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Abstract

This paper discusses reformulations of the problem of coloring plane maps with four colors.
We include discussion of the Eliahou—Kryuchkov conjecture, the Penrose formula, the vector
cross-product formulation and the reformulations in terms of formations and factorizations due to
G. Spencer-Brown.
© 2005 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we give a concise introduction to the work of Spencer-Bf8jwom the four
color theorem and some of the consequences of this work in relation to other reformulations
of the four color problem. This work involves a rewriting of the coloring problem in terms of
two-colored systems of Jordan curves in the plane. These systems foaitations are in
one-to-one correspondence with cubic plane graphs that are colored with three edge colors,
so that three distinct colors are incident to each vertex of the graph. It has long been known
that the four color problem can be reformulated in terms of coloring such cubic graphs.

We first concentrate on proving two key results. The first is a Parity Lemma due to
Spencer-Browij8]. This lemma is also implied by work of Tutf8] via translation from
edge colorings to formations. The second result, depending on the Parity Lemma, is a proof
that a certain principle of irreducibility for formationsaguivalento the four color theorem.
Spencer-Brown takes this principle of irreducibility (here calledRhenality Principle) to
be axiomatic and hence obtains a proof of the four color theorem that is based upon it. He
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also gives proofs of the Primality Principle (§8¢ Theorem 17, pp. 168—-17Ghat depend
upon a subtle notion of inverse distinction. This work of Spencer-Brown deserves careful
consideration.

The present paper is an expansiofif In that paper, we also prove the Parity Lemma
and discuss the primality principle. However, the discussion of factorizability of formations
is imprecise if4] and | have taken the opportunity of this paper to rectify that fault. | hope
that this paper attains the desired clarity in regard to parity and primality. In the author’s
opinion these concepts are central to understanding the nature of the four color theorem,
and it is worth a second try at explication.

There are seven sections in the present paper. In Section 2, we give the basics about cubic
maps and formations. In Section 3, we prove the Parity Lemma. In Section 4, we give the
equivalence of the four color theorem and the Primality Principle. In Section 5, we discuss
an algorithm, the parity pass, discovered by Spencer-Brown. The parity pass is an algorithm
designed to color a map that has been colored except for a five-sided region. The language
of the algorithm is in terms of formations. It is an extraordinarily powerful algorithm and
may in itself constitute a solution to the four color problem. It is worth conjecturing that this
is so. In Section 6, we discuss an application of formations to the workings of a chromatic
counting formula due to Roger Penrose. In Section 7, we apply ideas from formations to
the Eliahou—Kryuchkov (EK) conjecture, showing that it can be reformulated in terms of
coloring and re-coloring trees, and in terms of the vector cross-product reformulation of the
four color theorem.

2. Cubic graphs and formations

A graphconsists of a vertex sgtand an edge s&such that every edge has two vertices
associated with it (they may be identical). If a vertex is in the set of vertices associated with
an edge, we say that this verte&longso that edge. If two vertices form the vertex set for
a given edge we say that edgennectghe two vertices (again the two may be identical).

A loop in a graph is an edge whose vertex set has cardinality onemualt-graphit is
allowed that there may be a multiplicity of edges connecting a given pair of vertices. All
graphs in this paper are multi-graphs, and we shall therefore not use the prefix “multi” from
here on.

A cubic graphis a graph in which every vertex either belongs to three distinct edges, or
there are two edges at the vertex with one of them a loogl&ring (proper coloring) of
a cubic graphG is an assignment of the label¢red),b (blue) andp (purple) to the edges
of the graph so that three distinct labels occur at every vertex of the graph. This means that
there are three distinct edges belonging to each vertex and that it is possible to label the
graph so that three distinct colors occur at each vertex. Note that a graph with a loop is not
colorable.

The simplest uncolorable cubic graph is illustrated-ig. 1 For obvious reasons, we
refer to this graph as thdumbell Note that the dumbell is planar.

An edge in a connected plane graph is said to bistamusif the deletion of that edge
results in a disconnected graph. It is easy to see that a connected plane cubic graph without
isthmus is loop-free.
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Fig. 1. The simplest uncolorable cubic graph.

Heawood reformulated the four color conjecture (which we will henceforth refer to as
the Map Theoremfor plane maps to a corresponding statement about the colorability of
plane cubic graphs. In this form the theorem reads

Map Theorem for Cubic Graphs. A connected plane cubic graph without isthmus is
properly edge-colorable with three colors.

