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Non-Commutative Worlds

We explore how a discrete viewpoint
about physics is related to 

non-commutativity, gauge theory
and differential geometry.

<See quant-ph/0503198.>



Discrete Measurement is 
Intrisically Non-commutative.

Time Series:  X,  X’,  X’’,  ... 

Here  dt  is a finite time increment.

Derivative:  X = (X’ -X)/dt

XX:  Observe X, then observe X.

XX:  Observe X, then observe X.

XX = X’(X’-X)/dt
XX = (X’-X)X/dt

XX - XX = (X’-X)(X’-X)/dt

[X,X] = (dX)^2/dt



XX - XX = (X’-X)(X’-X)/dt

[X,X] = k  then  k = (dx)(dx)/dt

X’ = X    dx 

The discrete analog of
Heisenberg’s equation yields

a Brownian walk with diffusion 
constant k.



XX = X’(X’-X)/dt
XX = (X’-X)X/dt

X is a signal to time-shift
 the algebra to its left.

Make algebraic by defining 
new operator J with

XJ = JX’.

Redefine
X = J(X’ - X)/dt.

Then  X = (XJ - JX)/dt = [X, J/dt].

Discrete calculus is embedded in
commutator calculus.



Constructions will be performed in
an (abstract) Lie algebra  A.

    � � �

Differential Geometry in
Non-Commutative Worlds

Louis H. Kauffman
Department of Mathematics, Statistics and Computer Science

University of Illinois at Chicago
851 South Morgan Street
Chicago, IL, 60607-7045

1 Introduction to Non-Commutative Worlds

Aspects of gauge theory, Hamiltonian mechanics and quantum mechanics
arise naturally in the mathematics of a non-commutative framework for cal-
culus and differential geometry. This paper consists in three sections includ-
ing the introduction. The introduction sketches our general results in this
domain. The introduction is based on the paper [15]. The second section dis-
cusses relationships with differential geometry. The third section discusses,
in more depth, relationships with gauge theory and differential geometry.

Constructions are performed in a Lie algebra A. One may take A to be
a specific matrix Lie algebra, or abstract Lie algebra. If A is taken to be
an abstract Lie algebra, then it is convenient to use the universal enveloping
algebra so that the Lie product can be expressed as a commutator. In making
general constructions of operators satisfying certain relations, it is understood
that one can always begin with a free algebra and make a quotient algebra
where the relations are satisfied.

OnA, a variant of calculus is built by defining derivations as commutators
(or more generally as Lie products). For a fixed N in A one defines

∇N : A −→ A

 � � �  

by the formula
∇NF = [F, N ] = FN −NF.

∇N is a derivation satisfying the Leibniz rule.

∇N(FG) = ∇N(F )G + F∇N(G).

There are many motivations for replacing derivatives by commutators.
If f(x) denotes (say) a function of a real variable x, and f̃(x) = f(x + h)
for a fixed increment h, define the discrete derivative Df by the formula
Df = (f̃ − f)/h, and find that the Leibniz rule is not satisfied. One has the
basic formula for the discrete derivative of a product:

D(fg) = D(f)g + f̃D(g).

Correct this deviation from the Leibniz rule by introducing a new non-
commutative operator J with the property that

fJ = Jf̃ .

Define a new discrete derivative in an extended non-commutative algebra by
the formula

∇(f) = JD(f).

It follows at once that

∇(fg) = JD(f)g + Jf̃D(g) = JD(f)g + fJD(g) = ∇(f)g + f∇(g).

Note that

∇(f) = (Jf̃ − Jf)/h = (fJ − Jf)/h = [f, J/h].

In the extended algebra, discrete derivatives are represented by commutators,
and satisfy the Leibniz rule. One can regard discrete calculus as a subset of
non-commutative calculus based on commutators.

In A there are as many derivations as there are elements of the algebra,
and these derivations behave quite wildly with respect to one another. If one
takes the concept of curvature as the non-commutation of derivations, then
A is a highly curved world indeed. Within A one can build a tame world of
derivations that mimics the behaviour of flat coordinates in Euclidean space.
The description of the structure of A with respect to these flat coordinates
contains many of the equations and patterns of mathematical physics.
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The Liebniz rule does not hold in discrete calculus.
We regain it  by embedding Discete Calculus in 

non-commutative Calculus.



Let’s build a non-commutative world of
 flat coordinates 

suitable for advanced calculus.

 � � �   �  

The flat coordinates Xi satisfy the equations below with the Pj chosen to
represent differentiation with respect to Xj:

[Xi, Xj] = 0,

[Pi, Pj] = 0,

[Xi, Pj] = δij.

Derivatives are represented by commutators.

∂iF = ∂F/∂Xi = [F, Pi],

∂̂iF = ∂F/∂Pi = [Xi, F ].

Temporal derivative is represented by commutation with a special (Hamilto-
nian) element H of the algebra:

dF/dt = [F, H].

