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Abstract

This paper is an introduction to relationships between quantum topology and
quantum computing. In this paper we discuss unitary solutions to the Yang-
Baxter equation that are universal quantum gates, quantum entanglement and
topological entanglement, and we give an exposition of knot-theoretic recoupling
theory, its relationship with topological quantum field theory and apply these
methods to produce unitary representations of the braid groups that are dense in
the unitary groups. Our methods are rooted in the bracket state sum model for
the Jones polynomial. We give our results for a large class of representations
based on values for the bracket polynomial that are roots of unity. We make
a separate and self-contained study of the quantum universal Fibonacci model
in this framework. We apply our results to give quantum algorithms for the
computation of the colored Jones polynomials for knots and links, and the
Witten-Reshetikhin-Turaev invariant of three manifolds.



     

0 Introduction

This paper describes relationships between quantum topology and quantum
computing. It is a modified version of Chapter 14 of our book [18] and an
expanded version of [58]. Quantum topology is, roughly speaking, that part of
low-dimensional topology that interacts with statistical and quantum physics.
Many invariants of knots, links and three dimensional manifolds have been
born of this interaction, and the form of the invariants is closely related to the
form of the computation of amplitudes in quantum mechanics. Consequently,
it is fruitful to move back and forth between quantum topological methods
and the techniques of quantum information theory.

We sketch the background topology, discuss analogies (such as topologi-
cal entanglement and quantum entanglement), show direct correspondences
between certain topological operators (solutions to the Yang-Baxter equation)
and universal quantum gates. We then describe the background for topological
quantum computing in terms of Temperley–Lieb (we will sometimes abbrevi-
ate this to TL) recoupling theory. This is a recoupling theory that generalizes
standard angular momentum recoupling theory, generalizes the Penrose the-
ory of spin networks and is inherently topological. Temperley–Lieb recoupling
Theory is based on the bracket polynomial model [37, 44] for the Jones poly-
nomial. It is built in terms of diagrammatic combinatorial topology. The same
structure can be explained in terms of the SU(2)q quantum group, and has
relationships with functional integration and Witten’s approach to topological
quantum field theory. Nevertheless, the approach given here will be unrelent-
ingly elementary. Elementary, does not necessarily mean simple. In this case
an architecture is built from simple beginnings and this archictecture and its
recoupling language can be applied to many things including, e.g. colored
Jones polynomials, Witten–Reshetikhin–Turaev invariants of three manifolds,
topological quantum field theory and quantum computing.

In quantum computing, the application of topology is most interesting
because the simplest non-trivial example of the Temperley–Lieb recoupling
Theory gives the so-called Fibonacci model. The recoupling theory yields rep-
resentations of the Artin braid group into unitary groups U(n) where n is a
Fibonacci number. These representations are dense in the unitary group, and
can be used to model quantum computation universally in terms of representa-
tions of the braid group. Hence the term: topological quantum computation.

In this paper, we outline the basics of the Temperely–Lieb Recoupling
Theory, and show explicitly how the Fibonacci model arises from it. The dia-
grammatic computations in the section 11 and 12 are completely self-contained
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and can be used by a reader who has just learned the bracket polynomial, and
wants to see how these dense unitary braid group representations arise from
it. The outline of the parts of this paper is given below.

1. Knots and Braids

2. Quantum Mechanics and Quantum Computation

3. Braiding Operators and Univervsal Quantum Gates

4. A Remark about EPR, Entanglement and Bell’s Inequality

5. The Aravind Hypothesis

6. SU(2) Representations of the Artin Braid Group

7. The Bracket Polynomial and the Jones Polynomial

8. Quantum Topology, Cobordism Categories, Temperley-Lieb Algebra and
Topological Quantum Field Theory

9. Braiding and Topological Quantum Field Theory

10. Spin Networks and Temperley-Lieb Recoupling Theory

11. Fibonacci Particles

12. The Fibonacci Recoupling Model

13. Quantum Computation of Colored Jones Polynomials and the Witten-
Reshetikhin-Turaev Invariant

We should point out that while this paper attempts to be self-contained,
and hence has some expository material, most of the results are either new,
or are new points of view on known results. The material on SU(2) represen-
tations of the Artin braid group is new, and the relationship of this material
to the recoupling theory is new. The treatment of elementary cobordism cat-
egories is well-known, but new in the context of quantum information theory.
The reformulation of Temperley-Lieb recoupling theory for the purpose of pro-
ducing unitary braid group representations is new for quantum information
theory, and directly related to much of the recent work of Freedman and his
collaborators. The treatment of the Fibonacci model in terms of two-strand
recoupling theory is new and at the same time, the most elementary non-trivial
example of the recoupling theory. The models in section 10 for quantum com-
putation of colored Jones polynomials and for quantum computation of the
Witten-Reshetikhin-Turaev invariant are new in this form of the recoupling
theory. They take a particularly simple aspect in this context.
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Here is a very condensed presentation of how unitary representations of the
braid group are constructed via topological quantum field theoretic methods.
One has a mathematical particle with label P that can interact with itself to
produce either itself labeled P or itself with the null label ∗. We shall denote the
interaction of two particles P and Q by the expression PQ, but it is understood
that the “value” of PQ is the result of the interaction, and this may partake
of a number of possibilities. Thus for our particle P , we have that PP may be
equal to P or to ∗ in a given situation. When ∗ interacts with P the result is
always P. When ∗ interacts with ∗ the result is always ∗. One considers process
spaces where a row of particles labeled P can successively interact, subject to
the restriction that the end result is P. For example the space V [(ab)c] denotes
the space of interactions of three particles labeled P. The particles are placed
in the positions a, b, c. Thus we begin with (PP )P. In a typical sequence of
interactions, the first two P ’s interact to produce a ∗, and the ∗ interacts with
P to produce P.

(PP )P −→ (∗)P −→ P.

In another possibility, the first two P ’s interact to produce a P, and the P
interacts with P to produce P.

(PP )P −→ (P )P −→ P.

It follows from this analysis that the space of linear combinations of processes
V [(ab)c] is two dimensional. The two processes we have just described can
be taken to be the qubit basis for this space. One obtains a representation
of the three strand Artin braid group on V [(ab)c] by assigning appropriate
phase changes to each of the generating processes. One can think of these
phases as corresponding to the interchange of the particles labeled a and b in
the association (ab)c. The other operator for this representation corresponds
to the interchange of b and c. This interchange is accomplished by a unitary
change of basis mapping

F : V [(ab)c] −→ V [a(bc)].

If
A : V [(ab)c] −→ V [(ba)c]

is the first braiding operator (corresponding to an interchange of the first two
particles in the association) then the second operator

B : V [(ab)c] −→ V [(ac)b]

is accomplished via the formula B = F−1RF where the R in this formula acts
in the second vector space V [a(bc)] to apply the phases for the interchange of
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b and c. These issues are illustrated in Figure 1, where the parenthesization
of the particles is indicated by circles and by also by trees. The trees can be
taken to indicate patterns of particle interaction, where two particles interact
at the branch of a binary tree to produce the particle product at the root. See
also Figure 28 for an illustration of the braiding B = F−1RF

F

R

Figure 1 - Braiding Anyons.

In this scheme, vector spaces corresponding to associated strings of particle
interactions are interrelated by recoupling transformations that generalize the
mapping F indicated above. A full representation of the Artin braid group
on each space is defined in terms of the local interchange phase gates and the
recoupling transformations. These gates and transformations have to satisfy
a number of identities in order to produce a well-defined representation of the
braid group. These identities were discovered originally in relation to topolog-
ical quantum field theory. In our approach the structure of phase gates and
recoupling transformations arise naturally from the structure of the bracket
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model for the Jones polynomial. Thus we obtain a knot-theoretic basis for
topological quantum computing.

In modeling the quantum Hall effect [86, 26, 15, 16], the braiding of quasi-
particles (collective excitations) leads to non-trival representations of the Artin
braid group. Such particles are called Anyons. The braiding in these models is
related to topological quantum field theory. It is hoped that the mathematics
we explain here will form a bridge between theoretical models of anyons and
their applications to quantum computing.

Acknowledgement. The first author thanks the National Science Founda-
tion for support of this research under NSF Grant DMS-0245588. Much of
this effort was sponsored by the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory, Air Force Materiel Command,
USAF, under agreement F30602-01-2-05022. The U.S. Government is autho-
rized to reproduce and distribute reprints for Government purposes notwith-
standing any copyright annotations thereon. The views and conclusions con-
tained herein are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements, either expressed or
implied, of the Defense Advanced Research Projects Agency, the Air Force
Research Laboratory, or the U.S. Government. (Copyright 2006.) It gives the
authors pleasure to thank the Newton Institute in Cambridge England and ISI
in Torino, Italy for their hospitality during the inception of this research and
to thank Hilary Carteret for useful conversations.

1 Knots and Braids

The purpose of this section is to give a quick introduction to the diagrammatic
theory of knots, links and braids. A knot is an embedding of a circle in three-
dimensional space, taken up to ambient isotopy. The problem of deciding
whether two knots are isotopic is an example of a placement problem, a problem
of studying the topological forms that can be made by placing one space inside
another. In the case of knot theory we consider the placements of a circle inside
three dimensional space. There are many applications of the theory of knots.
Topology is a background for the physical structure of real knots made from
rope of cable. As a result, the field of practical knot tying is a field of applied
topology that existed well before the mathematical discipline of topology arose.
Then again long molecules such as rubber molecules and DNA molecules can
be knotted and linked. There have been a number of intense applications of
knot theory to the study of DNA [81] and to polymer physics [61]. Knot theory
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is closely related to theoretical physics as well with applications in quantum
gravity [85, 78, 53] and many applications of ideas in physics to the topological
structure of knots themselves [44].

Quantum topology is the study and invention of topological invariants via
the use of analogies and techniques from mathematical physics. Many invari-
ants such as the Jones polynomial are constructed via partition functions and
generalized quantum amplitudes. As a result, one expects to see relationships
between knot theory and physics. In this paper we will study how knot the-
ory can be used to produce unitary representations of the braid group. Such
representations can play a fundamental role in quantum computing.

Figure 2 - A knot diagram.

I

II

III

Figure 3 - The Reidemeister Moves.
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That is, two knots are regarded as equivalent if one embedding can be obtained
from the other through a continuous family of embeddings of circles in three-
space. A link is an embedding of a disjoint collection of circles, taken up to
ambient isotopy. Figure 2 illustrates a diagram for a knot. The diagram is
regarded both as a schematic picture of the knot, and as a plane graph with
extra structure at the nodes (indicating how the curve of the knot passes over
or under itself by standard pictorial conventions).

1 2

3 1
-1

=

=

=

s

s s

s

Braid Generators

1s1
-1s = 1

1s 2s 1s 2s 1s 2s=

1s 3s 1s3s=

Figure 4 - Braid Generators.

Ambient isotopy is mathematically the same as the equivalence relation
generated on diagrams by the Reidemeister moves. These moves are illus-
trated in Figure 3. Each move is performed on a local part of the diagram
that is topologically identical to the part of the diagram illustrated in this
figure (these figures are representative examples of the types of Reidemeister
moves) without changing the rest of the diagram. The Reidemeister moves
are useful in doing combinatorial topology with knots and links, notably in
working out the behaviour of knot invariants. A knot invariant is a func-
tion defined from knots and links to some other mathematical object (such as
groups or polynomials or numbers) such that equivalent diagrams are mapped
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to equivalent objects (isomorphic groups, identical polynomials, identical num-
bers). The Reidemeister moves are of great use for analyzing the structure of
knot invariants and they are closely related to the Artin braid group, which we
discuss below.

Hopf Link

Figure Eight Knot

Trefoil Knot

Figure 5 - Closing Braids to form knots and links.

b CL(b)

Figure 6 - Borromean Rings as a Braid Closure.

A braid is an embedding of a collection of strands that have their ends in
two rows of points that are set one above the other with respect to a choice of
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vertical. The strands are not individually knotted and they are disjoint from
one another. See Figures 4, 5 and 6 for illustrations of braids and moves on
braids. Braids can be multiplied by attaching the bottom row of one braid
to the top row of the other braid. Taken up to ambient isotopy, fixing the
endpoints, the braids form a group under this notion of multiplication. In
Figure 4 we illustrate the form of the basic generators of the braid group, and
the form of the relations among these generators. Figure 5 illustrates how to
close a braid by attaching the top strands to the bottom strands by a collection
of parallel arcs. A key theorem of Alexander states that every knot or link can
be represented as a closed braid. Thus the theory of braids is critical to the
theory of knots and links. Figure 6 illustrates the famous Borromean Rings (a
link of three unknotted loops such that any two of the loops are unlinked) as
the closure of a braid.

Let Bn denote the Artin braid group on n strands. We recall here that Bn

is generated by elementary braids {s1, · · · , sn−1} with relations

1. sisj = sjsi for |i− j| > 1,

2. sisi+1si = si+1sisi+1 for i = 1, · · ·n− 2.

See Figure 4 for an illustration of the elementary braids and their relations.
Note that the braid group has a diagrammatic topological interpretation, where
a braid is an intertwining of strands that lead from one set of n points to
another set of n points. The braid generators si are represented by diagrams
where the i-th and (i + 1)-th strands wind around one another by a single
half-twist (the sense of this turn is shown in Figure 4) and all other strands
drop straight to the bottom. Braids are diagrammed vertically as in Figure 4,
and the products are taken in order from top to bottom. The product of two
braid diagrams is accomplished by adjoining the top strands of one braid to
the bottom strands of the other braid.

In Figure 4 we have restricted the illustration to the four-stranded braid
group B4. In that figure the three braid generators of B4 are shown, and then
the inverse of the first generator is drawn. Following this, one sees the identities
s1s
−1
1 = 1 (where the identity element in B4 consists in four vertical strands),

s1s2s1 = s2s1s2, and finally s1s3 = s3s1.

Braids are a key structure in mathematics. It is not just that they are a
collection of groups with a vivid topological interpretation. From the algebraic
point of view the braid groups Bn are important extensions of the symmetric
groups Sn. Recall that the symmetric group Sn of all permutations of n distinct
objects has presentation as shown below.
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1. s2
i = 1 for i = 1, · · ·n− 1,

2. sisj = sjsi for |i− j| > 1,

3. sisi+1si = si+1sisi+1 for i = 1, · · ·n− 2.

Thus Sn is obtained from Bn by setting the square of each braiding generator
equal to one. We have an exact sequence of groups

1 −→ Bn −→ Sn −→ 1

exhibiting the Artin braid group as an extension of the symmetric group.

In the next sections we shall show how representations of the Artin braid
group are rich enough to provide a dense set of transformations in the uni-
tary groups. Thus the braid groups are in principle fundamental to quantum
computation and quantum information theory.

2 Quantum Mechanics and Quantum Compu-

tation

We shall quickly indicate the basic principles of quantum mechanics. The
quantum information context encapsulates a concise model of quantum theory:

The initial state of a quantum process is a vector |v〉 in a complex vector
space H. Measurement returns basis elements β of H with probability

|〈β |v〉|2/〈v |v〉
where 〈v |w〉 = v†w with v† the conjugate transpose of v. A physical process oc-
curs in steps |v〉 −→ U |v〉 = |Uv〉 where U is a unitary linear transformation.

Note that since 〈Uv |Uw〉 = 〈v |U †U |w〉 = 〈v |w〉 = when U is unitary, it
follows that probability is preserved in the course of a quantum process.