We now introduce a diagrammatic representation for the coloring of a cubic graph. Let
G be a cubic graph and I€1(G) be a coloring ofG. Using the colors, b andp we will
write purple as a formal product of red and blue:

p =rb.

One can follow single colored paths on the color@hg>) in the colors red and blue. Each

red or blue path will eventually return to its starting point, creating a circuit in that color.
The red circuits are disjoint from one another, and the blue circuits are disjoint from one
another. Red and blue circuits may meet along edgé€stirat are colored purplep(=rb).

In the case of a plane graji a meeting of two circuits may take the form of one circuit
crossing the other in the plane, or one circuit may share an edge with another circuit, and
then leave on the same side of that other circuit. We call these two planar configurations a
crossand abounce respectively.

Definition. A formation[8] is a finite collection of simple closed curves, with each curve
colored either red or blue such that the red curves are disjoint from one another, the blue
curves are disjoint from one another and red and blue curves can meet in a finite number of
segments (as described above for the circuits in a coloring of a cubic graph).

Associated with any formatioR there is a well-defined cubic gragh(F), obtained by
identifying the shared segments in the formation as edges in the graph, and the endpoints
of these segments as vertices. The remaining (unshared) segments of each simple closed
curve constitute the remaining edges®(fF). A formationF is said to be a formation for
a cubic graplG if G = G(F). We also say thdt formatesG.

A plane formationis a formation such that each simple closed curve in the formation
is a Jordan curve in the plane. For a plane formation, each shared segment between two
curves of different colors is either a bounce or a crossing (see above), that condition being
determined by the embedding of the formation in the plane.

Since the notion of a formation is abstracted from the circuit decomposition of a colored
cubic graph, we have the proposition:

Proposition. Let G be a cubic graph an@ol(G) be the set of colorings of G. Th@ol(G)
is in one-to-one correspondence with the set of formation&for
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Fig. 2. Coloring and formation.
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Fig. 3. Second example of coloring and formation.

In particular, the Map Theorem is equivalent to the
Formation Theorem. Every connected plane cubic graph withoutisthmus has a formation

This equivalent version of the Map Theorem is due to Spencer-Bf@wmhe advantage
of the Formation Theorem is that, just as one can enumerate graphs, one can enumerate
formations. In particular, plane formations are generated by drawing systems of Jordan
curves in the plane that share segments according to the rules explained above. This gives
a new way to view the evidence for the Map Theorem, since one can enumerate formations
and observe that all the plane cubic graphs are occurring in the course of the enumeration!
SeeFigs. 2and3 for illustrations of the relationship of formation with coloring.

Remark. In the figures the reader will note that graphs are depicted with horizontal and
vertical edges. This means that some edges have corners. These corners, artifacts of this
form of representation, are not vertices of the graph. In depicting formations, we have
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endeavored to keep the shared segments slightly separated for clarity in the diagram. These
separated segments are amalgamated in the graph that corresponds to the formation.

3. Simple operations and the Parity Lemma

Recall that ecircuit in a graphG is a subgraph that is equivalent to a circle graph (i.e.
homeomorphic to a circle).

Let G be a cubic graph. Suppose tl@is a coloring ofG with three colors (so that three
distinct colors are incident at each vertex@j. Let the colors be denoted bry(red), b
(blue) andp (purple). Then, we can classify circuits@relative to the coloring. We shall
be concerned with those circuits that contain exactly two colors. The possible two-color
circuits arer-b (red-blue)—p (red—purple) and-p (blue—purple). Letd(G, C) denote
the number of distinct two-color circuits i@ with the coloringC.

Definition. Call theparity of the coloringC, denotedt(G, C), the parity of the number of
distinct two-color circuitsA(G, C).

Definition. If Cis a coloring ofG andd is a two-color circuit inG (called amodulus
in [8]), then we can obtain a new coloridj # C of G by interchanging the colors ah
Call the operation of switching colors on a two-color circuisienple operatioron the
coloringC.