(For quantum mechanics, take ih̄dA/dt = [A, H].) These non-commutative
coordinates are the simplest flat set of coordinates for description of temporal
phenomena in a non-commutative world. Note that Hamilton’s equations are
a consequence of these definitions. The very short proof of this fact is given
below.

Hamilton’s Equations.

dPi/dt = [Pi, H] = −[H, Pi] = −∂H/∂Xi

dXi/dt = [Xi, H] = ∂H/∂Pi.

These are exactly Hamilton’s equations of motion. The pattern of Hamilton’s
equations is built into the system.

Discrete Measurement. Consider a time series {X, X ′, X ′′, · · ·} with com-
muting scalar values. Let

Ẋ = ∇X = JDX = J(X ′ −X)/τ

where τ is an elementary time step (If X denotes a times series value at time
t, then X ′ denotes the value of the series at time t + τ.). The shift operator
J is defined by the equation XJ = JX ′ where this refers to any point in the
time series so that X(n)J = JX(n+1) for any non-negative integer n. Moving
J across a variable from left to right, corresponds to one tick of the clock.
This discrete, non-commutative time derivative satisfies the Leibniz rule.
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Coordinates Commute.
Partials commute.

Derivative formula.



Hamilton’s Equations express the 
Mathematics of a Non-Commutative

Flat World

Note that we have derived
Hamilton’s equations

from nothing but
the assumption of a

flat non-commutative world.



= (∂kgij)A
iAjdXk − gijΓ

i
rsA

rAjdXs − gijΓ
j
rsA

iArdXs

= (∂kgij)A
iAjdXk − gsjΓ

s
ikA

iAjdXk − gisΓ
s
jkA

iAjdXk

Hence

(∂kgij) = gsjΓ
s
ik + gisΓ

s
jk.

From this it follows that

Γijk = gisΓ
s
jk = (1/2)(∂kgij − ∂igjk + ∂j(gik)).

Certainly these notions of variation can be imported into our abstract con-
text. The question remains how to interpret the new connection that arises.
We now have a new covariant derivative in the form

∇̂iX
j = ∂iX

j + Γj
kiX

k.

The question is how the curvature of this connection interfaces with the
gauge potentials that gave rise to the metric in the first place. The theme
of this investigation has the flavor of gravity theories with a qauge theoretic
background. We will investigate these relationships in a sequel to this paper.

5.2 Poisson Brackets and Commutator Brackets

Dirac [7] introduced a fundamental relationship between quantum mechanics
and classical mechanics that is summarized by the maxim replace Poisson
brackets by commutator brackets. Recall that the Poisson bracket {A, B} is
defined by the formula

{A, B} = (∂A/∂q)(∂B/∂p) − (∂A/∂p)(∂B/∂q),

where q and p denote classical position and momentum variables respectively.

In our version of discrete physics the noncommuting variables are func-
tions of time, with the time derivative itself a commutator. With

DF = [F, J/τ ],

28

it follows that

D([A, B]) = [DA, B] + [A, DB]

for any expressions A, B in our Lie Algebra. A corresponding Leibniz rule
for Poisson brackets would read

(d/dt){A, B} = {dA/dt, B} + {A, dB/dt}.

However, here there is an easily verified exact formula:

(d/dt){A, B} = {dA/dt, B} + {A, dB/dt}− {A, B}(∂q̇/∂q + ∂ṗ/∂p).

This means that the Leibniz formula will hold for the Poisson bracket exactly
when

(∂q̇/∂q + ∂ṗ/∂p) = 0.

This is an integrability condition that will be satisfied if p and q satisfy
Hamilton’s equations

q̇ = ∂H/∂p,

ṗ = −∂H/∂q.

This means that q and p are following a principle of least action with re-
spect to the Hamiltonian H. Thus we can interpret the fact D([A, B]) =
[DA, B] + [A, DB] in the non-commutative context as an analog of the prin-
ciple of least action. Taking the non-commutative context as fundamental,
we say that Hamilton’s equations are motivated by the presence of the Leib-
niz rule for the discrete derivative of a commutator. The classical laws are
obtained by following Dirac’s maxim in the opposite direction! Classical
physics is produced by following the correspondence principle upwards from
the discrete.

In making this backwards journey to classical physics we see how our
earlier assertion that bare mechanics of commutators can be regarded as the
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ṗ = −∂H/∂q.

This means that q and p are following a principle of least action with re-
spect to the Hamiltonian H. Thus we can interpret the fact D([A, B]) =
[DA, B] + [A, DB] in the non-commutative context as an analog of the prin-
ciple of least action. Taking the non-commutative context as fundamental,
we say that Hamilton’s equations are motivated by the presence of the Leib-
niz rule for the discrete derivative of a commutator. The classical laws are
obtained by following Dirac’s maxim in the opposite direction! Classical
physics is produced by following the correspondence principle upwards from
the discrete.