One of the details required for any specific quantum problem is the nature
of the unitary evolution. This is specified by knowing appropriate information
about the classical physics that supports the phenomena. This information is
used to choose an appropriate Hamiltonian through which the unitary operator
is constructed via a correspondence principle that replaces classical variables
with appropriate quantum operators. (In the path integral approach one needs
a Langrangian to construct the action on which the path integral is based.)
One needs to know certain aspects of classical physics to solve any specific
quantum problem.
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A key concept in the quantum information viewpoint is the notion of the
superposition of states. If a quantum system has two distinct states |v〉 and
|w〉, then it has infinitely many states of the form a|v〉 + b|w〉 where a and b
are complex numbers taken up to a common multiple. States are “really” in
the projective space associated with H. There is only one superposition of a
single state |v〉 with itself. On the other hand, it is most convenient to regard
the states |v〉 and |w〉 as vectors in a vector space. We than take it as part of
the procedure of dealing with states to normalize them to unit length. Once
again, the superposition of a state with itself is again itself.

Dirac [23] introduced the “bra -(c)-ket” notation 〈A |B〉 = A†B for the
inner product of complex vectors A, B ∈ H. He also separated the parts of
the bracket into the bra < A | and the ket |B〉. Thus

〈A |B〉 = 〈A | |B〉
In this interpretation, the ket |B〉 is identified with the vector B ∈ H, while the
bra < A | is regarded as the element dual to A in the dual space H∗. The dual
element to A corresponds to the conjugate transpose A† of the vector A, and
the inner product is expressed in conventional language by the matrix product
A†B (which is a scalar since B is a column vector). Having separated the bra
and the ket, Dirac can write the “ket-bra” |A〉〈B | = AB†. In conventional
notation, the ket-bra is a matrix, not a scalar, and we have the following
formula for the square of P = |A〉〈B | :

P 2 = |A〉〈B ||A〉〈B | = A(B†A)B† = (B†A)AB† = 〈B |A〉P.

The standard example is a ket-bra P = |A 〉〈A| where 〈A |A〉 = 1 so that
P 2 = P. Then P is a projection matrix, projecting to the subspace of H that
is spanned by the vector |A〉. In fact, for any vector |B〉 we have

P |B〉 = |A〉〈A | |B〉 = |A〉〈A |B〉 = 〈A |B〉|A〉.
If {|C1〉, |C2〉, · · · |Cn〉} is an orthonormal basis for H, and

Pi = |Ci 〉〈Ci|,

then for any vector |A〉 we have

|A〉 = 〈C1 |A〉|C1〉+ · · ·+ 〈Cn |A〉|Cn〉.
Hence

〈B |A〉 = 〈B |C1〉〈C1 |A〉+ · · ·+ 〈B |Cn〉〈Cn |A〉
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One wants the probability of starting in state |A〉 and ending in state |B〉.
The probability for this event is equal to |〈B |A〉|2. This can be refined if we
have more knowledge. If the intermediate states |Ci〉 are a complete set of
orthonormal alternatives then we can assume that 〈Ci |Ci〉 = 1 for each i and
that Σi|Ci〉〈Ci| = 1. This identity now corresponds to the fact that 1 is the
sum of the probabilities of an arbitrary state being projected into one of these
intermediate states.

If there are intermediate states between the intermediate states this for-
mulation can be continued until one is summing over all possible paths from
A to B. This becomes the path integral expression for the amplitude 〈B|A〉.

2.1 What is a Quantum Computer?

A quantum computer is, abstractly, a composition U of unitary transforma-
tions, together with an initial state and a choice of measurement basis. One
runs the computer by repeatedly initializing it, and then measuring the result
of applying the unitary transformation U to the initial state. The results of
these measurements are then analyzed for the desired information that the
computer was set to determine. The key to using the computer is the design
of the initial state and the design of the composition of unitary transforma-
tions. The reader should consult [71] for more specific examples of quantum
algorithms.

Let H be a given finite dimensional vector space over the complex numbers
C. Let {W0, W1, ..., Wn} be an orthonormal basis for H so that with |i〉 := |Wi〉
denoting Wi and 〈i| denoting the conjugate transpose of |i〉, we have

〈i|j〉 = δij

where δij denotes the Kronecker delta (equal to one when its indices are equal
to one another, and equal to zero otherwise). Given a vector v in H let
|v|2 := 〈v|v〉. Note that 〈i|v is the i-th coordinate of v.

An measurement of v returns one of the coordinates |i〉 of v with probability
|〈i|v|2. This model of measurement is a simple instance of the situation with a
quantum mechanical system that is in a mixed state until it is observed. The
result of observation is to put the system into one of the basis states.

When the dimension of the space H is two (n = 1), a vector in the space
is called a qubit. A qubit represents one quantum of binary information. On
measurement, one obtains either the ket |0〉 or the ket |1〉. This constitutes
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the binary distinction that is inherent in a qubit. Note however that the
information obtained is probabilistic. If the qubit is

|ψ〉 = α|0〉+ β |1〉,
then the ket |0〉 is observed with probability |α|2, and the ket |1〉 is observed
with probability |β|2. In speaking of an idealized quantum computer, we do not
specify the nature of measurement process beyond these probability postulates.

In the case of general dimension n of the space H, we will call the vectors
in H qunits. It is quite common to use spaces H that are tensor products
of two-dimensional spaces (so that all computations are expressed in terms of
qubits) but this is not necessary in principle. One can start with a given space,
and later work out factorizations into qubit transformations.

A quantum computation consists in the application of a unitary transfor-
mation U to an initial qunit ψ = a0|0〉 + ... + an|n〉 with |ψ|2 = 1, plus an
measurement of Uψ. A measurement of Uψ returns the ket |i〉 with probabil-
ity |〈i|Uψ|2. In particular, if we start the computer in the state |i〉, then the
probability that it will return the state |j〉 is |〈j|U |i〉|2.

It is the necessity for writing a given computation in terms of unitary
transformations, and the probabilistic nature of the result that characterizes
quantum computation. Such computation could be carried out by an idealized
quantum mechanical system. It is hoped that such systems can be physically
realized.

3 Braiding Operators and Universal Quantum

Gates

A class of invariants of knots and links called quantum invariants can be con-
structed by using representations of the Artin braid group, and more specifi-
cally by using solutions to the Yang-Baxter equation [10], first discovered in
relation to 1 + 1 dimensional quantum field theory, and 2 dimensional statis-
tical mechanics. Braiding operators feature in constructing representations of
the Artin braid group, and in the construction of invariants of knots and links.

A key concept in the construction of quantum link invariants is the as-
sociation of a Yang-Baxter operator R to each elementary crossing in a link
diagram. The operator R is a linear mapping

R: V ⊗ V −→ V ⊗ V
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defined on the 2-fold tensor product of a vector space V, generalizing the per-
mutation of the factors (i.e., generalizing a swap gate when V represents one
qubit). Such transformations are not necessarily unitary in topological appli-
cations. It is useful to understand when they can be replaced by unitary trans-
formations for the purpose of quantum computing. Such unitary R-matrices
can be used to make unitary representations of the Artin braid group.

A solution to the Yang-Baxter equation, as described in the last paragraph
is a matrix R, regarded as a mapping of a two-fold tensor product of a vector
space V ⊗ V to itself that satisfies the equation

(R⊗ I)(I ⊗R)(R⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R).

From the point of view of topology, the matrix R is regarded as representing an
elementary bit of braiding represented by one string crossing over another. In
Figure 7 we have illustrated the braiding identity that corresponds to the Yang-
Baxter equation. Each braiding picture with its three input lines (below) and
output lines (above) corresponds to a mapping of the three fold tensor product
of the vector space V to itself, as required by the algebraic equation quoted
above. The pattern of placement of the crossings in the diagram corresponds
to the factors R⊗ I and I ⊗R. This crucial topological move has an algebraic
expression in terms of such a matrix R. Our approach in this section to relate
topology, quantum computing, and quantum entanglement is through the use
of the Yang-Baxter equation. In order to accomplish this aim, we need to
study solutions of the Yang-Baxter equation that are unitary. Then the R
matrix can be seen either as a braiding matrix or as a quantum gate in a
quantum computer.

=

RIR I
RI

RI
RI

R I

R I
R I

Figure 7 The Yang-Baxter equation -
(R⊗ I)(I ⊗R)(R⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R).
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The problem of finding solutions to the Yang-Baxter equation that are
unitary turns out to be surprisingly difficult. Dye [25] has classified all such
matrices of size 4 × 4. A rough summary of her classification is that all 4 ×
4 unitary solutions to the Yang-Baxter equation are similar to one of the
following types of matrix:

R =




1/
√

2 0 0 1/
√

2

0 1/
√

2 −1/
√

2 0

0 1/
√

2 1/
√

2 0

−1/
√

2 0 0 1/
√

2




R′ =




a 0 0 0
0 0 b 0
0 c 0 0
0 0 0 d




R′′ =




0 0 0 a
0 b 0 0
0 0 c 0
d 0 0 0




where a,b,c,d are unit complex numbers.
For the purpose of quantum computing, one should regard each matrix as

acting on the stamdard basis {|00〉, |01〉, |10〉, |11〉} of H = V ⊗ V, where V is
a two-dimensional complex vector space. Then, for example we have

R|00〉 = (1/
√

2)|00〉 − (1/
√

2)|11〉,

R|01〉 = (1/
√

2)|01〉+ (1/
√

2)|10〉,
R|10〉 = −(1/

√
2)|01〉+ (1/

√
2)|10〉,

R|11〉 = (1/
√

2)|00〉+ (1/
√

2)|11〉.
The reader should note that R is the familiar change-of-basis matrix from the
standard basis to the Bell basis of entangled states.

In the case of R′, we have

R′|00〉 = a|00〉, R′|01〉 = c|10〉,

R′|10〉 = b|01〉, R′|11〉 = d|11〉.
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Note that R′ can be regarded as a diagonal phase gate P , composed with a
swap gate S.

P =




a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d




S =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




Compositions of solutions of the (Braiding) Yang-Baxter equation with the
swap gate S are called solutions to the algebraic Yang-Baxter equation. Thus
the diagonal matrix P is a solution to the algebraic Yang-Baxter equation.

Remark. Another avenue related to unitary solutions to the Yang-Baxter
equation as quantum gates comes from using extra physical parameters in this
equation (the rapidity parameter) that are related to statistical physics. In [90]
we discovered that solutions to the Yang-Baxter equation with the rapidity
parameter allow many new unitary solutions. The significance of these gates
for quatnum computing is still under investigation.

3.1 Universal Gates

A two-qubit gate G is a unitary linear mapping G : V ⊗ V −→ V where V is
a two complex dimensional vector space. We say that the gate G is universal
for quantum computation (or just universal) if G together with local unitary
transformations (unitary transformations from V to V ) generates all unitary
transformations of the complex vector space of dimension 2n to itself. It is well-
known [71] that CNOT is a universal gate. (On the standard basis, CNOT is
the identity when the first qubit is 0, and it flips the second qbit, leaving the
first alone, when the first qubit is 1.)

A gate G, as above, is said to be entangling if there is a vector

|αβ〉 = |α〉 ⊗ |β〉 ∈ V ⊗ V

such that G|αβ〉 is not decomposable as a tensor product of two qubits. Under
these circumstances, one says that G|αβ〉 is entangled.
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In [17], the Brylinskis give a general criterion of G to be universal. They prove
that a two-qubit gate G is universal if and only if it is entangling.

Remark. A two-qubit pure state

|φ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉
is entangled exactly when (ad − bc) 6= 0. It is easy to use this fact to check
when a specific matrix is, or is not, entangling.

Remark. There are many gates other than CNOT that can be used as
universal gates in the presence of local unitary transformations. Some of these
are themselves topological (unitary solutions to the Yang-Baxter equation,
see [56]) and themselves generate representations of the Artin braid group.
Replacing CNOT by a solution to the Yang-Baxter equation does not place
the local unitary transformations as part of the corresponding representation
of the braid group. Thus such substitutions give only a partial solution to
creating topological quantum computation. In this paper we are concerned
with braid group representations that include all aspects of the unitary group.
Accordingly, in the next section we shall first examine how the braid group on
three strands can be represented as local unitary transformations.

Theorem. Let D denote the phase gate shown below. D is a solution to
the algebraic Yang-Baxter equation (see the earlier discussion in this section).
Then D is a universal gate.

D =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




Proof. It follows at once from the Brylinski Theorem that D is universal. For
a more specific proof, note that CNOT = QDQ−1, where Q = H ⊗ I, H is
the 2 × 2 Hadamard matrix. The conclusion then follows at once from this
identity and the discussion above. We illustrate the matrices involved in this
proof below:

H = (1/
√

2)

(
1 1
1 −1

)

Q = (1/
√

2)




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1



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D =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




QDQ−1 = QDQ =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 = CNOT

This completes the proof of the Theorem. 2

Remark. We thank Martin Roetteles [77] for pointing out the specific factor-
ization of CNOT used in this proof.

Theorem. The matrix solutions R′ and R′′ to the Yang-Baxter equation,
described above, are universal gates exactly when ad−bc 6= 0 for their internal
parameters a, b, c, d. In particular, let R0 denote the solution R′ (above) to the
Yang-Baxter equation with a = b = c = 1, d = −1.

R′ =




a 0 0 0
0 0 b 0
0 c 0 0
0 0 0 d




R0 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1




Then R0 is a universal gate.

Proof. The first part follows at once from the Brylinski Theorem. In fact,
letting H be the Hadamard matrix as before, and

σ =

(
1/
√

2 i/
√

2

i/
√

2 1/
√

2

)
, λ =

(
1/
√

2 1/
√

2

i/
√

2 −i/
√

2

)

µ =

(
(1− i)/2 (1 + i)/2
(1− i)/2 (−1− i)/2

)
.

Then
CNOT = (λ⊗ µ)(R0(I ⊗ σ)R0)(H ⊗H).

This gives an explicit expression for CNOT in terms of R0 and local unitary
transformations (for which we thank Ben Reichardt). 2
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Remark. Let SWAP denote the Yang-Baxter Solution R′ with a = b = c =
d = 1.

SWAP =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




SWAP is the standard swap gate. Note that SWAP is not a universal gate.
This also follows from the Brylinski Theorem, since SWAP is not entangling.
Note also that R0 is the composition of the phase gate D with this swap gate.

Theorem. Let

R =




1/
√

2 0 0 1/
√

2

0 1/
√

2 −1/
√

2 0

0 1/
√

2 1/
√

2 0

−1/
√

2 0 0 1/
√

2




be the unitary solution to the Yang-Baxter equation discussed above. Then R
is a universal gate. The proof below gives a specific expression for CNOT in
terms of R.

Proof. This result follows at once from the Brylinksi Theorem, since R is
highly entangling. For a direct computational proof, it suffices to show that
CNOT can be generated from R and local unitary transformations. Let

α =

(
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)

β =

(
−1/
√

2 1/
√

2

i/
√

2 i/
√

2

)

γ =

(
1/
√

2 i/
√

2

1/
√

2 −i/
√

2

)

δ =

(
−1 0
0 −i

)

Let M = α⊗ β and N = γ ⊗ δ. Then it is straightforward to verify that

CNOT = MRN.

This completes the proof. 2

Remark. See [56] for more information about these calculations.
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4 A Remark about EPR, Engtanglement and

Bell’s Inequality

A state |ψ〉 ∈ H⊗n, where H is the qubit space, is said to be entangled if
it cannot be written as a tensor product of vectors from non-trivial factors
of H⊗n. Such states turn out to be related to subtle nonlocality in quantum
physics. It helps to place this algebraic structure in the context of a gedanken
experiment to see where the physics comes in. Thought experiments of the
sort we are about to describe were first devised by Einstein, Podolosky and
Rosen, referred henceforth as EPR.

Consider the entangled state

S = (|0〉|1〉+ |1〉|0〉)/
√

2.