In this section, we will prove a basic Parity Lemma due to Spencer-Bf8jvim the
category of formations. A similar result due to Tuf§ in the category of plane cubic
graphs implies the Parity Lemma, but is proved by a different method. The lemma states
that simple operations on planar graphs or planar formations preserve parity. Note that by
the results of Section 1, colorings of cubic graphs and formations for cubic graphs are in
one-to-one correspondence. The proof of the parity lemma given here is due to the author
of this paper.

Note that for a formatior composed of red and blue curves, the two-color circuits are
counted byA(F) = R + B + Alt where R denotes the number of red curvBsjenotes the
number of blue curves, and Alt denotes the number of red—blue alternating circuits in the
corresponding coloring. These red—blue circuits are characterized in the formation as those
two-colored circuits that avoid the places where there is a superposition of red and blue
(these places correspond to purple edges in the coloring). The red curves in the formation
correspond to red—purple circuits in the coloring, and the blue curves in the formation
correspond to blue—purple circuits in the coloring.

Each formation corresponds to a specific graph coloring. Simple operations on the color-
ing induce new formations over the underlying graph. Simple operations can be performed
directly on a formation via a graphical calculus. This calculus is based on the principle of
idempositionsaying thatsuperposition of segments of the same color results in the can-
cellation of those segmentBhe result of an idemposition of curves of the same color is a
mod-2 addition of the curves. Two curves of the same color that share a segment are joined
at the junctions of the segment, and the segment disappears. In order to perform a simple
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operation on a blue loop, superimpose a red loop upon it and perform the corresponding
idemposition with the other red curves that impinge on this red loop along the blue loop.
Similarly, in order to perform a simple operation on a red loop, superimpose a blue loop on

it and idempose this blue loop with the blue curves that impinge on the red loop. Finally, in
order to perform a simple operation on a red—blue alternating circuit in a formation, super-
impose a red and a blue loop on this circuit and perform the corresponding idempositions.
These instructions for performing simple operations are illustrat&iignd. In this figure

some of the edges that are intended to be superimposed are drawn at a short distance from
one another in order to enhance the reader’s ability to trace the curves.

Parity Lemma. If C’ and C are colorings of a planar cubic graph G witH obtained from
C by a simple operatigrthen the parity ofC’ is equal to the parity of Cr(C’) = =(C).
Equivalently parity is preserved under simple operations on planar formations

In order to prove the Parity Lemma, we need to consider elementary properties of idem-
positions of curves in the plane.

First, consider the idemposition of two curves of the same color, as illustratéd.ib.
We can distinguish three types of interaction denoted feft), R (right) andB (bounce).
A bounce B) is when the second curve shares a segment with the first curve, but does not
cross the first curve. Crossing interactions are classified as left and right accordingly, as the
person walking along the first curve, first encounters the second curve on his)ighoh
his left (L). After an encounter, there ensues a shared segment that the walker leaves in the
direction of the opposite hand. Lgt| denote the number of left crossings between the first
and second curvegR| the number of right crossings, ahil| the number of bounces. (Note
the|L| and|R| depend upon the choice of direction for the walk along the first curve.) Let
P(A, A") denote the parity of|[L| — |R|)/2 + | B| for an interaction of curve8 andA’.

Idemposition Lemma. Let A andA’ be two simple closed curves in the plane of the same
color. The parity of the number of simple closed curves resulting from the idemposition of A
andA’ is equal toP(A, A"y = (|L| — |R|)/2+ | B| (mod 2 where the terms in this formula

are as defined above

Proof. The proof is by induction on the number of crossing interactions between the two
curves. It is easy to see that the removal of a bounce changes the parity of the idemposition
(seeFig. 6). Fig. 7illustrates a collection of unavoidable crossing interactions between two
curves. That is, if there are crossing interactions, then one of the situatifitg. inmust

occur. (To see this note that if you follow curye and cross curvd, then there is a first

place whereA’ crossesA again. The unavoidable configurations are a list of the patterns
of crossing and crossing again.) It is then clear fieig. 7, by counting parity after the
indicated idempositions, that the result follows by inductionl

Proof of the Parity Lemma. Consider a formatiorr consisting of one red loop that

is touched by a set af disjoint blue curves. It is clear by construction that the number
of alternating (red/blue) circuits iR is equal to the number of curves in the idemposition
obtained after letting all the blue curves become red (so that they cancel with the original red
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Fig. 4. Simple operations.
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(L-RD/2+ B =(1-1)/2+1=1

Fig. 5. Idemposition.