In making this backwards journey to classical physics we see how our
earlier assertion that bare mechanics of commutators can be regarded as the

29

it follows that

D([A, B]) = [DA, B] + [A, DB]

for any expressions A, B in our Lie Algebra. A corresponding Leibniz rule
for Poisson brackets would read

(d/dt){A, B} = {dA/dt, B} + {A, dB/dt}.

However, here there is an easily verified exact formula:

(d/dt){A, B} = {dA/dt, B} + {A, dB/dt}− {A, B}(∂q̇/∂q + ∂ṗ/∂p).
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Remark: Hamilton’s formulation was
in terms of Poisson brackets.

Poisson brackets do not obey the 
Leibniz rule.

Unless .

This is an integrability condition for
Hamilton’s equations:
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This derivative ∇ also fits a significant pattern of discrete
observation. Consider the act of observing X at a given time
and the act of observing (or obtaining) DX at a given time.
Since X and X ′ are ingredients in computing (X ′ − X)/τ, the
numerical value associated with DX, it is necessary to let the
clock tick once, Thus, if one first observe X and then obtains
DX, the result is different (for the X measurement) if one first
obtains DX, and then observes X. In the second case, one finds
the value X ′ instead of the value X, due to the tick of the clock.

1. Let ẊX denote the sequence: observe X, then obtain Ẋ.

2. Let XẊ denote the sequence: obtain Ẋ, then observe X.

The commutator [X, Ẋ] expresses the difference between these
two orders of discrete measurement. In the simplest case, where
the elements of the time series are commuting scalars, one has

[X, Ẋ] = XẊ − ẊX = J(X ′ − X)2/τ.

Thus one can interpret the equation

[X, Ẋ] = Jk

(k a constant scalar) as

(X ′ − X)2/τ = k.

This means that the process is a walk with spatial step

∆ = ±
√

kτ

where k is a constant. In other words, one has the equation

k = ∆2/τ.
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We then see that the evaluation of these expressions in the non-commutative
calculus parallels the observational situation:

XẊ = XJ(X ′ − X)/τ = JX ′(X ′ − X)/τ

ẊX = J(X ′ − X)X/τ.

The numerical evaluations for two such orderings are obtained by moving
all occurrences of J all the way to the left. Thus we could write

|JmA| = A

for an expression where A has no appearance of J . Then

|XẊ| = X ′(X ′ − X)/τ

and
|ẊX| = (X ′ − X)X/τ.

Elsewhere [11] we have called this interpretation of the temporal discrete
derivative the “Discrete Ordered Calculus” or DOC for short.

The commutator [X, Ẋ] expresses the difference between these two orders
of discrete measurement. In the simplest case, where the elements of the time
series are commuting scalars, we have

[X, Ẋ] = XẊ − ẊX = XJ(X ′ − X)/τ − J((X ′ − X)/τ)X

= J [X ′(X ′ − X) − (X ′ − X)X]/τ = J(X ′ − X)2/τ.

Thus we can interpret the equation

[X, Ẋ] = Jk

(k a constant scalar) as
(X ′ − X)2/τ = k.

This means that the process is a Brownian walk with spatial step

∆ = ±
√

kτ

11

Proof.
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where k is a constant. In other words, we have

k = ∆2/τ.

We have shown that a Brownian walk with spatial step size ∆ and time step
τ will satisfy the commutator equation above exactly when the square of the
spatial step divided by the time step remains constant. This means that a
given commutator equation can be satisfied by walks with arbitrarily small
spatial step and time step, just so long as these steps are in this fixed ratio.

Remarkably, we can identify the constant k/2 as the diffusion constant
for the Brownian process. To make this comparison, lets recall how the
diffusion equation usually arises in discussing Brownian motion. We are
given a Brownian process where

x(t + τ) = x(t) ± ∆

so that the time step is τ and the space step is of absolute value ∆. We regard
the probability of left or right steps as equal, so that if P (x, t) denotes the
probability that the Brownian particle is at point x at time t then

P (x, t + τ) = P (x − ∆, t)/2 + P (x + ∆, t)/2.

From this equation for the probability we can write a difference equation for
the partial derivative of the probability with respect to time:

(P (x, t + τ)− P (x, t))/τ = (h2/2τ)[(P (x−∆, t)− 2P (x, t) + P (x + ∆))/∆2]

The expression in brackets on the right hand side is a discrete approximation
to the second partial of P (x, t) with respect to x. Thus if the ratio C = ∆2/2τ
remains constant as the space and time intervals approach zero, then this
equation goes in the limit to the diffusion equation

∂P (x, t)/∂t = C∂2P (x, t)/∂x2.

C is called the diffusion constant for the Brownian process.

The appearance of the diffusion constant from the observational commu-
tator shows that this ratio is fundamental to the structure of the Brownian
process itself, and not just to the probabilistic analysis of that process.