In an EPR thought experiment, we think of two “parts” of this state that
are separated in space. We want a notation for these parts and suggest the
following:

L = ({|0〉}|1〉+ {|1〉}|0〉)/
√

2,

R = (|0〉{|1〉}+ |1〉{|0〉})/
√

2.

In the left state L, an observer can only observe the left hand factor. In
the right state R, an observer can only observe the right hand factor. These
“states” L and R together comprise the EPR state S, but they are accessible
individually just as are the two photons in the usual thought experiement.
One can transport L and R individually and we shall write

S = L ∗R

to denote that they are the “parts” (but not tensor factors) of S.

The curious thing about this formalism is that it includes a little bit of
macroscopic physics implicitly, and so it makes it a bit more apparent what
EPR were concerned about. After all, lots of things that we can do to L or
R do not affect S. For example, transporting L from one place to another, as
in the original experiment where the photons separate. On the other hand, if
Alice has L and Bob has R and Alice performs a local unitary transformation
on “her” tensor factor, this applies to both L and R since the transformation
is actually being applied to the state S. This is also a “spooky action at a
distance” whose consequence does not appear until a measurement is made.
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To go a bit deeper it is worthwhile seeing what entanglement, in the sense
of tensor indecomposability, has to do with the structure of the EPR thought
experiment. To this end, we look at the structure of the Bell inequalities using
the Clauser, Horne, Shimony, Holt formalism (CHSH) as explained in the
book by Nielsen and Chuang [71]. For this we use the following observables
with eigenvalues ±1.

Q =

(
1 0
0 −1

)

1

,

R =

(
0 1
1 0

)

1

,

S =

(
−1 −1
−1 1

)

2

/
√

2,

T =

(
1 −1
−1 −1

)

2

/
√

2.

The subscripts 1 and 2 on these matrices indicate that they are to operate on
the first and second tensor factors, repsectively, of a quantum state of the form

φ = a|00〉+ b|01〉+ c|10〉+ d|11〉.

To simplify the results of this calculation we shall here assume that the coef-
ficients a, b, c, d are real numbers. We calculate the quantity

∆ = 〈φ|QS|φ〉+ 〈φ|RS|φ〉+ 〈φ|RT |φ〉 − 〈φ|QT |φ〉,

finding that

∆ = (2− 4(a + d)2 + 4(ad− bc))/
√

2.

Classical probability calculation with random variables of value ±1 gives the
value of QS + RS + RT − QT = ±2 (with each of Q, R, S and T equal to
±1). Hence the classical expectation satisfies the Bell inequality

E(QS) + E(RS) + E(RT )− E(QT ) ≤ 2.

That quantum expectation is not classical is embodied in the fact that ∆ can
be greater than 2. The classic case is that of the Bell state

φ = (|01〉 − |10〉)/
√

2.

Here

∆ = 6/
√

2 > 2.
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In general we see that the following inequality is needed in order to violate the
Bell inequality

(2− 4(a + d)2 + 4(ad− bc))/
√

2 > 2.

This is equivalent to

(
√

2− 1)/2 < (ad− bc)− (a + d)2.

Since we know that φ is entangled exactly when ad− bc is non-zero, this shows
that an unentangled state cannot violate the Bell inequality. This formula also
shows that it is possible for a state to be entangled and yet not violate the
Bell inequality. For example, if

φ = (|00〉 − |01〉+ |10〉+ |11〉)/2,
then ∆(φ) satisfies Bell’s inequality, but φ is an entangled state. We see from
this calculation that entanglement in the sense of tensor indecomposability,
and entanglement in the sense of Bell inequality violation for a given choice
of Bell operators are not equivalent concepts. On the other hand, Benjamin
Schumacher has pointed out [79] that any entangled two-qubit state will violate
Bell inequalities for an appropriate choice of operators. This deepens the
context for our question of the relationship between topological entanglement
and quantum entanglement. The Bell inequality violation is an indication of
quantum mechanical entanglement. One’s intuition suggests that it is this sort
of entanglement that should have a topological context.

5 The Aravind Hypothesis

Link diagrams can be used as graphical devices and holders of information. In
this vein Aravind [5] proposed that the entanglement of a link should corre-
spond to the entanglement of a state. Measurement of a link would be modeled
by deleting one component of the link. A key example is the Borromean rings.
See Figure 8.
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Figure 8 - Borromean Rings

Deleting any component of the Boromean rings yields a remaining pair of
unlinked rings. The Borromean rings are entangled, but any two of them are
unentangled. In this sense the Borromean rings are analogous to the GHZ
state |GHZ〉 = (1/

√
2)(|000〉 + |111〉). Measurement in any factor of the

GHZ yields an unentangled state. Aravind points out that this property is
basis dependent. We point out that there are states whose entanglement after
an measurement is a matter of probability (via quantum amplitudes). Consider
for example the state

|ψ〉 = |001〉+ |010〉+ |100〉.

Measurement in any coordinate yields an entangled or an unentangled state
with equal probability. For example

|ψ〉 = |0〉(|01〉+ |10〉) + |1〉|00〉.

so that projecting to |1〉 in the first coordinate yields an unentangled state,
while projecting to |0〉 yields an entangled state, each with equal probability.

New ways to use link diagrams must be invented to map the properties
of such states. One direction is to consider appropriate notions of quantum
knots so that one can formlate superpositions of topological types as in [55].
But one needs to go deeper in this consideration. The relationship of topology
and physics needs to be examined carefully. We take the stance that topolog-
ical properties of systems are properties that remain invariant under certain
transformations that are identified as “topological equivalences”. In making
quantum physical models, these equivalences should correspond to unitary
transformations of an appropriate Hilbert space. Accordingly, we have for-
mulated a model for quantum knots [60] that meets these requirements. A
quantum knot system represents the “quantum embodiment” of a closed knot-
ted physical piece of rope. A quantum knot (i.e., an element |K〉 lying in an
appropriate Hilbert space Hn, as a state of this system, represents the state of
such a knotted closed piece of rope, i.e., the particular spatial configuration of
the knot tied in the rope. Associated with a quantum knot system is a group of
unitary transformations An, called the ambient group, which represents all pos-
sible ways of moving the rope around (without cutting the rope, and without
letting the rope pass through itself.) Of course, unlike a classical closed piece
of rope, a quantum knot can exhibit non-classical behavior, such as quantum
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superposition and quantum entanglement. The knot type of a quantum knot
|K〉 is simply the orbit of the quantum knot under the action of the ambient
group An. This leads to new questions connecting quantum computing and
knot theory.

6 SU(2) Representations of the Artin Braid

Group

The purpose of this section is to determine all the representations of the three
strand Artin braid group B3 to the special unitary group SU(2) and concomi-
tantly to the unitary group U(2). One regards the groups SU(2) and U(2) as
acting on a single qubit, and so U(2) is usually regarded as the group of local
unitary transformations in a quantum information setting. If one is looking
for a coherent way to represent all unitary transformations by way of braids,
then U(2) is the place to start. Here we will show that there are many rep-
resentations of the three-strand braid group that generate a dense subset of
U(2). Thus it is a fact that local unitary transformations can be ”generated
by braids” in many ways.

We begin with the structure of SU(2). A matrix in SU(2) has the form

M =

(
z w
−w̄ z̄

)
,

where z and w are complex numbers, and z̄ denotes the complex conjugate of
z. To be in SU(2) it is required that Det(M) = 1 and that M † = M−1 where
Det denotes determinant, and M † is the conjugate transpose of M. Thus if
z = a + bi and w = c + di where a, b, c, d are real numbers, and i2 = −1, then

M =

(
a + bi c + di
−c + di a− bi

)

with a2 + b2 + c2 + d2 = 1. It is convenient to write

M = a

(
1 0
0 1

)
+ b

(
i 0
0 −i

)
+ c

(
0 1
−1 0

)
+ d

(
0 i
i 0

)
,

and to abbreviate this decomposition as

M = a + bi + cj + dk
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where

1 ≡
(

1 0
0 1

)
, i ≡

(
i 0
0 −i

)
, j ≡,

(
0 1
−1 0

)
, k ≡

(
0 i
i 0

)

so that
i2 = j2 = k2 = ijk = −1

and
ij = k, jk = i, ki = j

ji = −k, kj = −i, ik = −j.

The algebra of 1, i, j, k is called the quaternions after William Rowan Hamil-
ton who discovered this algebra prior to the discovery of matrix algebra. Thus
the unit quaternions are identified with SU(2) in this way. We shall use this
identification, and some facts about the quaternions to find the SU(2) repre-
sentations of braiding. First we recall some facts about the quaternions.

1. Note that if q = a + bi + cj + dk (as above), then q† = a− bi− cj − dk
so that qq† = a2 + b2 + c2 + d2 = 1.

2. A general quaternion has the form q = a + bi + cj + dk where the value
of qq† = a2 + b2 + c2 + d2, is not fixed to unity. The length of q is by

definition
√

qq†.

3. A quaternion of the form ri + sj + tk for real numbers r, s, t is said to
be a pure quaternion. We identify the set of pure quaternions with the
vector space of triples (r, s, t) of real numbers R3.

4. Thus a general quaternion has the form q = a + bu where u is a pure
quaternion of unit length and a and b are arbitrary real numbers. A unit
quaternion (element of SU(2)) has the addition property that a2+b2 = 1.

5. If u is a pure unit length quaternion, then u2 = −1. Note that the
set of pure unit quaternions forms the two-dimensional sphere S2 =
{(r, s, t)|r2 + s2 + t2 = 1} in R3.

6. If u, v are pure quaternions, then

uv = −u · v + u× v

whre u · v is the dot product of the vectors u and v, and u × v is the
vector cross product of u and v. In fact, one can take the definition of
quaternion multiplication as

(a + bu)(c + dv) = ac + bc(u) + ad(v) + bd(−u · v + u× v),
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and all the above properties are consequences of this definition. Note
that quaternion multiplication is associative.

7. Let g = a + bu be a unit length quaternion so that u2 = −1 and a =
cos(θ/2), b = sin(θ/2) for a chosen angle θ. Define φg : R3 −→ R3 by
the equation φg(P ) = gPg†, for P any point in R3, regarded as a pure
quaternion. Then φg is an orientation preserving rotation of R3 (hence
an element of the rotation group SO(3)). Specifically, φg is a rotation
about the axis u by the angle θ. The mapping

φ : SU(2) −→ SO(3)

is a two-to-one surjective map from the special unitary group to the
rotation group. In quaternionic form, this result was proved by Hamilton
and by Rodrigues in the middle of the nineteeth century. The specific
formula for φg(P ) as shown below:

φg(P ) = gPg−1 = (a2 − b2)P + 2ab(P × u) + 2(P · u)b2u.

We want a representation of the three-strand braid group in SU(2). This
means that we want a homomorphism ρ : B3 −→ SU(2), and hence we want
elements g = ρ(s1) and h = ρ(s2) in SU(2) representing the braid group
generators s1 and s2. Since s1s2s1 = s2s1s2 is the generating relation for B3,
the only requirement on g and h is that ghg = hgh. We rewrite this relation
as h−1gh = ghg−1, and analyze its meaning in the unit quaternions.

Suppose that g = a + bu and h = c + dv where u and v are unit pure
quaternions so that a2 + b2 = 1 and c2 + d2 = 1. then ghg−1 = c + dφg(v) and
h−1gh = a + bφh−1(u). Thus it follows from the braiding relation that a = c,
b = ±d, and that φg(v) = ±φh−1(u). However, in the case where there is a
minus sign we have g = a + bu and h = a− bv = a + b(−v). Thus we can now
prove the following Theorem.

Theorem. If g = a + bu and h = c + dv are pure unit quaternions,then,
without loss of generality, the braid relation ghg = hgh is true if and only if
h = a + bv, and φg(v) = φh−1(u). Furthermore, given that g = a + bu and

h = a+ bv, the condition φg(v) = φh−1(u) is satisfied if and only if u ·v = a2−b2
2b2

when u 6= v. If u = v then then g = h and the braid relation is trivially
satisfied.

Proof. We have proved the first sentence of the Theorem in the discussion
prior to its statement. Therefore assume that g = a + bu, h = a + bv, and
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φg(v) = φh−1(u). We have already stated the formula for φg(v) in the discussion
about quaternions:

φg(v) = gvg−1 = (a2 − b2)v + 2ab(v × u) + 2(v · u)b2u.

By the same token, we have

φh−1(u) = h−1uh = (a2 − b2)u + 2ab(u×−v) + 2(u · (−v))b2(−v)

= (a2 − b2)u + 2ab(v × u) + 2(v · u)b2(v).

Hence we require that

(a2 − b2)v + 2(v · u)b2u = (a2 − b2)u + 2(v · u)b2(v).

This equation is equivalent to

2(u · v)b2(u− v) = (a2 − b2)(u− v).

If u 6= v, then this implies that

u · v =
a2 − b2

2b2
.

This completes the proof of the Theorem. 2

An Example. Let
g = eiθ = a + bi

where a = cos(θ) and b = sin(θ). Let

h = a + b[(c2 − s2)i + 2csk]

where c2 + s2 = 1 and c2 − s2 = a2−b2
2b2

. Then we can rewrite g and h in matrix
form as the matrices G and H. Instead of writing the explicit form of H, we
write H = FGF † where F is an element of SU(2) as shown below.

G =

(
eiθ 0
0 e−iθ

)

F =

(
ic is
is −ic

)

This representation of braiding where one generator G is a simple matrix of
phases, while the other generator H = FGF † is derived from G by conjugation
by a unitary matrix, has the possibility for generalization to representations of
braid groups (on greater than three strands) to SU(n) or U(n) for n greater
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than 2. In fact we shall see just such representations constructed later in this
paper, by using a version of topological quantum field theory. The simplest
example is given by

g = e7πi/10

f = iτ + k
√

τ

h = frf−1

where τ 2+τ = 1. Then g and h satisfy ghg = hgh and generate a representation
of the three-strand braid group that is dense in SU(2). We shall call this the
Fibonacci representation of B3 to SU(2).

Density. Consider representations of B3 into SU(2) produced by the method
of this section. That is consider the subgroup SU [G, H] of SU(2) generated by
a pair of elements {g, h} such that ghg = hgh. We wish to understand when
such a representation will be dense in SU(2). We need the following lemma.

Lemma. eaiebjeci = cos(b)ei(a+c) + sin(b)ei(a−c)j. Hence any element of SU(2)
can be written in the form eaiebjeci for appropriate choices of angles a, b, c. In
fact, if u and v are linearly independent unit vectors in R3, then any element
of SU(2) can be written in the form

eauebvecu

for appropriate choices of the real numbers a, b, c.

Proof. It is easy to check that

eaiebjeci = cos(b)ei(a+c) + sin(b)ei(a−c)j.

This completes the verification of the identity in the statement of the Lemma.

Let v be any unit direction in R3 and λ an arbitrary angle. We have

evλ = cos(λ) + sin(λ)v,

and
v = r + si + (p + qi)j

where r2 + s2 + p2 + q2 = 1. So

evλ = cos(λ) + sin(λ)[r + si] + sin(λ)[p + qi]j

= [(cos(λ) + sin(λ)r) + sin(λ)si] + [sin(λ)p + sin(λ)qi]j.
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By the identity just proved, we can choose angles a, b, c so that

evλ = eiaejbeic.

Hence
cos(b)ei(a+c) = (cos(λ) + sin(λ)r) + sin(λ)si

and
sin(b)ei(a−c) = sin(λ)p + sin(λ)qi.

Suppose we keep v fixed and vary λ. Then the last equations show that this
will result in a full variation of b.

Now consider

eia
′
evλeic

′
= eia

′
eiaejbeiceib

′
= ei(a

′+a)ejbei(c+c
′).

By the basic identity, this shows that any element of SU(2) can be written in
the form

eia
′
evλeic

′
.