Fig. 6. Bounce.

loop where blue meets red). As a result, we can apply the Idemposition Lemma to conclude
that

A(F)=1+n+ (IL| — |R])/2+ |B| (mod 2

where|L|,|R| and| B| denote the total number of left, right and bounce interactions between
the red curve and the blue curves amig the number of blue curves. (Apply the lemma to
each blue curve one at a time.) The main point is that the parifyiefdetermined by a
count of local interactions along the red cureln this case, when we perform a simple
operation oM, the curve count does not change. We simply interchange the roles of blue
circuits (i.e. blue/purple circuits) and alternating circuits (i.e. red/blue circuits). Thus, in
this case we have that(F) = A(F’), whereF’ is obtained by a simple operation on the
curveAin F. Hence, parity is certainly preserved.

In the general case we have a red culbat interacts with a collection of blue curves,
and these blue curves interact with the rest of the formation. Call the whole fornfation
and letG denote the subformation consisting of the cufvand all the blue curves that
interact withA. If F’ is the result of operating ofvin F, thenF”’ will contain G’, the result
of operating orA in G. G’ will consist of the curveA plus all blue curves i’ that touch
the curveAin F’. In counting the change of from A(F) to A(F’), we actually count the
change in the count of blue curves and the change in the count of alternating circuits. Each
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Fig. 7. Innermost cross and recross.

of these changes can be regarded as the result of a single color idemposition originating at
A. The change inf from F to F’ is the sum of the change in the number of blue curves and
the change in the number of alternating circuits. Each of these changes is determined by
local interactions along the curye The parity of the change again depends only on these
local interactions. Since the transformation fr@rto G’ has identical local interactions,

and sinceG and G’ have the samd and hence the same parity, it follows thaand F’

have the same parity. This completes the proof of the Parity Lemmia.

Remark. In performing a simple operation, the curve count may change without changing
the parity of this countigs. 8and9 illustrate an example of this phenomenon.

Remark. The Parity Lemma fails for a non-planar formation. For example, consider the
formation inFig. 1Q This is a formation for the Petersen graph with one edge removed. As
the figure indicates, parity is not preserved by a simple operation on this graph. The curve
count in the first formation is five and the curve count in the second formation (after the
simple operation) is four. This shows that the underlying graph of these two formations is
non-planar.

4. A principle of irreducibility

The main result of this section is the equivalence of the four color theorem with a property
of formations that | call thérimality Principle In order to state this property we need to
explain the concept of &ail in a formation, anchow a trail can facilitate or block an
attempt to extend a coloring.
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Fig. 8. Changing curve count under simple operation.

Fig. 9. Unchanging curve count under simple operation.

Consider a formation with two blue curves and a single red curve that interacts with
the two blues. Sekig. 11for an illustration of this condition. | shall call the red curve a
trail between the two blues. Call the blue curves ¢batainersor contextual curvesor
the trail. Call thegraph of the trail Tthe cubic graptG (T') corresponding to the formation
consisting in the two blues and the red curve between themkag.id2 In Fig. 11we have
also indicated a double arrow pointing between the two blue curves and disjoint from the
trail. The double arrow is meant to indicate an edge that we would like to color, extending
the given formation to a new formation that includes this edge. We shall refer to this double
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Fig. 10. Parity reversed in the one-deleted Petersen.

L

Fig. 11. A trail between two blue curves.

arrow as theempty edgeln the example shown ifig. 13 we obtain this extension by
drawing a purple (blue plus red) curve that goes through the empty edge. The part of the
purple curve that is not on the arrow forms a pathway in the given formation from one
arrow-tip to the other that uses only two colors (red and blue). After idemposition, this
purple curve effects a two-color switch along this pathway and the formation is extended
as desired. Under these circumstances we say that the formattomjsdetable over the
empty edgelf simple operations on a given formation with an empty edge can transform

it so that the formation is completable over the empty edge, we say that the formation
is completable by simple operationSince the final action of completing the formation
changes the empty edge to a colored edge, this last operation (described above) will be
called acomplex operation.
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Fig. 12. The graph&(T) andG*(T).

B

Fig. 13. A colorable trail.

Another example of a trail is shown Fig. 14 Here, no extension is possible since the
extended graph is the Petersen graph, a graph that does not admit a coloration.

