand. The
calculus is inherently self-reflexive. 

Here is an example. Let GA denote the
process that creates two copies of A and puts
them in a box.

In lambda calculus we are allowed to apply
G to itself. The result is two copies of G next to
one another, inside the box.

This equation about GG exhibits GG
directly as a solution to the eigenform equa-
tion

thus producing the eigenform without an infi-
nite limiting process.

More generally, we wish to find the eigen-
form for a process F. We want to find a J so that
F(J) = J. We create an operator G with the
property that 

GX = F(XX) 

for any X. When G operates on X, G makes
a duplicate of X and allows X to act on its
duplicate. Now comes the kicker. 

Let G act on itself and look!

GG = F(GG)

So GG is a fixed point for F. 
We have solved the eigenform problem

without the excursion to infinity. If you reflect
on this magic trick of Church and Curry you
will see that it has come directly from the pos-
tulates of Naming and Reflexivity that we have
discussed above. These notions, that there
should be a name for everything, and that words
can be applied to the description and production
of other words, allow language to refer to itself
and to produce itself from itself. The Church-
Curry construction was devised for mathe-
matical logic, but it is fundamental to the logic
of logic, the linguistics of linguistics and the
cybernetics of cybernetics. 

An eigenform must be placed in a context
in order for it to have human meaning. The
struggle on the mathematical side is to control
recursions, bending them to desired ends. The
struggle on the human side is to cognize a
world sensibly and to communicate well and
effectively with others. For each of us, there is
a continual manufacture of eigenforms
(tokens for eigenbehavior). Such tokens will
not pass as the currency of communication
unless we achieve mutuality as well. Mutuality
itself is a higher eigenform. As with all eigen-
forms, the abstract version exists. Realization
happens over the course of time.

GA = AA

GG = GG

X = X
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9. Cantor’s diagonal 
argument and 
Russell’s paradox
Let AB mean that B is a member of A.

Cantor’s Theorem. Let S be any set (S can be
finite or infinite).

Let P(S) be the set of subsets of S. Then
P(S) is bigger than S in the sense that for any
mapping F: S → P(S) there will be subsets C
of S (hence elements of F(S)) that are not of
the form F(a) for any a in S. In short, the
power set P(S) of any set S is larger than S.

Proof. Suppose that you were given a way to
associate to each element x of a set S a subset
F(x) of S. Then we can ask whether x is a
member of F(x). Either it is or it is not. So let
us form the set of all x such that x is not a
member of F(x). Call this new set C. We have
the defining equation for C:

Cx = ~F(x)x.

Is C = F(a) for some a in S?
If C = F(a) then for all x we have F(a)x =

~F(x)x.
Take x = a. Then F(a)a = ~F(a)a.
This says that a is a member of F(a) if and

only if a is not a member of F(a). This shows
that indeed C cannot be of the form F(a), and
we have proved Cantor’s Theorem that the set
of subsets of a set is always larger than the set
itself.

Q.E.D.
Note the problem that the assumption that

C = F(a) gave us.
If C = F(a), then F(a)a = ~F(a)a. We would

have a fixed point for negation. But there is no
fixed point for negation in classical logic!

If we had enlarged the truth set to 

{T, F, I} 

where ~I = I is an eigenform for negation,
then F(a)a would have value I. What does this
mean? It means that the index a of the corre-
sponding set F(a) would have an oscillating
membership value. The element a would be
like Groucho Marx, who declared that he
would not join any club that would have him
as a member. We would be propelled into sets
that vary in time. 

Note that our proof of Cantor’s Theorem
has exactly the same form as our earlier proof

of the existence of fixed points for a reflexive
space. The mapping F: X → P(X) takes the
role of the 1–1 correspondence between D
and [D, D]. The reader will enjoy thinking
about this analogy. In the Cantor Theorem we
have used the non-existence of a fixed point
for negation to deduce a difference between
set X and its power set P(X). In the study of a
reflexive domain we have shown the existence
of fixed points, but we have seen that such
domains must be open to new elements and
new transformations.

Note also how close Cantor’s Theorem is
to Russell’s famous paradox.

Russell devised the set R defined by the
equation

Rx = ~xx.

An element x is a member of the Russell set
if and only if x is not a member of itself. 

To see the contradiction, substitute R for x
and get

RR = ~RR.

This appearance of an eigenform for nega-
tion tells us that we either must concede tem-
porality to Russell’s construction R, or else
banish it from the world of sets. 

10. The secret

What is the simplest language that is capable
of self-reference? 