Then, by applying a rotation, we finally conclude that if u and v are linearly
independent unit vectors in R3, then any element of SU(2) can be written in
the form

eauebvecu

for appropriate choices of the real numbers a, b, c. 2

This Lemma can be used to verify the density of a representation, by finding
two elements A and B in the representation such that the powers of A are dense
in the rotations about its axis, and the powers of B are dense in the rotations
about its axis, and such that the axes of A and B are linearly independent in
R3. Then by the Lemma the set of elements Aa+cBbAa−c are dense in SU(2).
It follows for example, that the Fibonacci representation described above is
dense in SU(2), and indeed the generic representation of B3 into SU(2) will
be dense in SU(2). Our next task is to describe representations of the higher
braid groups that will extend some of these unitary repressentations of the
three-strand braid group. For this we need more topology.

7 The Bracket Polynomial and the Jones Poly-

nomial

We now discuss the Jones polynomial. We shall construct the Jones polynomial
by using the bracket state summation model [37]. The bracket polynomial,
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invariant under Reidmeister moves II and III, can be normalized to give an
invariant of all three Reidemeister moves. This normalized invariant, with a
change of variable, is the Jones polynomial [35, 36]. The Jones polynomial was
originally discovered by a different method than the one given here.

The bracket polynomial , < K > = < K > (A), assigns to each unoriented
link diagram K a Laurent polynomial in the variable A, such that

1. If K and K ′ are regularly isotopic diagrams, then < K > = < K ′ >.

2. If KtO denotes the disjoint union of K with an extra unknotted and un-
linked component O (also called ‘loop’ or ‘simple closed curve’ or ‘Jordan
curve’), then

< K tO > = δ < K >,

where

δ = −A2 − A−2.

3. < K > satisfies the following formulas

< χ > = A <³ > +A−1 <)(>

< χ > = A−1 <³ > +A <)(>,

where the small diagrams represent parts of larger diagrams that are identical
except at the site indicated in the bracket. We take the convention that the
letter chi, χ, denotes a crossing where the curved line is crossing over the
straight segment. The barred letter denotes the switch of this crossing, where
the curved line is undercrossing the straight segment. See Figure 9 for a graphic
illustration of this relation, and an indication of the convention for choosing
the labels A and A−1 at a given crossing.
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AA
-1A

-1A

A
-1A

< > = A < > + < >-1A

< > = A< > + < >-1A

Figure 9 - Bracket Smoothings

It is easy to see that Properties 2 and 3 define the calculation of the bracket
on arbitrary link diagrams. The choices of coefficients (A and A−1) and the
value of δ make the bracket invariant under the Reidemeister moves II and III.
Thus Property 1 is a consequence of the other two properties.

In computing the bracket, one finds the following behaviour under Reide-
meister move I:

< γ >= −A3 <^>

and
< γ >= −A−3 <^>

where γ denotes a curl of positive type as indicated in Figure 10, and γ
indicates a curl of negative type, as also seen in this figure. The type of a curl
is the sign of the crossing when we orient it locally. Our convention of signs is
also given in Figure 10. Note that the type of a curl does not depend on the
orientation we choose. The small arcs on the right hand side of these formulas
indicate the removal of the curl from the corresponding diagram.

The bracket is invariant under regular isotopy and can be normalized to an
invariant of ambient isotopy by the definition

fK(A) = (−A3)−w(K) < K > (A),
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where we chose an orientation for K, and where w(K) is the sum of the crossing
signs of the oriented link K. w(K) is called the writhe of K. The convention
for crossing signs is shown in Figure 10.

or

or

+ -

+ +

- -

+

-

Figure 10 - Crossing Signs and Curls

One useful consequence of these formulas is the following switching formula

A < χ > −A−1 < χ >= (A2 − A−2) <³ > .

Note that in these conventions the A-smoothing of χ is ³, while the A-
smoothing of χ is )(. Properly interpreted, the switching formula above says
that you can switch a crossing and smooth it either way and obtain a three
diagram relation. This is useful since some computations will simplify quite
quickly with the proper choices of switching and smoothing. Remember that
it is necessary to keep track of the diagrams up to regular isotopy (the equiv-
alence relation generated by the second and third Reidemeister moves). Here
is an example. View Figure 11.

K U U'

Figure 11 – Trefoil and Two Relatives
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Figure 11 shows a trefoil diagram K, an unknot diagram U and another unknot
diagram U ′. Applying the switching formula, we have

A−1 < K > −A < U >= (A−2 − A2) < U ′ >

and < U >= −A3 and < U ′ >= (−A−3)2 = A−6. Thus

A−1 < K > −A(−A3) = (A−2 − A2)A−6.

Hence
A−1 < K >= −A4 + A−8 − A−4.

Thus
< K >= −A5 − A−3 + A−7.

This is the bracket polynomial of the trefoil diagram K.

Since the trefoil diagram K has writhe w(K) = 3, we have the normalized
polynomial

fK(A) = (−A3)−3 < K >= −A−9(−A5 − A−3 + A−7) = A−4 + A−12 − A−16.

The bracket model for the Jones polynomial is quite useful both theoreti-
cally and in terms of practical computations. One of the neatest applications
is to simply compute, as we have done, fK(A) for the trefoil knot K and de-
termine that fK(A) is not equal to fK(A−1) = f−K(A). This shows that the
trefoil is not ambient isotopic to its mirror image, a fact that is much harder
to prove by classical methods.

The State Summation. In order to obtain a closed formula for the bracket,
we now describe it as a state summation. Let K be any unoriented link
diagram. Define a state, S, of K to be a choice of smoothing for each crossing
of K. There are two choices for smoothing a given crossing, and thus there are
2N states of a diagram with N crossings. In a state we label each smoothing
with A or A−1 according to the left-right convention discussed in Property 3
(see Figure 9). The label is called a vertex weight of the state. There are
two evaluations related to a state. The first one is the product of the vertex
weights, denoted

< K|S > .

The second evaluation is the number of loops in the state S, denoted

||S||.
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Define the state summation, < K >, by the formula

< K > =
∑

S

< K|S > δ||S||−1.

It follows from this definition that < K > satisfies the equations

< χ > = A <³ > +A−1 <)(>,

< K tO > = δ < K >,

< O > = 1.

The first equation expresses the fact that the entire set of states of a given
diagram is the union, with respect to a given crossing, of those states with
an A-type smoothing and those with an A−1-type smoothing at that crossing.
The second and the third equation are clear from the formula defining the state
summation. Hence this state summation produces the bracket polynomial as
we have described it at the beginning of the section.

Remark. By a change of variables one obtains the original Jones polynomial,
VK(t), for oriented knots and links from the normalized bracket:

VK(t) = fK(t−
1
4 ).

Remark. The bracket polynomial provides a connection between knot theory
and physics, in that the state summation expression for it exhibits it as a
generalized partition function defined on the knot diagram. Partition functions
are ubiquitous in statistical mechanics, where they express the summation
over all states of the physical system of probability weighting functions for the
individual states. Such physical partition functions contain large amounts of
information about the corresponding physical system. Some of this information
is directly present in the properties of the function, such as the location of
critical points and phase transition. Some of the information can be obtained
by differentiating the partition function, or performing other mathematical
operations on it.

There is much more in this connection with statistical mechanics in that
the local weights in a partition function are often expressed in terms of solu-
tions to a matrix equation called the Yang-Baxter equation, that turns out to
fit perfectly invariance under the third Reidemeister move. As a result, there
are many ways to define partition functions of knot diagrams that give rise to
invariants of knots and links. The subject is intertwined with the algebraic
structure of Hopf algebras and quantum groups, useful for producing system-
atic solutions to the Yang-Baxter equation. In fact Hopf algebras are deeply
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connected with the problem of constructing invariants of three-dimensional
manifolds in relation to invariants of knots. We have chosen, in this survey
paper, to not discuss the details of these approaches, but rather to proceed
to Vassiliev invariants and the relationships with Witten’s functional integral.
The reader is referred to [37, 38, 39, 40, 43, 44, 3, 35, 36, 45, 75, 76, 83, 84] for
more information about relationships of knot theory with statistical mechan-
ics, Hopf algebras and quantum groups. For topology, the key point is that
Lie algebras can be used to construct invariants of knots and links.

7.1 Quantum Computation of the Jones Polynomial

Can the invariants of knots and links such as the Jones polynomial be con-
figured as quantum computers? This is an important question because the
algorithms to compute the Jones polynomial are known to be NP -hard, and
so corresponding quantum algorithms may shed light on the relationship of this
level of computational complexity with quantum computing (See [29]). Such
models can be formulated in terms of the Yang-Baxter equation [37, 38, 44, 49].
The next paragraph explains how this comes about.

In Figure 12, we indicate how topological braiding plus maxima (caps)
and minima (cups) can be used to configure the diagram of a knot or link.
This also can be translated into algebra by the association of a Yang-Baxter
matrix R (not necessarily the R of the previous sections) to each crossing and
other matrices to the maxima and minima. There are models of very effective
invariants of knots and links such as the Jones polynomial that can be put into
this form [49]. In this way of looking at things, the knot diagram can be viewed
as a picture, with time as the vertical dimension, of particles arising from the
vacuum, interacting (in a two-dimensional space) and finally annihilating one
another. The invariant takes the form of an amplitude for this process that
is computed through the association of the Yang-Baxter solution R as the
scattering matrix at the crossings and the minima and maxima as creation
and annihilation operators. Thus we can write the amplitude in the form

ZK = 〈CUP |M |CAP 〉

where 〈CUP | denotes the composition of cups, M is the composition of ele-
mentary braiding matrices, and |CAP 〉 is the composition of caps. We regard
〈CUP | as the preparation of this state, and |CAP 〉 as the measurement of this
state. In order to view ZK as a quantum computation, M must be a unitary
operator. This is the case when the R-matrices (the solutions to the Yang-
Baxter equation used in the model) are unitary. Each R-matrix is viewed as a a
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quantum gate (or possibly a composition of quantum gates), and the vacuum-
vacuum diagram for the knot is interpreted as a quantum computer. This
quantum computer will probabilistically (via quantum amplitudes) compute
the values of the states in the state sum for ZK .

x

xxx

x xx

x

ZK = 〈CAP |M |CUP 〉

M

Unitary Braiding

Quantum Computation

〈CAP |(Measurement)

|CUP 〉(Preparation)

-

6

@@

@@
�

�
��

@
@
@
@
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@
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@

Figure 12 A Knot Quantum Computer

We should remark, however, that it is not necessary that the invariant
be modeled via solutions to the Yang-Baxter equation. One can use unitary
representations of the braid group that are constructed in other ways. In fact,
the presently successful quantum algorithms for computing knot invariants
indeed use such representations of the braid group, and we shall see this below.
Nevertheless, it is useful to point out this analogy between the structure of the
knot invariants and quantum computation.

Quantum algorithms for computing the Jones polynomial have been dis-
cussed elsewhere. See [49, 56, 1, 59, 2, 88]. Here, as an example, we give a local
unitary representation that can be used to compute the Jones polynomial for
closures of 3-braids. We analyze this representation by making explicit how
the bracket polynomial is computed from it, and showing how the quantum
computation devolves to finding the trace of a unitary transformation.

The idea behind the construction of this representation depends upon the
algebra generated by two single qubit density matrices (ket-bras). Let |v〉
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and |w〉 be two qubits in V, a complex vector space of dimension two over
the complex numbers. Let P = |v〉〈v| and Q = |w〉〈w| be the corresponding
ket-bras. Note that

P 2 = |v|2P,

Q2 = |w|2Q,

PQP = |〈v|w〉|2P,

QPQ = |〈v|w〉|2Q.

P and Q generate a representation of the Temperley-Lieb algebra (See Section
5 of the present paper). One can adjust parameters to make a representation
of the three-strand braid group in the form

s1 7−→ rP + sI,

s2 7−→ tQ + uI,

where I is the identity mapping on V and r, s, t, u are suitably chosen scalars.
In the following we use this method to adjust such a representation so that it
is unitary. Note also that this is a local unitary representation of B3 to U(2).
We leave it as an exersise for the reader to verify that it fits into our general
classification of such representations as given in section 3 of the present paper.

Here is a specific representation depending on two symmetric matrices U1

and U2 with

U1 =

[
d 0
0 0

]
= d|w〉〈w|

and

U2 =

[
d−1

√
1− d−2√

1− d−2 d− d−1

]
= d|v〉〈v|

where w = (1, 0), and v = (d−1,
√

1− d−2), assuming the entries of v are real.
Note that U2

1 = dU1 and U2
2 = dU1. Moreover, U1U2U1 = U1 and U2U1U2 = U1.

This is an example of a specific representation of the Temperley-Lieb algebra
[37, 49]. The desired representation of the Artin braid group is given on the
two braid generators for the three strand braid group by the equations:

Φ(s1) = AI + A−1U1,

Φ(s2) = AI + A−1U2.

Here I denotes the 2× 2 identity matrix.

38



        

For any A with d = −A2 − A−2 these formulas define a representation of the
braid group. With A = eiθ, we have d = −2cos(2θ). We find a specific range
of angles θ in the following disjoint union of angular intervals

θ ∈ [0, π/6] t [π/3, 2π/3] t [5π/6, 7π/6] t [4π/3, 5π/3] t [11π/6, 2π]

that give unitary representations of the three-strand braid group. Thus a spe-
cialization of a more general represention of the braid group gives rise to a
continuous family of unitary representations of the braid group.

Lemma. Note that the traces of these matrices are given by the formulas
tr(U1) = tr(U2) = d while tr(U1U2) = tr(U2U1) = 1. If b is any braid, let I(b)
denote the sum of the exponents in the braid word that expresses b. For b a
three-strand braid, it follows that

Φ(b) = AI(b)I + Π(b)

where I is the 2 × 2 identity matrix and Π(b) is a sum of products in the
Temperley-Lieb algebra involving U1 and U2.

We omit the proof of this Lemma. It is a calculation. To see it, consider
an example. Suppose that b = s1s

−1
2 s1. Then

Φ(b) = Φ(s1s
−1
2 s1) = Φ(s1)Φ(s−1

2 )Φ(s1) =

(AI + A−1U1)(A
−1I + AU2)(AI + A−1U1).

The sum of products over the generators U1 and U2 of the Temperley–Lieb
algebra comes from expanding this expression.

Since the Temperley-Lieb algebra in this dimension is generated by I,U1,
U2, U1U2 and U2U1, it follows that the value of the bracket polynomial of the
closure of the braid b, denoted < b >, can be calculated directly from the trace
of this representation, except for the part involving the identity matrix. The
result is the equation

< b >= AI(b)d2 + tr(Π(b))

where b denotes the standard braid closure of b, and the sharp brackets denote
the bracket polynomial. From this we see at once that

< b >= tr(Φ(b)) + AI(b)(d2 − 2).

It follows from this calculation that the question of computing the bracket
polynomial for the closure of the three-strand braid b is mathematically equiv-
alent to the problem of computing the trace of the unitary matrix Φ(b).
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The Hadamard Test
In order to (quantum) compute the trace of a unitary matrix U , one can use

the Hadamard test to obtain the diagonal matrix elements 〈ψ|U |ψ〉 of U. The
trace is then the sum of these matrix elements as |ψ〉 runs over an orthonormal
basis for the vector space. We first obtain

1

2
+

1

2
Re〈ψ|U |ψ〉

as an expectation by applying the Hadamard gate H

H|0〉 =
1√
2
(|0〉+ |1〉)

H|1〉 =
1√
2
(|0〉 − |1〉)

to the first qubit of

CU ◦ (H ⊗ 1)|0〉|ψ〉 =
1√
2
(|0〉 ⊗ |ψ〉+ |1〉 ⊗ U |ψ〉.

