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We explore how a discrete viewpoint
about physics is related to
non-commutativity, gauge theory
and differential geometry.




Discrete Measurement is
Intrisically Non-commutative.

Time Series: X, X, X", ...
Derivative: X = (X’ -X)/dt
Here dt is a finite time increment.

X)Q(: Observe ?(, then observe X.
%X: Observe X, then observe )O(.

XX = X'(X-X)/dt
XX = (X’-X)X/dt
XX - XX = (X-X)(X’-X)/dt
[X,X] = (dX)A2/dt




XX - XX = (X'-X)(X-X)/dt
[X.X] =k then k = (dx)(dx)/dt
X’ = X + dx

The discrete analog of
Heisenberg’s equation yields
a Brownian walk with diffusion
constant k.




Discrete calculus is embedded in
commutator calculus.

XX = X'(X'-X)/dt
XX = (X’-X)X/dt

@)
X is a signal to time-shift

the algebra to its left.

Make algebraic by defining
new operator | with

X = |X.
. Redefine
X = (X - X)/dt.

Then X = (X] - |X)/dt = [X, J/dt].




Constructions will be performed in
an (abstract) Lie algebra A.

On A, a variant of calculus is built by defining derivations as commutators
(or more generally as Lie products). For a fixed N in A one defines

VNIA—>.A

by the formula
VyE =[F,N]=FN — NF.

V y is a derivation satistying the Leibniz rule.

Vn(FG) = Vn(F)G + FVN(G).




The Liebniz rule does not hold in discrete calculus.
We regain it by embedding Discete Calculus in
non-commutative Calculus.

There are many motivations for replacing derivatives by commutators.
If f(z) denotes (say) a function of a real variable z, and f(z) = f(x + h)
for a fixed increment h, define the discrete derivative Df by the formula

Df = (f — f)/h, and find that the Leibniz rule is not satisfied. One has the
basic formula for the discrete derivative of a product:

D(fg) = D(f)g+ fD(g).

Correct this deviation from the Leibniz rule by introducing a new non-
commutative operator J with the property that

fJ=Jf.

Define a new discrete derivative in an extended non-commutative algebra by
the formula

V(f) = JD(f).
It follows at once that
V(fg) = JD(f)g+ JfD(g) = JD(f)g+ fID(g) =V (f)g + [V(9).
Note that

V(f)=(Jf=Jf)/h=(f]—Jf)/h=1[f J/h]




Let’s build a non-commutative world of
flat coordinates

suitable for advanced calculus.

The flat coordinates X, satisty the equations below with the P; chosen to
represent differentiation with respect to X;:

X, X;] =0, Coordinates Commute.
[P, P;] =0, Partials commute.
| X, Pj| = 6;;. Derivative formula.
Derivatives are represented by commutators.
0, F =0F/0X,; = |F, P,
O;F = OF /0P, = [X;, F].

Temporal derivative is represented by commutation with a special (Hamilto-
nian) element H of the algebra:

dF/dt = [F, H].

(For quantum mechanics, take ihdA/dt = [A, H].)




Hamilton’s Equations express the
Mathematics of a Non-Commutative

Flat World

AP./dt = P, H] = ~[H, P] = ~0H/X,

dX,/df — [X;, H] = E)H/OP,

These are exactly Hamilton’s equations of motion. The pattern
of Hamilton’s equations is built into the system.

Note that we have derived
Hamilton’s equations
from nothing but
the assumption of a
flat non-commutative world.




Remark: Hamilton’s formulation was
in terms of Poisson brackets.

{A, B} = (0A/0q)(0B/0p) — (0A/0p)(0B/0q)

Poisson brackets do not obey the
Leibniz rule.
(d/dt){A, BY = {dA/dt, BY + {A,dB/dt} — {A, B}(§/dq + Op/p)
Unless (0¢/0q + 0p/dp) =0 .

This is an integrability condition for
Hamilton’s equations:

q = 0H/0p,
p=—0H/0q.




Discrete Measurement. Consider a time series { X, X', X" ...}
with commuting scalar values. Let

X=VX=JDX=J(X'-X)/r

where 7 is an elementary time step (If X denotes a times se-
ries value at time ¢, then X’ denotes the value of the series at
time ¢t + 7.). The shift operator J is defined by the equation
XJ = JX' where this refers to any point in the time series so
that X J = JX "D for any non-negative integer n. Moving .J
across a variable from left to right, corresponds to one tick of the
clock. This discrete, non-commutative time derivative satisfies
the Leibniz rule.