We are all familiar with the abilities of nat-
ural language to refer to itself. Why this very
sentence is an example of self-referentiality.
The American dollar bill declares, “This bill is
legal tender.” The sentence that you are now
reading declares that you, the reader, are com-
plicit in its own act of reference. But what is
the simplest language that can refer to itself?

The simplest language would have a sim-
ple alphabet. Let us say it has only the letter R.
The words in this language will be all strings
of R’s. Call the language LS. The words in LS
are the following:

R, 
RR, 

RRR, 
RRRR, 

and so on.

Two words are equal if they have the same
number of letter R’s.

Each word makes a meaningful statement of
reference via the rule:

If X is a word in LS, then RX refers to XX.

RX refers to XX, the repetition of X.

Thus RRR refers to RRRR (not to itself),
and R refers to the empty word. 

There is a word in LS that refers to itself.
Can you find it?

Let us see.
RX refers to XX.
So we need XX = RX if RX were to refer to

RX.
If XX = RX, then X = R.
So we need X = R.
And RR refers to itself.
The little language LS looks like a pedantic

triviality, but it is actually at the root of reflex-
ivity, Gödel’s incompleteness Theorem,
recursion theory, Russell’s paradox and the
notion of self-observing and self-referring
systems. It seems paradoxical that what looks
like a trick of repeating a symbol can be so
important. The trick is more than just a trick.

The Russell paradox (see the previous sec-
tion) continues to act as a mystery at the cen-
ter of our attempts to relate syntax and
semantics. In that center is a little trick of syn-
tactical repetition.

I would like to think that when we eventu-
ally discover the true secret of the universe it
will turn out to be this simple. 

The snake bites its tail. The Universe is
constructed in such a way that it can refer to
itself. In so doing, the Universe must divide
itself into a part that refers and a part to which
it refers, a part that sees and a part that is seen.

Let us say that R is the part that refers and
U is the referent. The divided universe is RX
and RX = U and RX refers to U (itself). Our
solution suggests that the Universe divides
itself into two identical parts, each of which
refers to the universe as a whole. This is

RR.

In other words, the universe can pretend
that it is two and then let itself refer to the two,
and find that it has in the process referred only
to the one, that is, itself.

The Universe plays hide and seek with her-
self, pretending to divide itself into two when
it is really only one. And that is the secret of
the Universe and that is the universal source
of our trick of self-reference.
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11. The world of 
recursive emergence 
and creativity
We have repeatedly insisted that a formal
fixed point or eigenform is associated with
any transformation T in any domain where
infinite composition of transformations is
possible. Thus we make E = T(T(T(T
(T(…))))) and find that E = T(E). This is the
symbolic fixed point that sometimes corre-
sponds to a stability in the original domain
of the recursion. We have also seen that one
can take a seed z for the recursion and repeat-
edly form

z, T(z), T(T(z)), T(T(T(z))), …

in a temporal sequence or recursive process.
Then the finite products of this process can
exhibit similarity to the infinite eigenform,
and they can also exhibit novelty and emer-
gence structure in ways that are most sur-
prising. It is this appearance of creativity and
novelty in recursive process that makes
reflexivity more than abstract mathematics
and more than a philosophical idea.

The purpose of this last section is to
exhibit an example involving cellular autom-
ata that illustrates these ideas and gives us a
platform for thought. In this example, we are
using an algorithm that I call “7-Life.” It is a
variant of the Life automaton of John H.
Conway (Gardner 1970).

Conway’s automaton is governed by the
rule B3/S23 which means that a white square
in the grid is born (B) when it has 3 neigh-

bors and it survives (S) when it has exactly 2
or 3 neighbors. Life has the property that
there are many intriguing formations and
processes, but statistically most configura-
tions die out to a collection of isolated static
patterns (still lifes) and oscillating patterns
that do not grow and do not interact outside
themselves. 

We should mention that there are a vast
number of different cellular automata. A
good start in learning about these structures
is the book by Stephen Wolfram (2002).
Wolfram’s book concentrates almost entirely
on one-dimensional cellular automata and
achieves a qualitative classification of the
behaviors found in a comprehensive class of
the simplest types of line automata. Wolfram
finds that a number of these simplest autom-
ata are computationally universal in the
sense that they can simulate a universal Tur-
ing machine on the one dimensional lattice
of the automaton. The automata that we are
looking at in this section, and 7-Life in par-
ticular, are two dimensional and hardly con-
sidered by Wolfram in his treatise. Conway’s
Life is also not analyzed in Wolfram. In fact,
it was shown that Conway Life is Turing uni-
versal by Conway and his collaborators prior
to the onset of Wolfram’s work in the 1980s.
We mention this background and the differ-
ence in dimensionalities to give the reader
some perspective so that he will not be sur-
prised and wonder “Why is this phenome-
non not discussed in Wolfram?” Indeed the
phenomenon of the remarkable emergence
of complexity from simple algorithms is the
theme of Wolfram’s work. This theme plays

significantly in all algorithmic mathematics
and in all significant studies of cellular
automata.