Here CU denotes controlled U, acting as U when the control bit is |1〉 and the
identity mapping when the control bit is |0〉. We measure the expectation for
the first qubit |0〉 of the resulting state

1

2
(H|0〉 ⊗ |ψ〉+ H|1〉 ⊗ U |ψ〉) =

1

2
((|0〉+ |1〉)⊗ |ψ〉+ (|0〉 − |1〉)⊗ U |ψ〉)

=
1

2
(|0〉 ⊗ (|ψ〉+ U |ψ〉) + |1〉 ⊗ (|ψ〉 − U |ψ〉)).

This expectation is

1

2
(〈ψ|+ 〈ψ|U †)(|ψ〉+ U |ψ〉) =

1

2
+

1

2
Re〈ψ|U |ψ〉.

The imaginary part is obtained by applying the same procedure to

1√
2
(|0〉 ⊗ |ψ〉 − i|1〉 ⊗ U |ψ〉

This is the method used in [1], and the reader may wish to contemplate its
efficiency in the context of this simple model. Note that the Hadamard test
enables this quantum computation to estimate the trace of any unitary ma-
trix U by repeated trials that estimate individual matrix entries 〈ψ|U |ψ〉. We
shall return to quantum algorithms for the Jones polynomial and other knot
polynomials in a subsequent paper.
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8 Quantum Topology, Cobordism Categories,

Temperley-Lieb Algebra and Topological Quan-

tum Field Theory

The purpose of this section is to discuss the general idea behind topological
quantum field theory, and to illustrate its application to basic quantum me-
chanics and quantum mechanical formalism. It is useful in this regard to have
available the concept of category, and we shall begin the section by discussing
this far-reaching mathematical concept.

Definition. A category Cat consists in two related collections:

1. Obj(Cat), the objects of Cat, and

2. Morph(Cat), the morphisms of Cat.

satisfying the following axioms:

1. Each morphism f is associated to two objects of Cat, the domain of f
and the codomain of f. Letting A denote the domain of f and B denote
the codomain of f, it is customary to denote the morphism f by the
arrow notation f : A −→ B.

2. Given f : A −→ B and g : B −→ C where A, B and C are objects of
Cat, then there exists an associated morphism g ◦f : A −→ C called the
composition of f and g.

3. To each object A of Cat there is a unique identity morphism 1A : A −→ A
such that 1A◦f = f for any morphism f with codomain A, and g◦1A = g
for any morphism g with domain A.

4. Given three morphisms f : A −→ B, g : B −→ C and h : C −→ D, then
composition is associative. That is

(h ◦ g) ◦ f = h ◦ (g ◦ f).

If Cat1 and Cat2 are two categories, then a functor F : Cat1 −→ Cat2 consists
in functions FO : Obj(Cat1) −→ Obj(Cat2) and FM : Morph(Cat1) −→
Morph(Cat2) such that identity morphisms and composition of morphisms
are preserved under these mappings. That is (writing just F for FO and FM),

1. F (1A) = 1F (A),

2. F (f : A −→ B) = F (f) : F (A) −→ F (B),
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3. F (g ◦ f) = F (g) ◦ F (f).

A functor F : Cat1 −→ Cat2 is a structure preserving mapping from one
category to another. It is often convenient to think of the image of the functor
F as an interpretation of the first category in terms of the second. We shall
use this terminology below and sometimes refer to an interpretation without
specifying all the details of the functor that describes it.

The notion of category is a broad mathematical concept, encompassing
many fields of mathematics. Thus one has the category of sets where the
objects are sets (collections) and the morphisms are mappings between sets.
One has the category of topological spaces where the objects are spaces and
the morphisms are continuous mappings of topological spaces. One has the
category of groups where the objects are groups and the morphisms are homo-
morphisms of groups. Functors are structure preserving mappings from one
category to another. For example, the fundamental group is a functor from
the category of topological spaces with base point, to the category of groups.
In all the examples mentioned so far, the morphisms in the category are re-
strictions of mappings in the category of sets, but this is not necessarily the
case. For example, any group G can be regarded as a category, Cat(G), with
one object ∗. The morphisms from ∗ to itself are the elements of the group
and composition is group multiplication. In this example, the object has no
internal structure and all the complexity of the category is in the morphisms.

The Artin braid group Bn can be regarded as a category whose single object
is an ordered row of points [n] = {1, 2, 3, ..., n}. The morphisms are the braids
themselves and composition is the multiplication of the braids. A given ordered
row of points is interpreted as the starting or ending row of points at the bottom
or the top of the braid. In the case of the braid category, the morphisms have
both external and internal structure. Each morphism produces a permutation
of the ordered row of points (corresponding to the begiinning and ending points
of the individual braid strands), and weaving of the braid is extra structure
beyond the object that is its domain and codomain. Finally, for this example,
we can take all the braid groups Bn (n a positive integer) under the wing of
a single category, Cat(B), whose objects are all ordered rows of points [n],
and whose morphisms are of the form b : [n] −→ [n] where b is a braid in Bn.
The reader may wish to have morphisms between objects with different n. We
will have this shortly in the Temperley-Lieb category and in the category of
tangles.

The n-Cobordism Category, Cob[n], has as its objects smooth manifolds of
dimension n, and as its morphisms, smooth manifolds Mn+1 of dimension n+1
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with a partition of the boundary, ∂Mn+1, into two collections of n-manifolds
that we denote by L(Mn+1) and R(Mn+1). We regard Mn+1 as a morphism
from L(Mn+1) to R(Mn+1)

Mn+1 : L(Mn+1) −→ R(Mn+1).

As we shall see, these cobordism categories are highly significant for quantum
mechanics, and the simplest one, Cob[0] is directly related to the Dirac notation
of bras and kets and to the Temperley-Lieb algebara. We shall concentrate
in this section on these cobordism categories, and their relationships with
quantum mechanics.

One can choose to consider either oriented or non-oriented manifolds, and
within unoriented manifolds there are those that are orientable and those that
are not orientable. In this section we will implicitly discuss only orientable
manifolds, but we shall not specify an orientation. In the next section, with
the standard definition of topological quantum field theory, the manifolds will
be oriented. The definitions of the cobordism categories for oriented manifolds
go over mutatis mutandis.

Lets begin with Cob[0]. Zero dimensional manifolds are just collections
of points. The simplest zero dimensional manifold is a single point p. We
take p to be an object of this category and also ∗, where ∗ denotes the empty
manifold (i.e. the empty set in the category of manifolds). The object ∗ occurs
in Cob[n] for every n, since it is possible that either the left set or the right set
of a morphism is empty. A line segment S with boundary points p and q is a
morphism from p to q.

S : p −→ q

See Figure 13. In this figure we have illustrated the morphism from p to p.
The simplest convention for this category is to take this morphism to be the
identity. Thus if we look at the subcategory of Cob[0] whose only object is p,
then the only morphism is the identity morphism. Two points occur as the
boundary of an interval. The reader will note that Cob[0] and the usual arrow
notation for morphisms are very closely related. This is a place where notation
and mathematical structure share common elements. In general the objects of
Cob[0] consist in the empty object ∗ and non-empty rows of points, symbolized
by

p⊗ p⊗ · · · ⊗ p⊗ p.

Figure 13 also contains a morphism

p⊗ p −→ ∗
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and the morphism
∗ −→ p⊗ p.

The first represents a cobordism of two points to the empty set (via the bound-
ing curved interval). The second represents a cobordism from the empty set
to two points.

Identity 

p
f: p                 p

p

pp *
pp*

Figure 13 - Elementary Cobordisms

In Figure 14, we have indicated more morphisms in Cob[0], and we have
named the morphisms just discussed as

|Ω〉 : p⊗ p −→ ∗,

〈Θ| : ∗ −→ p⊗ p.

The point to notice is that the usual conventions for handling Dirac bra-kets
are essentially the same as the compostion rules in this topological category.
Thus in Figure 14 we have that

〈Θ| ◦ |Ω〉 = 〈Θ|Ω〉 : ∗ −→ ∗

represents a cobordism from the empty manifold to itself. This cobordism is
topologically a circle and, in the Dirac formalism is interpreted as a scalar.
In order to interpret the notion of scalar we would have to map the cobor-
dism category to the category of vector spaces and linear mappings. We shall
discuss this after describing the similarities with quantum mechanical formal-
ism. Nevertheless, the reader should note that if V is a vector space over the
complex numbers C, then a linear mapping from C to C is determined by the
image of 1, and hence is characterized by the scalar that is the image of 1. In
this sense a mapping C −→ C can be regarded as a possible image in vector
spaces of the abstract structure 〈Θ|Ω〉 : ∗ −→ ∗. It is therefore assumed that

44



        

in Cob[0] the composition with the morphism 〈Θ|Ω〉 commutes with any other
morphism. In that way 〈Θ|Ω〉 behaves like a scalar in the cobordism category.
In general, an n + 1 manifold without boundary behaves as a scalar in Cob[n],
and if a manifold Mn+1 can be written as a union of two submanifolds Ln+1

and Rn+1 so that that an n-manifold W n is their common boundary:

Mn+1 = Ln+1 ∪Rn+1

with

Ln+1 ∩Rn+1 = W n

then, we can write

〈Mn+1〉 = 〈Ln+1 ∪Rn+1〉 = 〈Ln+1|Rn+1〉,

and 〈Mn+1〉 will be a scalar (morphism that commutes with all other mor-
phisms) in the category Cob[n].

Identity 
|     >
<     |

<     | >

<    ||    >
 =

U

Θ

Ω

Θ

Θ

Ω

Ω

 =
 =

U U  = |    >Ω <    |ΘΩΘ<    |    >

 = |    >Ω <    |ΘΩΘ<    |    >
 = ΩΘ<    |    >

U

Figure 14 - Bras, Kets and Projectors
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Figure 15 - Permutations
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Figure 16 - Projectors in Tensor Lines and Elementary Topology

Getting back to the contents of Figure 14, note how the zero dimensional
cobordism category has structural parallels to the Dirac ket–bra formalism

U = |Ω〉〈Θ|

UU = |Ω〉〈Θ|Ω〉〈Θ| = 〈Θ|Ω〉|Ω〉〈Θ| = 〈Θ|Ω〉U.

In the cobordism category, the bra–ket and ket–bra formalism is seen as pat-
terns of connection of the one-manifolds that realize the cobordisms.
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Now view Figure 15. This Figure illustrates a morphism S in Cob[0] that
requires two crossed line segments for its planar representation. Thus S can
be regarded as a non-trivial permutation, and S2 = I where I denotes the
identity morphisms for a two-point row. From this example, it is clear that
Cob[0] contains the structure of all the syymmetric groups and more. In fact,
if we take the subcateogry of Cob[0] consisting of all morphisms from [n] to
[n] for a fixed positive integer n, then this gives the well-known Brauer algebra
(see [13]) extending the symmetric group by allowing any connections among
the points in the two rows. In this sense, one could call Cob[0] the Brauer
category. We shall return to this point of view later.

In this section, we shall be concentrating on the part of Cob[0] that does not
involve permutations. This part can be characterized by those morphisms that
can be represented by planar diagrams without crosssings between any of the
line segments (the one-manifolds). We shall call this crossingless subcategory
of Cob[0] the Temperley-Lieb Category and denote it by CatTL. In CatTL we
have the subcategory TL[n] whose only objects are the row of n points and the
empty object ∗, and whose morphisms can all be represented by configurations
that embed in the plane as in the morphisms P and Q in Figure 16. Note that
with the empty object ∗, the morphism whose diagram is a single loop appears
in TL[n] and is taken to commute with all other morphisms.

The Temperley-Lieb Algebra, AlgTL[n] is generated by the morphisms in
TL[n] that go from [n] to itself. Up to multiplication by the loop, the product
(composition) of two such morphisms is another flat morphism from [n] to
itself. For algebraic purposes the loop ∗ −→ ∗ is taken to be a scalar algebraic
variable δ that commutes with all elements in the algebra. Thus the equation

UU = 〈Θ|Ω〉U.

becomes

UU = δU

in the algebra. In the algebra we are allowed to add morphisms formally and
this addition is taken to be commutative. Initially the algebra is taken with
coefficients in the integers, but a different commutative ring of coefficients can
be chosen and the value of the loop may be taken in this ring. For example,
for quantum mechanical applications it is natural to work over the complex
numbers. The multiplicative structure of AlgTL[n] can be described by gen-
erators and relations as follows: Let In denote the identity morphism from [n]
to [n]. Let Ui denote the morphism from [n] to [n] that connects k with k for
k < i and k > i + 1 from one row to the other, and connects i to i + 1 in each

47



      

row. Then the algebra AlgTL[n] is generated by {In, U1, U2, · · · , Un−1} with
relations

U2
i = δUi

UiUi+1Ui = Ui

UiUj = UjUi : |i− j| > 1.

These relations are illustrated for three strands in Figure 16. We leave the
commuting relation for the reader to draw in the case where n is four or
greater. For a proof that these are indeed all the relations, see [52].

Figures 16 and 17 indicate how the zero dimensional cobordism category
contains structure that goes well beyond the usual Dirac formalism. By ten-
soring the ket–bra on one side or another by identity morphisms, we obtain
the beginnings of the Temperley-Lieb algebra and the Temperley-Lieb cate-
gory. Thus Figure 17 illustrates the morphisms P and Q obtained by such
tensoring, and the relation PQP = P which is the same as U1U2U1 = U1

Note the composition at the bottom of the Figure 17. Here we see a com-
position of the identity tensored with a ket, followed by a bra tensored with
the identity. The diagrammatic for this association involves “straightening”
the curved structure of the morphism to a straight line. In Figure 18 we have
elaborated this situation even further, pointing out that in this category each
of the morphisms 〈Θ| and |Ω〉 can be seen, by straightening, as mappings
from the generating object to itself. We have denoted these corresponding
morphisms by Θ and Ω respectively. In this way there is a correspondence
between morphisms p⊗ p −→ ∗ and morphims p −→ p.

In Figure 18 we have illustrated the generalization of the straightening
procedure of Figure 17. In Figure 17 the straightening occurs because the
connection structure in the morphism of Cob[0] does not depend on the wan-
dering of curves in diagrams for the morphisms in that category. Nevertheless,
one can envisage a more complex interpretation of the morphisms where each
one-manifold (line segment) has a label, and a multiplicity of morphisms can
correspond to a single line segment. This is exactly what we expect in inter-
pretations. For example, we can interpret the line segment [1] −→ [1] as a
mapping from a vector space V to itself. Then [1] −→ [1] is the diagrammatic
abstraction for V −→ V, and there are many instances of linear mappings from
V to V .

At the vector space level there is a duality between mappings V ⊗V −→ C
and linear maps V −→ V. Specifically, let

{|0〉, · · · , |m〉}

48



        

be a basis for V. Then Θ : V −→ V is determined by

Θ|i〉 = Θij |j〉

(where we have used the Einstein summation convention on the repeated index
j) corresponds to the bra

〈Θ| : V ⊗ V −→ C

defined by

〈Θ|ij〉 = Θij.

Given 〈Θ| : V ⊗ V −→ C, we associate Θ : V −→ V in this way.

Comparing with the diagrammatic for the category Cob[0], we say that
Θ : V −→ V is obtained by straightening the mapping

〈Θ| : V ⊗ V −→ C.

Note that in this interpretation, the bras and kets are defined relative to the
tensor product of V with itself and [2] is interpreted as V ⊗ V. If we interpret
[2] as a single vector space W, then the usual formalisms of bras and kets still
pass over from the cobordism category.