1. Let XX denote the sequence: observe X, then obtain X.

2. Let XX denote the sequence: obtain X, then observe X.

The commutator [ X, X] expresses the difference between these
two orders of discrete measurement. In the simplest case, where
the elements of the time series are commuting scalars, one has

X, X]=XX - XX=JX —-X)?/r.

Proof. XX =XJ(X' - X)/r=JX'(X'— X)/7

XX =JX -X)X/r.




Emergence of the Diffusion Constant

Thus we can interpret the equation
(X, X] = Jk
(k a constant scalar) as
(X' — X)?/T = k.

This means that the process is a Brownian walk with spatial step

A =+VEkT

where k is a constant. In other words, we have
k= A%/T.

We have shown that a Brownian walk with spatial step size A and time step
7 will satisty the commutator equation above exactly when the square of the
spatial step divided by the time step remains constant. This means that a
given commutator equation can be satisfied by walks with arbitrarily small
spatial step and time step, just so long as these steps are in this fixed ratio.




Classical Point of View
on the Diffusion Constant

r(t+71)=2(t) £ A

so that the time step is 7 and the space step is of absolute value A. We regard
the probability of left or right steps as equal, so that if P(z,t) denotes the
probability that the Brownian particle is at point x at time ¢ then

P(z,t+71)=Plx —At)/2+ Pz + A,t)/2.

From this equation for the probability we can write a difference equation for
the partial derivative of the probability with respect to time:

(P(z,t+7)— P(x,t) /7 = (B*/27)[(P(x — A, t) — 2P(x,t) + P(z + A)) /A?]

The expression in brackets on the right hand side is a discrete approximation
to the second partial of P(z,t) with respect to z. Thus if the ratio C' = A?/27
remains constant as the space and time intervals approach zero, then this
equation goes in the limit to the diffusion equation

OP(x,t)/0t = CO*P(x,t)/0x>.

(' is called the diffusion constant for the Brownian process.




The appearance of the diffusion constant from the observational commu-
tator shows that this ratio is fundamental to the structure of the Brownian
process itself, and not just to the probabilistic analysis of that process.




Heisenberg/Schrodinger Equation. Here is how the Heisen-
berg form of Schrodinger’s equation fits in this context. Let the
time shift operator be given by the equation J = (1 + HAt/ih).
Then the non-commutative version of the discrete time deriva-
tive is expressed by the commutator

Vi =i, J/ Al

and we calculate

Vi =[(1+ HAt/ih) /At — [(1 + HAt/ih) /Aty = [y, H]/ih,
ihV = [y, HJ.

This is exactly the Heisenberg version of the Schrodinger equa-
tion.




Dynamics and Gauge Theory. One can take the general
dynamical equation in the form

l’.'ikrl; ,.ff(ft = g,‘
where {Gy,---,Gy} is a collection of elements of A. Write G;

relative to the flat coordinates via G; = P, — A,.
Ry = [Gs, G5l
= |F — A, B — A
= —|F, 4;] — A, 5] + [A, A
= 0;A; — & 4; + |A;, A
This is the well-known formula

for the curvature of a
gauge connection.




Curvature as Commutator

?L(F) - [F* gf]?

then one has the curvature

and

Vi, V|F = R, F|

R;_.}' = E')fjf-l.}' — [:?.}'jili -+ [fh: f-l_.j:],




Metric

Suppose we have elements g;; such that
[8ij, Xk ] =0
and
8ij = 8ji-
We choose
H— (gijPiP; + P, P;gij)
1 :
This is the non-commutative analog of the classical H = (1/2)g;; P; P;.

Then one calculates that

(X, X;1=gi;.




Lemma 3. Let g;; be given such that [g;;, Xy] = 0 and g;; = gj;. Define

H— (8ij Pi P; + Pi Pjgij)

4
(where we sum over the repeated indices) and
F=[F, H]

Then
[X;, X;1= g

Proof: Consider
[ Xk, gij Pi Pj] = gij[ Xk, P; Pj]
= &ij([ Xk, P1P; + P;[ Xy, P;])
= ij(0ki Pj + Pidyj) = gkj Pj + gix Pi = 28kj P;.
Then

[XI”7 Xk] - [XI”7 [Xka H]] - |:XI”7 Xk?