12

Emergence of the Diffusion Constant
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Classical Point of View
on the Diffusion Constant
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remains constant as the space and time intervals approach zero, then this
equation goes in the limit to the diffusion equation

∂P (x, t)/∂t = C∂2P (x, t)/∂x2.

C is called the diffusion constant for the Brownian process.

The appearance of the diffusion constant from the observational commu-
tator shows that this ratio is fundamental to the structure of the Brownian
process itself, and not just to the probabilistic analysis of that process.

12



This is the diffusion constant for a Brownian walk. A walk with
spatial step size ∆ and time step τ will satisfy the commutator
equation above exactly when the square of the spatial step di-
vided by the time step remains constant. This shows that the
diffusion constant of a Brownian process is a structural property
of that process, independent of considerations of probability and
continuum limits.

Heisenberg/Schrödinger Equation. Here is how the Heisen-
berg form of Schrödinger’s equation fits in this context. Let the
time shift operator be given by the equation J = (1 + H∆t/ih̄).
Then the non-commutative version of the discrete time deriva-
tive is expressed by the commutator

∇ψ = [ψ, J/∆t],

and we calculate

∇ψ = ψ[(1 + H∆t/ih̄)/∆t] − [(1 + H∆t/ih̄)/∆t]ψ = [ψ, H]/ih̄,

ih̄∇ψ = [ψ, H].

This is exactly the Heisenberg version of the Schrödinger equa-
tion.

Dynamics and Gauge Theory. One can take the general
dynamical equation in the form

dXi/dt = Gi

where {G1, · · · ,Gd} is a collection of elements of A. Write Gi

relative to the flat coordinates via Gi = Pi −Ai. This is a defini-
tion of Ai and ∂F/∂Xi = [F, Pi]. The formalism of gauge theory
appears naturally. In particular, if

∇i(F ) = [F,Gi],

6



This is the well-known formula
for the curvature of a

gauge connection.
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One can consider the consequences of the commutator [Xi, Ẋj ] = gij , de-
riving that

Ẍr = Gr + FrsẊs + !rst ẊsẊt ,

where Gr is the analogue of a scalar field, Frs is the analogue of a gauge field and86

!rst is the Levi-Civita connection associated with gij . This decompositon of the87

acceleration is uniquely determined by the given framework. We shall give this88

derivation in Section 4.89

In regard to thinking about the commutator [Xi, Ẋj ] = gij , It is worth noting
that this equation is a consequence of the right choice of Hamiltonian. By this
I mean, that in a given non-commutative world we choose an H in the algebra
to represent the total (or discrete) time derivative so that Ḟ = [F,H ] for any F.

Suppose we have elements gij such that

[gij , Xk] = 0

and

gij = gji .

We choose

H = (gijPiPj + PiPjgij )
4

.

This is the non-commutative analog of the classical H = (1/2)gijPiPj . In90

Section 3, we show that this choice of Hamiltonian implies that [Xi, Ẋj ] = gij .91

1.1.4. Feynman—Dyson Derivation92

One can use this context to revisit the Feynman-Dyson derivation of elec-93

tromagnetism from commutator equations, showing that most of the derivation94

is independent of any choice of commutators, but highly dependent upon the95

choice of definitions of the derivatives involved. Without any assumptions about96

initial commutator equations, but taking the right (in some sense simplest) defi-97

nitions of the derivatives one obtains a significant generalization of the result of98

Feynman-Dyson.99

1.1.5. Electromagnetic Theorem100

See Section 2. With the appropriate [see below] definitions of the operators,
and taking

∇2 = ∂2
1 + ∂2

2 + ∂2
3 , B = Ẋ × Ẋ and E = ∂t Ẋ, one has

1. Ẍ = E + Ẋ × B101

2. ∇ • B = 0102
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Lemma 3. Let gij be given such that [gij , Xk] = 0 and gij = gji . Define

H = (gijPiPj + PiPjgij )
4

(where we sum over the repeated indices) and

Ḟ = [F,H ].

Then

[Xi, Ẋj ] = gij .

Proof: Consider

[Xk, gijPiPj ] = gij [Xk, PiPj ]

= gij ([Xk, Pi]Pj + Pi[Xk, Pj ])

= gij (δkiPj + Piδkj ) = gkjPj + gikPi = 2gkjPj .

Then

[Xr, Ẋk] = [Xr, [Xk,H ]] =
[
Xr,

[
Xk,

(gijPiPj + PiPjgij )
4

]]

=
[
Xr,

[
Xk,

(gijPiPj )
4

]]
+ [Xr, [Xk, (PiPjgij )/4]]

= 2[Xr, 2gkjPj/4] = [Xr, gkjPj ] = gkj [Xr, Pj ] = gkjδrj

= gkr = grk.