<    ||    > 1

<    ||    >1

 =

 =

P

Q
|     ><     |1 1{ } { }

Θ

Θ

Ω

Ω

Θ Ω

{ }

}{

 =

 =
PQP      P =

 = R

R 1 =

Figure 17 - The Basic Temperley-Lieb Relation
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Ω
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φ|    > ψ|    >

ΩΘφ|    > ψ|    > =

|     >

<     |

Θ|     >

Ω<     | Ω

Θ

Figure 18 - The Key to Teleportation

Figure 18 illustrates the staightening of |Θ〉 and 〈Ω|, and the straightening
of a composition of these applied to |ψ〉, resulting in |φ〉. In the left-hand
part of the bottom of Figure 18 we illustrate the preparation of the tensor
product |Θ〉 ⊗ |ψ〉 followed by a successful measurement by 〈Ω| in the second
two tensor factors. The resulting single qubit state, as seen by straightening,
is |φ〉 = Θ ◦ Ω|ψ〉.

From this, we see that it is possible to reversibly, indeed unitarily, transform
a state |ψ〉 via a combination of preparation and measurement just so long as
the straightenings of the preparation and measurement (Θ and Ω) are each
invertible (unitary). This is the key to teleportation [51, 20, 21]. In the
standard teleportation procedure one chooses the preparation Θ to be (up to
normalization) the 2 dimensional identity matrix so that |θ〉 = |00〉+|11〉. If the
successful measurement Ω is also the identity, then the transmitted state |φ〉
will be equal to |ψ〉. In general we will have |φ〉 = Ω|ψ〉. One can then choose a
basis of measurements |Ω〉, each corresponding to a unitary transformation Ω
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so that the recipient of the transmission can rotate the result by the inverse of
Ω to reconsitute |ψ〉 if he is given the requisite information. This is the basic
design of the teleportation procedure.

There is much more to say about the category Cob[0] and its relationship
with quantum mechanics. We will stop here, and invite the reader to explore
further. Later in this paper, we shall use these ideas in formulating our rep-
resentations of the braid group. For now, we point out how things look as we
move upward to Cob[n] for n > 0. In Figure 19 we show typical cobordisms
(morphisms) in Cob[1] from two circles to one circle and from one circle to two
circles. These are often called “pairs of pants”. Their composition is a surface
of genus one seen as a morphism from two circles to two circles. The bottom
of the figure indicates a ket-bra in this dimension in the form of a mapping
from one circle to one circle as a composition of a cobordism of a circle to the
empty set and a cobordism from the empty set to a circle (circles bounding
disks). As we go to higher dimensions the structure of cobordisms becomes
more interesting and more complicated. It is remarkable that there is so much
structure in the lowest dimensions of these categories.

Figure 19 - Corbordisms of 1-Manifolds are Surfaces
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9 Braiding and Topological Quantum Field The-

ory

The purpose of this section is to discuss in a very general way how braid-
ing is related to topological quantum field theory. In the section to follow,
we will use the Temperley-Lieb recoupling theory to produce specfic unitary
representations of the Artin braid group.

The ideas in the subject of topological quantum field theory (TQFT) are
well expressed in the book [6] by Michael Atiyah and the paper [87] by Edward
Witten. Here is Atiyah’s definition:

Definition. A TQFT in dimension d is a functor Z(Σ) from the cobordism
category Cob[d] to the category V ect of vector spaces and linear mappings
which assigns

1. a finite dimensional vector space Z(Σ) to each compact, oriented d-
dimensional manifold Σ,

2. a vector Z(Y ) ∈ Z(Σ) for each compact, oriented (d + 1)-dimensional
manifold Y with boundary Σ.

3. a linear mapping Z(Y ) : Z(Σ1) −→ Z(Σ2) when Y is a (d + 1)-manifold
that is a cobordism between Σ1 and Σ2 (whence the boundary of Y is
the union of Σ1 and −Σ2.

The functor satisfies the following axioms.

1. Z(Σ†) = Z(Σ)† where Σ† denotes the manifold Σ with the opposite
orientation and Z(Σ)† is the dual vector space.

2. Z(Σ1 ∪ Σ2) = Z(Σ1)⊗ Z(Σ2) where ∪ denotes disjoint union.

3. If Y1 is a cobordism from Σ1 to Σ2, Y2 is a cobordism from Σ2 to Σ3 and
Y is the composite cobordism Y = Y1 ∪Σ2 Y2, then

Z(Y ) = Z(Y2) ◦ Z(Y1) : Z(Σ1) −→ Z(Σ2)

is the composite of the corresponding linear mappings.

4. Z(φ) = C (C denotes the complex numbers) for the empty manifold φ.

5. With Σ × I (where I denotes the unit interval) denoting the identity
cobordism from Σ to Σ, Z(Σ× I) is the identity mapping on Z(Σ).
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Note that, in this view a TQFT is basically a functor from the cobordism
categories defined in the last section to Vector Spaces over the complex num-
bers. We have already seen that in the lowest dimensional case of cobordisms
of zero-dimensional manifolds, this gives rise to a rich structure related to
quatum mechanics and quantum information theory. The remarkable fact is
that the case of three-dimensions is also related to quantum theory, and to
the lower-dimensional versions of the TQFT. This gives a significant way to
think about three-manifold invariants in terms of lower dimensional patterns
of interaction. Here follows a brief description.

Regard the three-manifold as a union of two handlebodies with boundary
an orientable surface Sg of genus g. The surface is divided up into trinions as
illustrated in Figure 20. A trinion is a surface with boundary that is topo-
logically equivalent to a sphere with three punctures. The trinion constitutes,
in itself a cobordism in Cob[1] from two circles to a single circle, or from a
single circle to two circles, or from three circles to the empty set. The pattern
of a trinion is a trivalent graphical vertex, as illustrated in Figure 20. In that
figure we show the trivalent vertex graphical pattern drawn on the surface of
the trinion, forming a graphical pattern for this combordism. It should be
clear from this figure that any cobordism in Cob[1] can be diagrammed by a
trivalent graph, so that the category of trivalent graphs (as morphisms from
ordered sets of points to ordered sets of points) has an image in the cate-
gory of cobordisms of compact one-dimensional manifolds. Given a surface S
(possibly with boundary) and a decomposition of that surface into triions, we
associate to it a trivalent graph G(S, t) where t denotes the particular trinion
decomposition.

In this correspondence, distinct graphs can correspond to topologically
identical cobordisms of circles, as illustrated in Figure 22. It turns out that
the graphical structure is important, and that it is extraordinarily useful to
articulate transformations between the graphs that correspond to the home-
omorphisms of the corresponding surfaces. The beginning of this structure is
indicated in the bottom part of Figure 22.

In Figure 23 we illustrate another feature of the relationship betweem sur-
faces and graphs. At the top of the figure we indicate a homeomorphism
between a twisted trinion and a standard trinion. The homeomorphism leaves
the ends of the trinion (denoted A,B and C) fixed while undoing the internal
twist. This can be accomplished as an ambient isotopy of the embeddings in
three dimensional space that are indicated by this figure. Below this isotopy
we indicate the corresponding graphs. In the graph category there will have
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to be a transformation between a braided and an unbraided trivalent vertex
that corresponds to this homeomorphism.

Trinion

Figure 20 - Decomposition of a Surface into Trinions

a b

c

d

e fa b

c

ε V(            )

V(                                )ε

Figure 21 - Trivalent Vectors
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Figure 22 - Trinion Associativity

A B

C

A B

C

=

Figure 23 - Tube Twist
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From the point of view that we shall take in this paper, the key to the
mathematical structure of three-dimensional TQFT lies in the trivalent graphs,
including the braiding of grapical arcs. We can think of these braided graphs
as representing idealized Feynman diagrams, with the trivalent vertex as the
basic particle interaction vertex, and the braiding of lines representing an in-
teraction resulting from an exchange of particles. In this view one thinks of
the particles as moving in a two-dimensional medium, and the diagrams of
braiding and trivalent vertex interactions as indications of the temporal events
in the system, with time indicated in the direction of the morphisms in the
category. Adding such graphs to the category of knots and links is an exten-
sion of the tangle category where one has already extended braids to allow any
embedding of strands and circles that start in n ordered points and end in
m ordered points. The tangle category includes the braid category and the
Temperley-Lieb category. These are both included in the category of braided
trivalent graphs.

Thinking of the basic trivalent vertex as the form of a particle interaction
there will be a set of particle states that can label each arc incident to the
vertex. In Figure 21 we illustrate the labeling of the trivalent graphs by such
particle states. In the next two sections we will see specific rules for labeling
such states. Here it suffices to note that there will be some restrictions on these
labels, so that a trivalent vertex has a set of possible labelings. Similarly, any
trivalent graph will have a set of admissible labelings. These are the possible
particle processes that this graph can support. We take the set of admissible
labelings of a given graph G as a basis for a vector space V (G) over the
complex numbers. This vector space is the space of processes associated with
the graph G. Given a surface S and a decomposition t of the surface into
trinions, we have the associated graph G(S, t) and hence a vector space of
processes V (G(S, t)). It is desirable to have this vector space independent of
the particular decomposition into trinions. If this can be accomplished, then
the set of vector spaces and linear mappings associated to the surfaces can
consitute a functor from the category of cobordisms of one-manifolds to vector
spaces, and hence gives rise to a one-dimensional topological quantum field
theory. To this end we need some properties of the particle interactions that
will be described below.

A spin network is, by definition a lableled trivalent graph in a category of
graphs that satisfy the properties outlined in the previous paragraph. We shall
detail the requirements below.

The simplest case of this idea is C. N. Yang’s original interpretation of
the Yang-Baxter equation [89]. Yang articulated a quantum field theory in
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one dimension of space and one dimension of time in which the R-matrix
giving the scattering ampitudes for an interaction of two particles whose (let
us say) spins corresponded to the matrix indices so that Rcd

ab is the amplitude
for particles of spin a and spin b to interact and produce particles of spin c
and d. Since these interactions are between particles in a line, one takes the
convention that the particle with spin a is to the left of the particle with spin
b, and the particle with spin c is to the left of the particle with spin d. If
one follows the concatenation of such interactions, then there is an underlying
permutation that is obtained by following strands from the bottom to the top
of the diagram (thinking of time as moving up the page). Yang designed the
Yang-Baxter equation for R so that the amplitudes for a composite process
depend only on the underlying permutation corresponding to the process and
not on the individual sequences of interactions.

In taking over the Yang-Baxter equation for topological purposes, we can
use the same interpretation, but think of the diagrams with their under- and
over-crossings as modeling events in a spacetime with two dimensions of space
and one dimension of time. The extra spatial dimension is taken in displacing
the woven strands perpendicular to the page, and allows us to use braiding
operators R and R−1 as scattering matrices. Taking this picture to heart, one
can add other particle properties to the idealized theory. In particular one
can add fusion and creation vertices where in fusion two particles interact to
become a single particle and in creation one particle changes (decays) into two
particles. These are the trivalent vertices discussed above. Matrix elements
corresponding to trivalent vertices can represent these interactions. See Figure
24.

Figure 24 -Creation and Fusion

Once one introduces trivalent vertices for fusion and creation, there is the
question how these interactions will behave in respect to the braiding operators.
There will be a matrix expression for the compositions of braiding and fusion or
creation as indicated in Figure 25. Here we will restrict ourselves to showing the
diagrammatics with the intent of giving the reader a flavor of these structures.
It is natural to assume that braiding intertwines with creation as shown in
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Figure 27 (similarly with fusion). This intertwining identity is clearly the sort
of thing that a topologist will love, since it indicates that the diagrams can
be interpreted as embeddings of graphs in three-dimensional space, and it fits
with our interpretation of the vertices in terms of trinions. Figure 25 illustrates
the Yang-Baxter equation. The intertwining identity is an assumption like the
Yang-Baxter equation itself, that simplifies the mathematical structure of the
model.

=

RIR I
RI

RI
RI

R I

R I
R I

Figure 25 - YangBaxterEquation

= R

Figure 26 - Braiding

=

Figure 27 - Intertwining
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It is to be expected that there will be an operator that expresses the re-
coupling of vertex interactions as shown in Figure 28 and labeled by Q. This
corresponds to the associativity at the level of trinion combinations shown in
Figure 22. The actual formalism of such an operator will parallel the mathe-
matics of recoupling for angular momentum. See for example [39]. If one just
considers the abstract structure of recoupling then one sees that for trees with
four branches (each with a single root) there is a cycle of length five as shown
in Figure 29. One can start with any pattern of three vertex interactions and
go through a sequence of five recouplings that bring one back to the same
tree from which one started. It is a natural simplifying axiom to assume that
this composition is the identity mapping. This axiom is called the pentagon
identity.

F

Figure 28 - Recoupling

F
F F

FF

Figure 29 - Pentagon Identity
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Finally there is a hexagonal cycle of interactions between braiding, recou-
pling and the intertwining identity as shown in Figure 30. One says that the
interactions satisfy the hexagon identity if this composition is the identity.

=

R

R
R

F
F

F

Figure 30 - Hexagon Identity

A graphical three-dimensional topological quantum field theory is an algebra
of interactions that satisfies the Yang-Baxter equation, the intertwining iden-
tity, the pentagon identity and the hexagon identity. There is not room in this
summary to detail the way that these properties fit into the topology of knots
and three-dimensional manifolds, but a sketch is in order. For the case of topo-
logical quantum field theory related to the group SU(2) there is a construction
based entirely on the combinatorial topology of the bracket polynomial (See
Sections 7,9 and 10 of this article.). See [44, 39] for more information on this
approach.

Now return to Figure 20 where we illustrate trinions, shown in relation
to a trivalent vertex, and a surface of genus three that is decomposed into
four trinions. It turns out that the vector space V (Sg) = V (G(Sg, t)) to
a surface with a trinion decomposition as t described above, and defined in
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terms of the graphical topological quantum field theory, does not depend upon
the choice of trinion decomposition. This independence is guaranteed by the
braiding, hexagon and pentagon identities. One can then associate a well-
defined vector |M〉 in V (Sg) whenenver M is a three manifold whose boundary
is Sg. Furthermore, if a closed three-manifold M3 is decomposed along a surface
Sg into the union of M− and M+ where these parts are otherwise disjoint three-
manifolds with boundary Sg, then the inner product I(M) = 〈M−|M+〉 is, up
to normalization, an invariant of the three-manifold M3. With the definition
of graphical topological quantum field theory given above, knots and links can
be incorporated as well, so that one obtains a source of invariants I(M3, K)
of knots and links in orientable three-manifolds. Here we see the uses of the
relationships that occur in the higher dimensional cobordism categories, as
descirbed in the previous section.

The invariant I(M3, K) can be formally compared with the Witten [87] integral

Z(M3, K) =
∫

DAe(ik/4π)S(M,A)WK(A).

It can be shown that up to limits of the heuristics, Z(M, K) and I(M3, K) are
essentially equivalent for appropriate choice of gauge group and corresponding
spin networks.

By these graphical reformulations, a three-dimensional TQFT is, at base,
a highly simplified theory of point particle interactions in 2 + 1 dimensional
spacetime. It can be used to articulate invariants of knots and links and
invariants of three manifolds. The reader interested in the SU(2) case of this
structure and its implications for invariants of knots and three manifolds can
consult [39, 44, 65, 19, 70]. One expects that physical situations involving 2+1
spacetime will be approximated by such an idealized theory. There are also
applications to 3 + 1 quantum gravity [7, 8, 53]. Aspects of the quantum Hall
effect may be related to topological quantum field theory [86]. One can study
a physics in two dimensional space where the braiding of particles or collective
excitations leads to non-trival representations of the Artin braid group. Such
particles are called Anyons. Such TQFT models would describe applicable
physics. One can think about applications of anyons to quantum computing
along the lines of the topoological models described here.
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F R

B = F   RF-1

F -1

Figure 31 - A More Complex Braiding Operator

A key point in the application of TQFT to quantum information theory
is contained in the structure illustrated in Figure 31. There we show a more
complex braiding operator, based on the composition of recoupling with the
elementary braiding at a vertex. (This structure is implicit in the Hexagon
identity of Figure 30.) The new braiding operator is a source of unitary rep-
resentations of braid group in situations (which exist mathematically) where
the recoupling transformations are themselves unitary. This kind of pattern is
utilized in the work of Freedman and collaborators [27, 28, 29, 30, 31] and in
the case of classical angular momentum formalism has been dubbed a “spin-
network quantum simlator” by Rasetti and collaborators [67, 68]. In the next
section we show how certain natural deformations [39] of Penrose spin net-
works [72] can be used to produce these unitary representations of the Artin
braid group and the corresponding models for anyonic topological quantum
computation.