6-Life, defined by the rule B36/S23 is
well-known, as a search on the Internet for
Life automata will reveal. 6-Life does not
have the qualitative self-sustaining proper-
ties that are evident in 7-Life, but there are
emergent structures there as well. We con-
centrate here on 7-Life because the long-
term self-sustaining interactions of this
automaton make it ideal for studies of long
term evolution and the emergence of forms.

7-Life has the rule B37/S23 and has many
of the properties of Life, plus the phenome-
non that many starting configurations grow,
self-interact and produce streams of gliders.
The gliders are five-square formations
(occurring in Life as well) that occur sponta-
neously and regenerate themselves, appear-
ing to move along diagonal directions in the
process. The most striking property of 7-Life
is the long term persistence of such self-
interacting configurations, growing slowly
in complexity over time.

In Figures 1, 2, and 3 we indicate the
result of applying the 7-Life algorithm to a
simple and not-quite symmetrical starting
configuration, shown in Figure 1. In Figure 2
we see the result of 33911 iterations of the
process. We now have a galaxy of complex
interactions. The small entities radiating
away from the galaxy are gliders, as described
above, and if a reader were to watch the pro-
cess using a computer program, he or she
would see a teeming, seemingly random
mass of activity. Then in Figure 3 we see that

Figure 1: The starting configuration. Figure 2: After 33911 iterations. Figure 3: After 49281 iterations.
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after 49281 iterations something new has
emerged. It seems that a highly patterned
dragon is emerging from the chaos of the
complex process. The tip of this dragon
moves forward relentlessly.

The body of the dragon interacts with the
glider radiation and begins to roil in the cha-
otic process. So far, the growing tip of the
dragon has not interacted with any gliders. 

Figures 4 gives a close-up of the tip of the
dragon and Figure 5 isolates the generator,
GG, of the dragon itself. This configuration
GG of 16 squares in mirror symmetry, when
placed on an otherwise blank lattice, will
generate the dragon in the 7-Life algorithm. 

What has happened is that this 16-square
generator GG has appeared in the course of
the complex interactions, and it has had
enough room to move forward in its own
pattern – forming the dragon behind it and
periodically regenerating itself. The genera-
tor of the dragon, GG, is not our invention.
GG is a natural consequence of the complex
process of 7-Life. GG emerges, but with
much lower probability than the gliders. The

result is an appearance of novelty and cre-
ativity in the complex process as it happens
over time. We can only speculate what more
complex entities would eventually emerge in
7-Life over many more iterations.

In the same way, DNA emerges from the
complex process of the world of the earth
and sun.

We see from this example that eigenforms
that are processes, such as the self-generating
GG, can and will emerge of their own accord
from complex systems based on recursion.
In this sense, such systems begin to generate
their own reflexive spaces. The novel and
self-reproducing forms that emerge from
them can be seen in a similar light. 

All these observations are made by an ob-
server. The observer is clever only in the dis-
tinctions that he or she makes, and that is
enough to found an entire universe.

12. Discussion

In this paper we have covered a number of
mathematical structures related to the con-
cept of reflexivity. We have defined the no-
tion of a reflexive domain D as a domain
where the elements of that domain and the
mappings of the domain to itself are in 1–1
correspondence.

In such a context, every object is inher-
ently a process, and the structure of the do-
main as a whole comes from the relation-
ships whose exploration constitutes the
domain. There is no place to hide in a reflex-
ive domain, no fundamental particle, no ir-
reducible object or building block. Any given
entity acquires its properties through its re-
lationships with everything else. The sense of
such a domain is not at all like the set theo-
retic notion of collections or unrelated
things, or things related by an identifiable
property. It is more like a conversation or an
improvisation, held up and moving in its
own momentum, creating and lifting sound
and meaning in the process of its own ex-
change. Conversations create spaces and
events, and these events create further con-
versations. The worlds appearing from re-
flexivity are worlds nevertheless, with those
properties of partial longevity, emergence of
patterns, and emergence of laws that we have
come to associate with seemingly objective
reality. 

Note
1. According to Webster’s New Collegiate

Dictionary (1956) a gremlin is “one of the
impish foot-high gnomes whimsically
blamed by airmen for interfering with mo-
tors, instruments, machine guns, etc.;
hence any like disruptive elf.”

Figure 4: The growing tip.

Figure 5: The generating tip GG.
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