This completes the proof. !258

It is natural to extend the present analysis to a discussion of general relativity.259

A joint paper on general relativity from this non-commutative standpoint is in260

preparation (joint work with Tony Deakin and Clive Kilmister).261

4. CONSEQUENCES OF THE METRIC262

In this section we shall follow the formalism of the metric commutator
equation

[Xi, Ẋj ] = gij

very far in a semi-classical context. That is, we shall set up a non-commutative263

world, and we shall make assumptions about the non-commutativity that bring264

the operators into close analogy with variables in standard calculus. In particular265

we shall regard an element F of the Lie algebra to be a “function of the Xi ” if F266



This calculation actually shows that
the Hamiltonian H obeys the 

constraint that 

[F,H] = (1/2)(X  [F , P ] + [F  ,P  ]X   ).ii i i

Asking for higher order constraints 
of this type gives deeper relationships.

For example, if we ask for a second order
constraint, then the metric must obey equations

that are a fourth-order version of Einstein’s
equations. 

(Joint work in preparation with
Tony Deakin and Clive Kilmister.)

F =



Summary

Feynman-Dyson is case where 
metric is Kronecker delta.
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Here, we shall assume from now on that

[Xi, gjk] = 0.

A stream of consequences then follows by differentiating both sides of the
equation

gij = [Xi, Ẋj ].

We will detail these consequences in Section 4. For now, we show how the233

form of the Levi-Civita connection appears naturally.234

In the following we shall use D as an abbreviation for d/dt.235

The Levi-Civita connection236

!ijk =
(

1
2

)
(∇igjk + ∇j gik − ∇kgij )

associated with the gij comes up almost at once from the differentiation process
described above. To see how this happens, view the following calculation where

∂̂i ∂̂jF = [Xi, [Xj, F ]].

We apply the operator ∂̂i ∂̂j to the second time derivative of Xk.237

Lemma 2. Let !ijk = (1/2)(∇igjk + ∇j gik − ∇kgij ). Then

!ijk = (1/2)∂̂i ∂̂j Ẍk.

Proof: Note that by the Leibniz rule238

D([A,B]) = [Ȧ, B] + [A, Ḃ],

we have239

˙gjk = [Ẋj , Ẋk] + [Xj, Ẍk].

Therefore

∂̂i ∂̂j Ẍk = [Xi, [Xj, Ẍk]]

= [Xi, ˙gjk − [Ẋj , Ẋk]]

= [Xi, ˙gjk] − [Xi, [Ẋj , Ẋk]]

= [Xi, ˙gjk] + [Ẋk, [Xi, Ẋj ]] + [Ẋj , [Ẋk, Xi]]

= −[Ẋi, gjk] + [Ẋk, [Xi, Ẋj ]] + [Ẋj , [Ẋk, Xi]]

Lemma. 

Proof.

Levi-Civita Connection and Dynamics.

Kauffman
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riving that
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where Gr is the analogue of a scalar field, Frs is the analogue of a gauge field and86

!rst is the Levi-Civita connection associated with gij . This decompositon of the87

acceleration is uniquely determined by the given framework. We shall give this88

derivation in Section 4.89

In regard to thinking about the commutator [Xi, Ẋj ] = gij , It is worth noting
that this equation is a consequence of the right choice of Hamiltonian. By this
I mean, that in a given non-commutative world we choose an H in the algebra
to represent the total (or discrete) time derivative so that Ḟ = [F,H ] for any F.

Suppose we have elements gij such that

[gij , Xk] = 0

and

gij = gji .

We choose

H = (gijPiPj + PiPjgij )
4

.

This is the non-commutative analog of the classical H = (1/2)gijPiPj . In90

Section 3, we show that this choice of Hamiltonian implies that [Xi, Ẋj ] = gij .91

1.1.4. Feynman—Dyson Derivation92

One can use this context to revisit the Feynman-Dyson derivation of elec-93

tromagnetism from commutator equations, showing that most of the derivation94

is independent of any choice of commutators, but highly dependent upon the95

choice of definitions of the derivatives involved. Without any assumptions about96

initial commutator equations, but taking the right (in some sense simplest) defi-97

nitions of the derivatives one obtains a significant generalization of the result of98

Feynman-Dyson.99

1.1.5. Electromagnetic Theorem100

See Section 2. With the appropriate [see below] definitions of the operators,
and taking

∇2 = ∂2
1 + ∂2

2 + ∂2
3 , B = Ẋ × Ẋ and E = ∂t Ẋ, one has

1. Ẍ = E + Ẋ × B101

2. ∇ • B = 0102
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1.1.4. Feynman—Dyson Derivation92

One can use this context to revisit the Feynman-Dyson derivation of elec-93

tromagnetism from commutator equations, showing that most of the derivation94

is independent of any choice of commutators, but highly dependent upon the95

choice of definitions of the derivatives involved. Without any assumptions about96

initial commutator equations, but taking the right (in some sense simplest) defi-97

nitions of the derivatives one obtains a significant generalization of the result of98