10 Spin Networks and Temperley-Lieb Recou-

pling Theory

In this section we discuss a combinatorial construction for spin networks that
generalizes the original construction of Roger Penrose. The result of this gen-
eralization is a structure that satisfies all the properties of a graphical TQFT
as described in the previous section, and specializes to classical angular mo-
mentum recoupling theory in the limit of its basic variable. The construction
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is based on the properties of the bracket polynomial (as already described in
Section 4). A complete description of this theory can be found in the book
“Temperley-Lieb Recoupling Theory and Invariants of Three-Manifolds” by
Kauffman and Lins [39].

The “q-deformed” spin networks that we construct here are based on the
bracket polynomial relation. View Figure 32 and Figure 33.

...

...

n strands

=
n

n
= (A    )-3 t(   )σ ~σ(1/{n}!) Σ

σ ε Sn

~
=

A A-1

= -A2 -2- A

= +

{n}! = Σ
σ ε Sn

(A    )t(   )σ-4

=
n

n

= 0

= d

Figure 32 - Basic Projectors
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= −1/δ
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n 1 1 n 1 1

n
1

=
2

δ ∆
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Figure 33 - Two Strand Projector
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i + j = a
j + k = b
i + k = c

Figure 34 -Vertex

In Figure 32 we indicate how the basic projector (symmetrizer, Jones-
Wenzl projector)
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is constructed on the basis of the bracket polynomial expansion. In this tech-
nology a symmetrizer is a sum of tangles on n strands (for a chosen integer n).
The tangles are made by summing over braid lifts of permutations in the sym-
metric group on n letters, as indicated in Figure 32. Each elementary braid is
then expanded by the bracket polynomial relation as indicated in Figure 32 so
that the resulting sum consists of flat tangles without any crossings (these can
be viewed as elements in the Temperley-Lieb algebra). The projectors have the
property that the concatenation of a projector with itself is just that projector,
and if you tie two lines on the top or the bottom of a projector together, then
the evaluation is zero. This general definition of projectors is very useful for
this theory. The two-strand projector is shown in Figure 33. Here the formula
for that projector is particularly simple. It is the sum of two parallel arcs and
two turn-around arcs (with coefficient −1/d, with d = −A2 − A−2 is the loop
value for the bracket polynomial. Figure 33 also shows the recursion formula
for the general projector. This recursion formula is due to Jones and Wenzl
and the projector in this form, developed as a sum in the Temperley–Lieb
algebra (see Section 5 of this paper), is usually known as the Jones–Wenzl
projector.

The projectors are combinatorial analogs of irreducible representations of a
group (the original spin nets were based on SU(2) and these deformed nets are
based on the corresponding quantum group to SU(2)). As such the reader can
think of them as “particles”. The interactions of these particles are governed
by how they can be tied together into three-vertices. See Figure 34. In Figure
34 we show how to tie three projectors, of a, b, c strands respectively, together
to form a three-vertex. In order to accomplish this interaction, we must share
lines between them as shown in that figure so that there are non-negative
integers i, j, k so that a = i + j, b = j + k, c = i + k. This is equivalent to the
condition that a+ b+ c is even and that the sum of any two of a, b, c is greater
than or equal to the third. For example a+ b ≥ c. One can think of the vertex
as a possible particle interaction where [a] and [b] interact to produce [c]. That
is, any two of the legs of the vertex can be regarded as interacting to produce
the third leg.

There is a basic orthogonality of three vertices as shown in Figure 35. Here
if we tie two three-vertices together so that they form a “bubble” in the middle,
then the resulting network with labels a and b on its free ends is a multiple of
an a-line (meaning a line with an a-projector on it) or zero (if a is not equal
to b). The multiple is compatible with the results of closing the diagram in
the equation of Figure 35 so the two free ends are identified with one another.
On closure, as shown in the figure, the left hand side of the equation becomes
a Theta graph and the right hand side becomes a multiple of a “delta” where
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∆a denotes the bracket polynomial evaluation of the a-strand loop with a
projector on it. The Θ(a, b, c) denotes the bracket evaluation of a theta graph
made from three trivalent vertices and labeled with a, b, c on its edges.

There is a recoupling formula in this theory in the form shown in Figure 36.
Here there are “6-j symbols”, recoupling coefficients that can be expressed, as
shown in Figure 36, in terms of tetrahedral graph evaluations and theta graph
evaluations. The tetrahedral graph is shown in Figure 37. One derives the
formulas for these coefficients directly from the orthogonality relations for the
trivalent vertices by closing the left hand side of the recoupling formula and
using orthogonality to evaluate the right hand side. This is illustrated in Figure
38. The reader should be advised that there are specific calculational formulas
for the theta and tetrahedral nets. These can be found in [39]. Here we are
indicating only the relationships and external logic of these objects.
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∆
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Figure 35 - Orthogonality of Trivalent Vertices
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Figure 38 - Tetrahedron Formula for Recoupling Coefficients
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Finally, there is the braiding relation, as illustrated in Figure 36.

a b
cλ

a ab b

c c

(a+b-c)/2 (a'+b'-c')/2

x' = x(x+2)

a b
cλ

=

= (-1) A

Figure 39 - Local Braiding Formula

With the braiding relation in place, this q-deformed spin network theory
satisfies the pentagon, hexagon and braiding naturality identities needed for
a topological quantum field theory. All these identities follow naturally from
the basic underlying topological construction of the bracket polynomial. One
can apply the theory to many different situations.

10.1 Evaluations

In this section we discuss the structure of the evaluations for ∆n and the
theta and tetrahedral networks. We refer to [39] for the details behind these
formulas. Recall that ∆n is the bracket evaluation of the closure of the n-
strand projector, as illustrated in Figure 35. For the bracket variable A, one
finds that

∆n = (−1)n
A2n+2 − A−2n−2

A2 − A−2
.

One sometimes writes the quantum integer

[n] = (−1)n−1∆n−1 =
A2n − A−2n

A2 − A−2
.

If
A = eiπ/2r
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where r is a positive integer, then

∆n = (−1)n
sin((n + 1)π/r)

sin(π/r)
.

Here the corresponding quantum integer is

[n] =
sin(nπ/r)

sin(π/r)
.

Note that [n + 1] is a positive real number for n = 0, 1, 2, ...r − 2 and that
[r − 1] = 0.

The evaluation of the theta net is expressed in terms of quantum integers
by the formula

Θ(a, b, c) = (−1)m+n+p [m + n + p + 1]![n]![m]![p]!

[m + n]![n + p]![p + m]!

where

a = m + p, b = m + n, c = n + p.

Note that

(a + b + c)/2 = m + n + p.

When A = eiπ/2r, the recoupling theory becomes finite with the restriction
that only three-vertices (labeled with a, b, c) are admissible when a + b + c ≤
2r − 4. All the summations in the formulas for recoupling are restricted to
admissible triples of this form.

10.2 Symmetry and Unitarity

The formula for the recoupling coefficients given in Figure 38 has less symmetry
than is actually inherent in the structure of the situation. By multiplying all
the vertices by an appropriate factor, we can reconfigure the formulas in this
theory so that the revised recoupling transformation is orthogonal, in the sense
that its transpose is equal to its inverse. This is a very useful fact. It means
that when the resulting matrices are real, then the recoupling transformations
are unitary. We shall see particular applications of this viewpoint later in the
paper.
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Figure 40 illustrates this modification of the three-vertex. Let V ert[a, b, c]
denote the original 3-vertex of the Temperley-Lieb recoupling theory. Let
ModV ert[a, b, c] denote the modified vertex. Then we have the formula

ModV ert[a, b, c] =

√√
∆a∆b∆c√

Θ(a, b, c)
V ert[a, b, c].

Lemma. For the bracket evaluation at the root of unity A = eiπ/2r the factor

f(a, b, c) =

√√
∆a∆b∆c√

Θ(a, b, c)

is real, and can be taken to be a positive real number for (a, b, c) admissible
(i.e. a + b + c ≤ 2r − 4).

Proof. By the results from the previous subsection,

Θ(a, b, c) = (−1)(a+b+c)/2Θ̂(a, b, c)

where Θ̂(a, b, c) is positive real, and

∆a∆b∆c = (−1)(a+b+c)[a + 1][b + 1][c + 1]

where the quantum integers in this formula can be taken to be positive real.
It follows from this that

f(a, b, c) =

√√√√√
√

[a + 1][b + 1][c + 1]

Θ̂(a, b, c)
,

showing that this factor can be taken to be positive real. 2

In Figure 41 we show how this modification of the vertex affects the non-
zero term of the orthogonality of trivalent vertices (compare with Figure 35).
We refer to this as the “modified bubble identity.” The coefficient in the mod-
ified bubble identity is

√
∆b∆c

∆a

= (−1)(b+c−a)/2

√√√√ [b + 1][c + 1]

[a + 1]

where (a, b, c) form an admissible triple. In particular b + c − a is even and
hence this factor can be taken to be real.
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We rewrite the recoupling formula in this new basis and emphasize that
the recoupling coefficients can be seen (for fixed external labels a, b, c, d) as a
matrix transforming the horizontal “double-Y ” basis to a vertically disposed
double-Y basis. In Figures 42, 43 and 44 we have shown the form of this
transformation,using the matrix notation

M [a, b, c, d]ij

for the modified recoupling coefficients. In Figure 42 we derive an explicit
formula for these matrix elements. The proof of this formula follows directly
from trivalent–vertex orthogonality (See Figures 35 and 38.), and is given in
Figure 42. The result shown in Figure 42 and Figure 43 is the following formula
for the recoupling matrix elements.

M [a, b, c, d]ij = ModTet

(
a b i
c d j

)
/
√

∆a∆b∆c∆d

where
√

∆a∆b∆c∆d is short-hand for the product

√
∆a∆b

∆j

√
∆c∆d

∆j

∆j

= (−1)(a+b−j)/2(−1)(c+d−j)/2(−1)j

√√√√ [a + 1][b + 1]

[j + 1]

√√√√ [c + 1][d + 1]

[j + 1]
[j + 1]

= (−1)(a+b+c+d)/2
√

[a + 1][b + 1][c + 1][d + 1]

In this form, since (a, b, j) and (c, d, j) are admissible triples, we see that this
coeffient can be taken to be real, and its value is independent of the choice of
i and j. The matrix M [a, b, c, d] is real-valued.

It follows from Figure 36 (turn the diagrams by ninety degrees) that

M [a, b, c, d]−1 = M [b, d, a, c].

In Figure 45 we illustrate the formula

M [a, b, c, d]T = M [b, d, a, c].

It follows from this formula that

M [a, b, c, d]T = M [a, b, c, d]−1.

Hence M [a, b, c, d] is an orthogonal, real-valued matrix.
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Figure 40 - Modified Three Vertex
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Figure 41 - Modified Bubble Identiy
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Figure 42 - Derivation of Modified Recoupling Coefficients
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Figure 43 - Modified Recoupling Formula
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Figure 44 - Modified Recoupling Matrix
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a b
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c
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ij
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c d
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i j

∆    ∆    ∆    ∆   a b c d

a b
c d

T -1==
Figure 45 - Modified Matrix Transpose

Theorem. In the Temperley-Lieb theory we obtain unitary (in fact real or-
thogonal) recoupling transformations when the bracket variable A has the form
A = eiπ/2r for r a positive integer. Thus we obtain families of unitary repre-
sentations of the Artin braid group from the recoupling theory at these roots
of unity.

Proof. The proof is given the discussion above. 2

In Section 9 we shall show explictly how these methods work in the case of
the Fibonacci model where A = e3iπ/5.

11 Fibonacci Particles

In this section and the next we detail how the Fibonacci model for anyonic
quantum computing [62, 73] can be constructed by using a version of the two-
stranded bracket polynomial and a generalization of Penrose spin networks.
This is a fragment of the Temperly-Lieb recoupling theory [39]. We already
gave in the preceding sections a general discussion of the theory of spin net-
works and their relationship with quantum computing.

75



      

The Fibonacci model is a TQFT that is based on a single “particle” with
two states that we shall call the marked state and the unmarked state. The
particle in the marked state can interact with itself either to produce a single
particle in the marked state, or to produce a single particle in the unmarked
state. The particle in the unmarked state has no influence in interactions (an
unmarked state interacting with any state S yields that state S). One way
to indicate these two interactions symbolically is to use a box,for the marked
state and a blank space for the unmarked state. Then one has two modes of
interaction of a box with itself:

1. Adjacency:

and

2. Nesting: .

With this convention we take the adjacency interaction to yield a single box,
and the nesting interaction to produce nothing:

=

=

We take the notational opportunity to denote nothing by an asterisk (*). The
syntatical rules for operating the asterisk are Thus the asterisk is a stand-in
for no mark at all and it can be erased or placed wherever it is convenient to
do so. Thus

= ∗.

*

P P P P

P

Figure 46 - Fibonacci Particle Interaction

We shall make a recoupling theory based on this particle, but it is worth
noting some of its purely combinatorial properties first. The arithmetic of
combining boxes (standing for acts of distinction) according to these rules
has been studied and formalized in [82] and correlated with Boolean algebra
and classical logic. Here within and next to are ways to refer to the two

76



     

sides delineated by the given distinction. From this point of view, there are
two modes of relationship (adjacency and nesting) that arise at once in the
presence of a distinction.

* *
*

*

| 0 > | 1 >

111
0

1111
0dim(V         ) = 2

dim(V      ) = 1
P P P

P

P

P

P P P PP P

P

P

Figure 47 - Fibonacci Trees

From here on we shall denote the Fibonacii particle by the letter P. Thus
the two possible interactions of P with itself are as follows.

1. P, P −→ ∗

2. P, P −→ P

In Figure 47 we indicate in small tree diagrams the two possible interactions
of the particle P with itself. In the first interaction the particle vanishes,
producing the asterix. In the second interaction the particle a single copy of
P is produced. These are the two basic actions of a single distinction relative
to itself, and they constitute our formalism for this very elementary particle.

In Figure 47, we have indicated the different results of particle processes
where we begin with a left-associated tree structure with three branches, all
marked and then four branches all marked. In each case we demand that the
particles interact successively to produce an unmarked particle in the end, at
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the root of the tree. More generally one can consider a left-associated tree
with n upward branches and one root. Let T (a1, a2, · · · , an : b) denote such a
tree with particle labels a1, · · · , an on the top and root label b at the bottom of
the tree. We consider all possible processes (sequences of particle interactions)
that start with the labels at the top of the tree, and end with the labels at
the bottom of the tree. Each such sequence is regarded as a basis vector in a
complex vector space

V a1,a2,···,an
b

associated with the tree. In the case where all the labels are marked at the
top and the bottom label is unmarked, we shall denote this tree by

V 111···11
0 = V

(n)
0

where n denotes the number of upward branches in the tree. We see from
Figure 47 that the dimension of V

(3)
0 is 1, and that

dim(V
(4)

0 ) = 2.