(gij PiPj + Pipjgij)]:|
4

ij PP ]
= [Xr, [Xk, (g]4—])} + [ X, [ Xk, (P Pjgij)/4]]

= 2[X,, 2gxj P; /4] = [X;, gk Pj] = gkj[ Xy, Pj]1 = gkjdr;

= 8kr — 8rk-




This calculation actually shows that
the Hamiltonian H obeys the
constraint that

F=[FH] = (I2)(X; [F.P] + [F P 1X; ).

Asking for higher order constraints
of this type gives deeper relationships.

For example, if we ask for a second order
constraint, then the metric must obey equations
that are a fourth-order version of Einstein’s
equations.

(Joint work in preparation with
Tony Deakin and Clive Kilmister.)




Summary

dX; .
=X, =P —A =G,
dt
[X,‘. XJ.] = Hf‘,‘ = H’fﬂj — ijlf -+ [..-’L'. !‘lj]
. . Hﬂj
| Xi, Xl =X, Pi| = [Xi, Aj] =8;; — op, i

Feynman-Dyson is case where
metric is Kronecker delta.

ViF =[F, P, — A;] = 0i(F) — [F, A]] = [F, X]]

Weassume [X;, gjx] =0 .




Levi-Civita Connection and Dynamics.
[ Xi, X1 = gij.
Lemma. LetTyjx = (1/2)(Vigjx + V,gix — Vigij). Then
oo o r-i-jk = (1/2)9;0; X
gik = [X;, Xl +[X;, Xk
;0 Xy = [Xi, [X;, Xx]]
Xi, gix — [X, Xi]]
Xi, gir] — [Xi, [X;, Xk
Xi, gii] + [ Xe, [Xi, X501+ [X, [ Xy, X1
= —[Xi, gjr] + [Xi, [Xi X0 + [X [ Xz, Xi]]
= Vigjk — Vi&ij + V;&ix
= 2Ii).

|
= |
= |
|




One finds that
Xr =G, + FrSXS - FrstXSXta

where G, 1s the analogue of a scalar field, F,; is the analogue of a gauge field and

I',s: 1s the Levi-Civita connection associated with g;;.




The Levi-Civita Connection
appears as a direct consequence
of the Lebniz rule and the
Jacobi identity.

Classical physics contains part of
the explanation, since a
particle moving in general
coordinates and obeying Hamilton’s equations
moves in a geodesic described by the
Levi-Civita connection.




This derivation of the
Levi-Civita connection
suggests a reformulation
of
differential geometry
where the notion of parallel translation
is secondary to the
dynamics of non-commutativity.




Generalized Feynman Dyson Derivation

In this section we assume that specific time-varying coordinate
elements X7, Xy, X3 of the algebra A are given. We do not
assume any commutation relations about X, Xo, X3.

We define fields B and E by the equations
B=XxX and F = 0,X.

Here A x B is the non-commutative vector cross product:

(A X B)k — Z?’jzlgjkAiBj.

We show that E and B satisfy a
generalization of the Maxwell equations.




We take

a covariant derivative.

In defining
O F = F — ¥, X,0;(F),

we are using the definition itself to obtain a notion of the
variation of F' with respect to time. The definition itself
creates a distinction between space and time in the non-
commutative world.




The Epsilon Identity

d c d c d C

>2i €abi€cdi = —0adObe + OacObd-
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Electromagnetic Theorem With the above definitions of the
operators, and taking

VE=0?4+02+02, B=XxX and E =09,X we have
1. X=F+XxB

2. VeB=0

3.0 B+V xFE=BxB

4. E -V x B=(0? - V)X

(B x B is not always zero in discrete models.)




Discrete Models.

X is a vector of a three dimensional time series.
F=J(F —F)=[FJ
A(F)=F —F
F=JAF) , A\, =X/ —X,
0;(F)=[F,X;] =[F,JN\;] = FJA; — JAF
= J(F'A; — A\F)
O.F = J[1 — JA e AJA(F)
Ry = [Xi, Xj]| = XiJA; — JA X,
= J(XIA; — A X)) = JAA,

B=XxX=JA(X") x A(X)
E=X—-Xx(XxX)=JA%X) - PAX") x (A(X") x A(X))




Next:
The Non-Commutative
World of a Knot in Three - Space