Feynman-Dyson.99

1.1.5. Electromagnetic Theorem100

See Section 2. With the appropriate [see below] definitions of the operators,
and taking

∇2 = ∂2
1 + ∂2

2 + ∂2
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that this equation is a consequence of the right choice of Hamiltonian. By this
I mean, that in a given non-commutative world we choose an H in the algebra
to represent the total (or discrete) time derivative so that Ḟ = [F,H ] for any F.
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Ẍr = Gr + FrsẊs + !rst ẊsẊt ,
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1.1.4. Feynman—Dyson Derivation92

One can use this context to revisit the Feynman-Dyson derivation of elec-93

tromagnetism from commutator equations, showing that most of the derivation94

is independent of any choice of commutators, but highly dependent upon the95

choice of definitions of the derivatives involved. Without any assumptions about96

initial commutator equations, but taking the right (in some sense simplest) defi-97

nitions of the derivatives one obtains a significant generalization of the result of98

Feynman-Dyson.99

1.1.5. Electromagnetic Theorem100

See Section 2. With the appropriate [see below] definitions of the operators,
and taking

∇2 = ∂2
1 + ∂2

2 + ∂2
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The Levi-Civita Connection
appears as a direct consequence

of the Lebniz rule and the 
Jacobi identity.

Classical physics contains part of 
the explanation, since a

particle moving in general 
coordinates and obeying Hamilton’s equations

moves in a geodesic described by the 
Levi-Civita connection.



This derivation of the 
Levi-Civita connection

suggests a reformulation
of 

differential geometry
where the notion of parallel translation

is secondary to the 
dynamics of non-commutativity.



Remark. While there is a large literature on non-commutative
geometry, emanating from the idea of replacing a space by its
ring of functions, work discussed herein is not written in that
tradition. Non-commutative geometry does occur here, in the
sense of geometry occuring in the context of non-commutative
algebra. Derivations are represented by commutators. There
are relationships between the present work and the traditional
non-commutative geometry, but that is a subject for further
exploration. In no way is this paper intended to be an in-
troduction to that subject. The present summary is based on
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and the references cited therein.

The following references in relation to non-commutative cal-
culus are useful in comparing with the present approach [2, 3,
4, 17]. Much of the present work is the fruit of a long series
of discussions with Pierre Noyes, influenced at critical points
by Tom Etter and Keith Bowden. Paper [16] also works with
minimal coupling for the Feynman-Dyson derivation. The first
remark about the minimal coupling occurs in the original paper
by Dyson [1], in the context of Poisson brackets. The paper [5]
is worth reading as a companion to Dyson. It is the purpose of
this summary to indicate how non-commutative calculus can be
used in foundations.

2 Generalized Feynman Dyson Derivation

In this section we assume that specific time-varying coordinate
elements X1, X2, X3 of the algebra A are given. We do not

assume any commutation relations about X1, X2, X3.
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In this section we no longer avail ourselves of the commuta-
tion relations that are in back of the original Feynman-Dyson
derivation. We do take the definitions of the derivations from
that previous context. Surprisingly, the result is very similar to
the one of Feynman and Dyson, as we shall see.

Here A × B is the non-commutative vector cross product:

(A × B)k = Σ3
i,j=1εijkAiBj .

(We will drop this summation sign for vector cross products
from now on.) Then, with B = Ẋ × Ẋ, we have

Bk = εijkẊiẊj = (1/2)εijk[Ẋi, Ẋj].

The epsilon tensor εijk is defined for the indices {i, j, k} ranging
from 1 to 3, and is equal to 0 if there is a repeated index and
is ortherwise equal to the sign of the permutation of 123 given
by ijk. We represent dot products and cross products in dia-
grammatic tensor notation as indicated in Figure 1 and Figure
2. In Figure 1 we indicate the epsilon tensor by a trivalent ver-
tex. The indices of the tensor correspond to labels for the three
edges that impinge on the vertex. The diagram is drawn in the
plane, and is well-defined since the epsilon tensor is invariant
under cyclic permutation of its indices.

We will define the fields E and B by the equations

B = Ẋ × Ẋ and E = ∂tẊ.

We will see that E and B obey a generalization of the Maxwell
Equations, and that this generalization describes specific dis-
crete models. The reader should note that this means that a
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We show that E and B satisfy a
generalization of the Maxwell equations.



2. We define
∂i(F ) = [F, Ẋi],

and the reader should note that, these spatial derivations
are no longer flat in the sense of section 1 (nor were they in
the original Feynman-Dyson derivation). See Figure 2 for
the diagrammatic version of this definition.

3. We define ∂t = ∂/∂t by the equation

∂tF = Ḟ − ΣiẊi∂i(F ) = Ḟ − ΣiẊi[F, Ẋi]

for all elements or vectors of elements F. We take this equa-
tion as the global definition of the temporal partial deriva-
tive, even for elements that are not commuting with the
Xi. This notion of temporal partial derivative ∂t is a least
relation that we can write to describe the temporal rela-
tionship of an arbitrary non-commutative vector F and the
non-commutative coordinate vector X. See Figure 2 for the
diagrammatic version of this definition.