This means that V
(4)

0 is a natural candidate in this context for the two-qubit
space.

Given the tree T (1, 1, 1, · · · , 1 : 0) (n marked states at the top, an unmarked

state at the bottom), a process basis vector in V
(n)

0 is in direct correspondence
with a string of boxes and asterisks (1’s and 0’s) of length n−2 with no repeated
asterisks and ending in a marked state. See Figure 47 for an illustration of the
simplest cases. It follows from this that

dim(V
(n)

0 ) = fn−2

where fk denotes the k-th Fibonacci number:

f0 = 1, f1 = 1, f2 = 2, f3 = 3, f4 = 5, f5 = 8, · · ·

where

fn+2 = fn+1 + fn.

The dimension formula for these spaces follows from the fact that there are fn
sequences of length n − 1 of marked and unmarked states with no repetition
of an unmarked state. This fact is illustrated in Figure 48.
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*

**

* ** * *PPPPP PPPP P

P

PP P P

Tree of squences with no occurence of **
Figure 48 - Fibonacci Sequence

12 The Fibonacci Recoupling Model

We now show how to make a model for recoupling the Fibonacci particle by
using the Temperley Lieb recoupling theory and the bracket polynomial. Ev-
erything we do in this section will be based on the 2-projector, its properties
and evaluations based on the bracket polynomial model for the Jones poly-
nomial. While we have outlined the general recoupling theory based on the
bracket polynomial in earlier sections of this paper, the present section is self-
contained, using only basic information about the bracket polyonmial, and the
essential properties of the 2-projector as shown in Figure 49. In this figure we
state the definition of the 2-projector, list its two main properties (the opera-
tor is idempotent and a self-attached strand yields a zero evaluation) and give
diagrammatic proofs of these properties.
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=

= = = 0

= 0

= =

=

− 1/δ

−(1/δ)δ− 1/δ

− 1/δ

Figure 49 - The 2-Projector

In Figure 50, we show the essence of the Temperley-Lieb recoupling model
for the Fibonacci particle. The Fibonaccie particle is, in this mathematical
model, identified with the 2-projector itself. As the reader can see from Figure
50, there are two basic interactions of the 2-projector with itself, one giving
a 2-projector, the other giving nothing. This is the pattern of self-iteraction
of the Fibonacci particle. There is a third possibility, depicted in Figure 50,
where two 2-projectors interact to produce a 4-projector. We could remark at
the outset, that the 4-projector will be zero if we choose the bracket polynomial
variable A = e3π/5. Rather than start there, we will assume that the 4-projector
is forbidden and deduce (below) that the theory has to be at this root of unity.
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=

Forbidden
Process

Figure 50 - Fibonacci Particle as 2-Projector

Note that in Figure 50 we have adopted a single strand notation for the particle
interactions, with a solid strand corresponding to the marked particle, a dotted
strand (or nothing) corresponding to the unmarked particle. A dark vertex
indicates either an interaction point, or it may be used to indicate the single
strand is shorthand for two ordinary strands. Remember that these are all
shorthand expressions for underlying bracket polynomial calculations.

In Figures 51, 52, 53, 54, 55 and 56 we have provided complete diagram-
matic calculations of all of the relevant small nets and evaluations that are
useful in the two-strand theory that is being used here. The reader may wish
to skip directly to Figure 57 where we determine the form of the recoupling
coefficients for this theory. We will discuss the resulting algebra below.

For the reader who does not want to skip the next collection of figures,
here is a guided tour. Figure 51 illustrates three three basic nets in case of
two strands. These are the theta, delta and tetrahedron nets. In this figure
we have shown the decomposition on the theta and delta nets in terms of 2-
projectors. The Tetrahedron net will be similarly decomposed in Figures 55
and 56. The theta net is denoted Θ, the delta by ∆, and the tetrahedron by T.
In Figure 52 we illustrate how a pedant loop has a zero evaluation. In Figure
53 we use the identity in Figure 52 to show how an interior loop (formed by
two trivalent vertices) can be removed and replaced by a factor of Θ/∆. Note
how, in this figure, line two proves that one network is a multiple of the other,
while line three determines the value of the multiple by closing both nets.
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Figure 54 illustrates the explicit calculation of the delta and theta nets. The
figure begins with a calculation of the result of closing a single strand of the
2-projector. The result is a single stand multiplied by (δ − 1/δ) where δ =
−A2 − A−2, and A is the bracket polynomial parameter. We then find that

∆ = δ2 − 1

and

Θ = (δ − 1/δ)2δ −∆/δ = (δ − 1/δ)(δ2 − 2).

Figures 55 and 56 illustrate the calculation of the value of the tetrahedral
network T. The reader should note the first line of Figure 55 where the tetrad-
edral net is translated into a pattern of 2-projectors, and simplified. The rest
of these two figures are a diagrammatic calculation, using the expansion for-
mula for the 2-projector. At the end of Figure 56 we obtain the formula for
the tetrahedron

T = (δ − 1/δ)2(δ2 − 2)− 2Θ/δ.

= =Θ =

=

==∆

Τ

Figure 51 - Theta, Delta and Tetrahedron
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= =

= = 0−1/δ

Figure 52 - LoopEvaluation–1

= =

= = =

= Θ ∆=
Θ ∆= /

x y+ x x

x
x

Θ ∆= /

x

Figure 53 - LoopEvaluation–2
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=Θ

= ==∆

= − 1/δ = (δ − 1/δ)

(δ − 1/δ) (δ − 1/δ) δ

=∆ δ    − 12

= − 1/δ

= (δ − 1/δ) δ2 − ∆/δΘ

Figure 54 - Calculate Theta, Delta

==Τ = = − 1/δ

= − Θ/δ = − 1/δ − Θ/δ

= − (1/δ) − Θ/δ(δ − 1/δ)    δ2

Figure 55 - Calculate Tetrahedron – 1
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= − (1/δ) − Θ/δ(δ − 1/δ)    δ2

= − 1/δ − Θ/δ− (δ − 1/δ)    
2

Τ

= (δ − 1/δ)    δ
3 − (1/δ)Θ − Θ/δ− (δ − 1/δ)    

2

= (δ − 1/δ)    (δ    − 2)    −  2Θ/δ22

Figure 56 - Calculate Tetrahedron – 2

Figure 57 is the key calculation for this model. In this figure we assume that
the recoupling formulas involve only 0 and 2 strands, with 0 corresponding to
the null particle and 2 corresponding to the 2-projector. (2+2 = 4 is forbidden
as in Figure 50.) From this assumption we calculate that the recoupling matrix
is given by

F =

(
a b
c d

)
=

(
1/∆ ∆/Θ

Θ/∆2 T∆/Θ2

)
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a b

c d+

+=

=

a= a = 1/∆

b=
Θ Θ    /∆2= b
b = ∆/Θ

= c c = 2

= d =d Τ ∆/Θ 2

Θ/∆

Figure 57 - Recoupling for 2-Projectors
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Figure 58 - Braiding at the Three-Vertex
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= = = − 1/δ
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=
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Figure 59 - Braiding at the Null-Three-Vertex

Figures 58 and 59 work out the exact formulas for the braiding at a three-vertex
in this theory. When the 3-vertex has three marked lines, then the braiding
operator is multiplication by −A4, as in Figure 58. When the 3-vertex has two
marked lines, then the braiding operator is multiplication by A8, as shown in
Figure 59.
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Notice that it follows from the symmetry of the diagrammatic recoupling for-
mulas of Figure 57 that the square of the recoupling matrix F is equal to the
identity. That is,

(
1 0
0 1

)
= F 2 =

(
1/∆ ∆/Θ

Θ/∆2 T∆/Θ2

)(
1/∆ ∆/Θ

Θ/∆2 T∆/Θ2

)
=

(
1/∆2 + 1/∆ 1/Θ + T∆2/Θ3

Θ/∆3 + T/(∆Θ) 1/∆ + ∆2T 2/Θ4

)
.

Thus we need the relation

1/∆ + 1/∆2 = 1.

This is equivalent to saying that

∆2 = 1 + ∆,

a quadratic equation whose solutions are

∆ = (1±
√

5)/2.

Furthermore, we know that
∆ = δ2 − 1

from Figure 54. Hence
∆2 = ∆ + 1 = δ2.

We shall now specialize to the case where

∆ = δ = (1 +
√

5)/2,

leaving the other cases for the exploration of the reader. We then take

A = e3πi/5

so that
δ = −A2 − A−2 = −2cos(6π/5) = (1 +

√
5)/2.

Note that δ − 1/δ = 1. Thus

Θ = (δ − 1/δ)2δ −∆/δ = δ − 1.

and
T = (δ − 1/δ)2(δ2 − 2)− 2Θ/δ = (δ2 − 2)− 2(δ − 1)/δ

= (δ − 1)(δ − 2)/δ = 3δ − 5.

Note that
T = −Θ2/∆2,

from which it follows immediately that

F 2 = I.

This proves that we can satisfy this model when ∆ = δ = (1 +
√

5)/2.
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For this specialization we see that the matrix F becomes

F =

(
1/∆ ∆/Θ

Θ/∆2 T∆/Θ2

)
=

(
1/∆ ∆/Θ

Θ/∆2 (−Θ2/∆2)∆/Θ2

)
=

(
1/∆ ∆/Θ

Θ/∆2 −1/∆

)

This version of F has square equal to the identity independent of the value of
Θ, so long as ∆2 = ∆ + 1.

The Final Adjustment. Our last version of F suffers from a lack of symme-
try. It is not a symmetric matrix, and hence not unitary. A final adjustment
of the model gives this desired symmetry. Consider the result of replacing each
trivalent vertex (with three 2-projector strands) by a multiple by a given quan-
tity α. Since the Θ has two vertices, it will be multiplied by α2. Similarly, the
tetradhedron T will be multiplied by α4. The ∆ and the δ will be unchanged.
Other properties of the model will remain unchanged. The new recoupling
matrix, after such an adjustment is made, becomes

(
1/∆ ∆/α2Θ

α2Θ/∆2 −1/∆

)

For symmetry we require

∆/(α2Θ) = α2Θ/∆2.

We take
α2 =

√
∆3/Θ.

With this choice of α we have

∆/(α2Θ) = ∆Θ/(Θ
√

∆3) = 1/
√

∆.

Hence the new symmetric F is given by the equation

F =

(
1/∆ 1/

√
∆

1/
√

∆ −1/∆

)
=

(
τ
√

τ√
τ −τ

)

where ∆ is the golden ratio and τ = 1/∆. This gives the Fibonacci model.
Using Figures 58 and 59, we have that the local braiding matrix for the model
is given by the formula below with A = e3πi/5.

R =

(
−A4 0

0 A8

)
=

(
e4πi/5 0

0 −e2πi/5

)
.

The simplest example of a braid group representation arising from this
theory is the representation of the three strand braid group generated by S1 =
R and S2 = FRF (Remember that F = F T = F−1.). The matrices S1 and S2

are both unitary, and they generate a dense subset of the unitary group U(2),
supplying the first part of the transformations needed for quantum computing.
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13 Quantum Computation of Colored Jones

Polynomials and the Witten-Reshetikhin-

Turaev Invariant

In this section we make some brief comments on the quantum computation
of colored Jones polynomials. This material will be expanded in a subsequent
publication.

= 0a

b

if b = 0

Σ=

0 0
0

=
x

y
,

x
y 0
B(x,y)

0 0
0

=

a a

a a a a

a a

a a

Σ=
x

y
,

x
y 0
B(x,y)

a a

=
0

a a
B(0,0) 0 0

= B(0,0) ∆ a(     ) 2

B P(B)

Figure 60 - Evaluation of the Plat Closure of a Braid
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First, consider Figure 60. In that figure we illustrate the calculation of the
evalutation of the (a) - colored bracket polynomial for the plat closure P (B)
of a braid B. The reader can infer the definition of the plat closure from
Figure 60. One takes a braid on an even number of strands and closes the top
strands with each other in a row of maxima. Similarly, the bottom strands are
closed with a row of minima. It is not hard to see that any knot or link can
be represented as the plat closure of some braid. Note that in this figure we
indicate the action of the braid group on the process spaces corresponding to
the small trees attached below the braids.

The (a) - colored bracket polynonmial of a link L, denoted < L >a, is the
evaluation of that link where each single strand has been replaced by a parallel
strands and the insertion of Jones-Wenzl projector (as discussed in Section 7).
We then see that we can use our discussion of the Temperley-Lieb recoupling
theory as in sections 7,8 and 9 to compute the value of the colored bracket
polynomial for the plat closure PB. As shown in Figure 60, we regard the
braid as acting on a process space V a,a,···,a

0 and take the case of the action on
the vector v whose process space coordinates are all zero. Then the action of
the braid takes the form

Bv(0, · · · , 0) = Σx1,···,xnB(x1, · · · , xn)v(x1, · · · , xn)

where B(x1, · · · , xn) denotes the matrix entries for this recoupling transforma-
tion and v(x1, · · · , xn) runs over a basis for the space V a,a,···,a

0 . Here n is even
and equal to the number of braid strands. In the figure we illustrate with
n = 4. Then, as the figure shows, when we close the top of the braid action
to form PB, we cut the sum down to the evaluation of just one term. In the
general case we will get

< PB >a= B(0, · · · , 0)∆n/2
a .

The calculation simplifies to this degree because of the vanishing of loops in
the recoupling graphs. The vanishing result is stated in Figure 60, and it is
proved in the case a = 2 in Figure 52.

The colored Jones polynomials are normalized versions of the colored bracket
polymomials, differing just by a normalization factor.

In order to consider quantumn computation of the colored bracket or col-
ored Jones polynomials, we therefore can consider quantum computation of
the matrix entries B(0, · · · , 0). These matrix entries in the case of the roots of
unity A = eiπ/2r and for the a = 2 Fibonacci model with A = e3iπ/5 are parts
of the diagonal entries of the unitary transformation that represents the braid
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group on the process space V a,a,···,a
0 . We can obtain these matrix entries by us-

ing the Hadamard test as described in section 4. As a result we get relatively
efficient quantum algorithms for the colored Jones polynonmials at these roots
of unity, in essentially the same framework as we described in section 4, but
for braids of arbitrary size. The computational complexity of these models is
essentially the same as the models for the Jones polynomial discussed in [1].
We reserve discussion of these issues to a subsequent publication.

δA4 -4= A + +

δA 4-4= A+ +

- = 4A A-4-( ) -( )

- = 4A A-4-( ) -( )

= A8

Figure 61 - Dubrovnik Polynomial Specialization at Two Strands

It is worth remarking here that these algorithms give not only quantum
algorithms for computing the colored bracket and Jones polynomials, but also
for computing the Witten-Reshetikhin-Turaev (WRT ) invariants at the above
roots of unity. The reason for this is that the WRT invariant, in unnormalized
form is given as a finite sum of colored bracket polynomials:

WRT (L) = Σr−2
a=0∆a < L >a,

and so the same computation as shown in Figure 60 applies to the WRT. This
means that we have, in principle, a quantum algorithm for the computation
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of the Witten functional integral [87] via this knot-theoretic combinatorial
topology. It would be very interesting to understand a more direct approach
to such a computation via quantum field theory and functional integration.

Finally, we note that in the case of the Fibonacci model, the (2)-colored
bracket polynomial is a special case of the Dubrovnik version of the Kauffman
polynomial [41]. See Figure 61 for diagammatics that resolve this fact. The
skein relation for the Dubrovnik polynomial is boxed in this figure. Above the
box, we show how the double strands with projectors reproduce this relation.
This observation means that in the Fibonacci model, the natural underlying
knot polynomial is a special evaluation of the Dubrovnik polynomial, and the
Fibonacci model can be used to perform quantum computation for the values
of this invariant.
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