4. In defining
∂tF = Ḟ − ΣiẊi∂i(F ),

we are using the definition itself to obtain a notion of the
variation of F with respect to time. The definition itself
creates a distinction between space and time in the non-
commutative world.

5. The reader will have no difficulty verifying the following
formula:

∂t(FG) = ∂t(F )G + F∂t(G) + Σi∂i(F )∂i(G).
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We take

a covariant derivative.



a b

c

= ! +

d

i

c cd d

a ab b

Σi εabiεcdi = −δadδbc + δacδbd.

The proof of this identity is left to the reader. The identity itself
will be referred to as the epsilon identity. The epsilon identity
is a key structure in the work of this section, and indeed in all
formulas involving the vector cross product.

The reader should compare the formula in this Lemma with
the diagrams in Figure 1. The first two diagram are two versions
of the Lemma. In the third diagram the labels are capitalized
and refer to vectors A, B and C. We then see that the epsilon
identity becomes the formula

A × (B × C) = (A • C)B − (A • B)C

for vectors in three-dimensional space (with commuting coordi-
nates, and a generalization of this identity to our non-commutative
context. Refer to Figure 2 for the diagrammatic definitions of
dot and cross product of vectors. We take these definitions (with
implicit order of multiplication) in the non-commutative con-
text.
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F = t
F +  X [ F , X ]

F
j

=  [ F  ,  X   ]
j

!

x F F=

= [ F , X ]  = - [F , X]

A   B  =  A   B

A x B  =  A   B

Figure 2 - Defining Derivatives

Remarks on the Derivatives.

1. Since we do not assume that [Xi, Ẋj] = δij, nor do we as-
sume [Xi, Xj] = 0, it will not follow that E and B commute
with the Xi.
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F = t
F + X F X  -  X X F

= t
+X X X X  -  X X XX

X  X  X= t
+X

X =
t

+X X  x  ( X  x  X )

F = t
F +  X [ F , X ]

Figure 3 - The Formula for Acceleration
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E = tX B = X  x  X

X   =  E  +  X x  B

!

B =  [ B  ,  X ]

= B X  -  X B = X X X  -  X X X  =  0

!

B = 0

Figure 4 - Divergence of B

Figures 5 and 6 compute derivatives of B and the Curl of E,
culminating in the formula

∂tB + ∇× E = B × B.

In classical electromagnetism, there is no term B × B. This
term is an artifact of our non-commutative context. In discrete
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models, as we shall see at the end of this section, there is no
escaping the effects of this term.

tt B =  B  +  X  [ X , B ]

B = (1/2)[ X , X ]    =  [  X  ,  X  ]

=  [ E , X ]  +  [  X x B ,  X  ]

=  -     x  E   +   [  X  B  ,  X  ]

!

Figure 5 - Computing Ḃ
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tt B +    x  E   =

!

[  X  B  ,  X  ]

[  X  B  ,  X  ] [  X  B  ,  X  ]

X  [ X , B ] +

= +X  [ X , B ] +

=  - X X B  +  X X B   ( Note that   X  B  =  B  X  )

= X  X  B = B x B

tt B +    x  E   =

!

B x B

Figure 6 - Curl of E
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E = tX E = t Xtt

2

  x B = X  X

!

X  X X  X=  - +

=       [  X , X  ] = {         } X =       X

!2

!

x B t Xtt

2
E - -  

!2
( )=

Figure 7 - Curl of B

Finally, Figure 7 gives the diagrammatic proof that

∂tE −∇× B = (∂2
t −∇2)Ẋ.
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This completes the proof of the Theorem below.

Electromagnetic Theorem With the above definitions of the
operators, and taking

∇2 = ∂2
1 + ∂2

2 + ∂2
3, B = Ẋ × Ẋ and E = ∂tẊ we have

1. Ẍ = E + Ẋ × B

2. ∇ • B = 0

3. ∂tB + ∇× E = B × B

4. ∂tE −∇× B = (∂2
t −∇2)Ẋ

Remark. Note that this Theorem is a non-trivial generalization
of the Feynman-Dyson derivation of electromagnetic equations.
In the Feynman-Dyson case, one assumes that the commutation
relations

[Xi, Xj] = 0

and
[Xi, Ẋj] = δij

are given, and that the principle of commutativity is assumed,
so that if A and B commute with the Xi then A and B commute
with each other. One then can interpret ∂i as a standard deriva-
tive with ∂i(Xj) = δij. Furthermore, one can verify that Ej and
Bj both commute with the Xi. From this it follows that ∂t(E)
and ∂t(B) have standard intepretations and that B × B = 0.
The above formulation of the Theorem adds the description of
E as ∂t(Ẋ), a non-standard use of ∂t in the original context
of Feyman-Dyson, where ∂t would only be defined for those
A that commute with Xi. In the same vein, the last formula
∂tE−∇×B = (∂2

t −∇2)Ẋ gives a way to express the remaining
Maxwell Equation in the Feynman-Dyson context.
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= Fjk[Xi, Ẋk] = Fjkδik = Fji.

This implies that

Fij = [Ẋi, Ẋj] = Rij = ∂iAj − ∂jAi

since [Xi, Ẍj] + [Ẋi, Ẋj] = D[Xi, Ẋj] = 0. It is then easy to verify that the
Lorentz force equation is satisfied with Hk = εijkRij and that in this case
of [Ai, Aj] = 0 leads directly to standard electromagnetic theory when the
bracket is a Poisson bracket. When this bracket is not zero but the potentials
Ai are functions only of the Xj we can look at a generalization of gauge theory
where the non-commutativity comes from internal Lie algebra parameters.
This shows how a shift of the original Feynman-Dyson derivation supports
generalizations of classical electromagnetism.

7.2 Discrete Thoughts

In the hypotheses of the above Theorem, we are free to take any non-
commutative world, and the Theorem will satisfied in that world. For ex-
ample, we can take each Xi to be an arbitary time series of real or complex
numbers, or bitstrings of zeroes and ones. The global time derivative is
defined by

Ḟ = J(F ′ − F ) = [F, J ],

where FJ = JF ′. This is the non-commutative discrete context discussed in
sections 2 and 3. We will write

Ḟ = J∆(F )

where ∆(F ) denotes the classical discrete derivative

∆(F ) = F ′ − F.

With this interpretation X is a vector with three real or complex coordinates
at each time, and

H = Ẋ × Ẋ = J2∆(X ′) × ∆(X)

while

E = Ẍ − Ẋ × (Ẋ × Ẋ) = J2∆2(X) − J3∆(X ′′) × (∆(X ′) × ∆(X)).
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since [Xi, Ẍj] + [Ẋi, Ẋj] = D[Xi, Ẋj] = 0. It is then easy to verify that the
Lorentz force equation is satisfied with Hk = εijkRij and that in this case
of [Ai, Aj] = 0 leads directly to standard electromagnetic theory when the
bracket is a Poisson bracket. When this bracket is not zero but the potentials
Ai are functions only of the Xj we can look at a generalization of gauge theory
where the non-commutativity comes from internal Lie algebra parameters.
This shows how a shift of the original Feynman-Dyson derivation supports
generalizations of classical electromagnetism.

7.2 Discrete Thoughts

In the hypotheses of the above Theorem, we are free to take any non-
commutative world, and the Theorem will satisfied in that world. For ex-
ample, we can take each Xi to be an arbitary time series of real or complex
numbers, or bitstrings of zeroes and ones. The global time derivative is
defined by
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E = Ẍ − Ẋ × (Ẋ × Ẋ) = J2∆2(X) − J3∆(X ′′) × (∆(X ′) × ∆(X)).

48

Note how the non-commutative vector cross products are composed through
time shifts in this context of temporal sequences of scalars. The advantage of
the generalization now becomes apparent. We can create very simple models
of generalized electromagnetism with only the simplest of discrete materials.
In the case of the model in terms of triples of time series, the generalized
electromagnetic theory is a theory of measurements of the time series whose
key quantities are

∆(X ′) × ∆(X)

and
∆(X ′′) × (∆(X ′) × ∆(X)).

It is worth noting the forms of the basic derivations in this model. We
have, assuming that F is a commuting scalar (or vector of scalars) and taking
∆i = X ′

i − Xi,

∂i(F ) = [F, Ẋi] = [F, J∆i] = FJ∆i − J∆iF = J(F ′∆i − ∆iF ) = Ḟ∆i

and for the temporal derivative we have

∂tF = J [1 − J∆′ • ∆]∆(F )

where ∆ = (∆1, ∆2, ∆3).

7.2.1 Discrete Classical Electromagnetism

It is of interest to compare these results with a direct discretization of classical
electromagnetism. Suppose that X, X ′, X ′′, X ′′′, · · · is a time series of vectors
in R3 (where R denotes the real numbers). Let DX = X ′ − X be the usual
discrete derivative (with time step equal to one for convenience). Let A • B
denote the usual inner product of vectors in three dimesions.

Assume that there are fields E and H such that

D2X = E + DX × H

(the Lorentz force law). Assume that E and H are perpendicular to the
velocity vector DX, and that E is perpendicular to H.
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Discrete Models.
X is a vector of a three dimensional time series.
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7.3 Discrete Garden of Equations

B = Ẋ × Ẋ = J2∆(X ′) × ∆(X)

Ẋi = J∆i

Rij = [Ẋi, Ẋj] = XiJ∆j − J∆jXi

= J(X ′
i∆j − ∆jXi) = J∆i∆j
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