In a trail the endpoints of the empty edge are specified, since one would like to complete
the formation over the empty edge. The simplest example of uncolorability is just two curves
and an empty edge. Then no matter how the curves are colored there is no way to extend
the formation over the empty edge.

There are two cases in the coloring structure of a trail: the two contextual curves have the
same color or they have different colors. We shall distinguish these two casiegibiyg
those colors of the contextual curves to be the colors incident at the endpoints of the empty
edge. Note that when we refer to a curve in a formation we mean either a blue curve, a red
curve or a cycle that alternates in red and blue when we are performing a parity count. On
the other hand, one can also consider purple curves, but these will appear in the formation as
alternations of purple with blue or red at those sites where the purple is idemposed with red
or blue, respectively. When counting curves, we shall only count blue, red and alternating
(red and blue).
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Fig. 14. The Petersen trail.

Fig. 15. A trail between two purples.

We first consider contextual curves of the same color. Suppose that both contextual curves
are purple. Then any trail between them must be drawn either in blue or in red. It will be
called anon-purple trail. Thus, one could insert a Petersen trail drawn as a red curve and
then idemposed between the purple curves, or a Petersen trail drawn as a blue curve and
then idemposed between the two purples. We will say that a trail between two curves of the
same color (red, blue or purple)fectoredif after removing the two contextual curves (by
idemposing them with curves of the same color) the remaining trail structure has multiple
components.

SeeFig. 15for an illustration of this removal process. The “trail” that we uncover by the
removal process igot the color of the two curves and it does not touch the endpoints of
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Fig. 16. A factorizable trail.

the empty edge. IRig. 15 we illustrate a trail between two purples. That is, each endpoint
of the empty edge touches the color purple. In the second part of the figure we reveal the
purples so that an idemposition of this figure gives the first part and a removal of the two
purple curves gives the single trail component. Since there is only one component, this trail
is not factored.

Forthe case where both contextual curves have the same color there is no loss of generality
in assuming that the two contextual curves are both red or both blue. Then any extra curves
produced in a factorization can be seen directly, in their appearance as alternating, blue or
red.

Secondly, suppose that the two contextual curves have different colors. And suppose
that the formation has a non-empty trail structure between the two curves. We say that this
formation isfactoredwith respect to the empty edge if there is an extra curve in the formation
that does not pass through either endpoint of the empty edge. For example, perform a simple
operation on the Petersen trail adHig. 14 making the top curve purple (at an endpoint of
the empty edge). Note that in this example every curve in the formation passes through one
of the endpoints of the empty edge, so it is not factored. Second example: operate on the
top curve inFig. 11 You will find that this produces a red curve that is isolated from the
empty edge, giving a factorization.

We shall say that a formation ismfactoredf it is not factored.

We shall say that a trail' factorizesif there is a formation for the grap&(T) (see
definition above) of this trail that is factored. Note that we do not require that the original
version of the trail be factored. A new version can be obtained by simple operations on the
original formation, or by more complicated re-colorings. A trail is said tptmeif it does
not admit any factorization.

Sometimes a trail can factorize by simple operations as in the examipig.ih6 In the
example inFig. 16we perform a simple operation on the upper blue curve. Note that in the
resulting factorization the arrow is now between a lower blue curve and a part of the upper
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blue curve that has a superimposed red segment from one of the factors. The Petersen trail
of Fig. 14is a significant example of a prime trail. Recolorings of the graph of the formation
of this trail just return the Petersen trail in slightly disguised form.

A trail is said to beuncolorableif the graphG*(T) obtained fromG(T) by adding the
edge corresponding to the double arrow is an uncolorable graph. Thus, the Petersen trail is
uncolorable sinc&*(T) is the Petersen graph. A trail is said to bmimimal uncolorable
trail if the graphG*(T) is a smallest uncolorable graph. Now, the Petersen graph is the
smallest possible uncolorable graph other than the dumbell shofig.id. In particular,
the Petersen is the smallest non-planar uncolorable. This does not, in itself, rule out the
possibility of planar uncolorables other than the dumbell (that is, the essence of the four
color theorem). Hence, we can entertaingbssibilityof minimal planar uncolorable trails.

Now, we can state the

Primality Principle. A minimal planar (non-empty) uncolorable trail is prime.

In other words, this principle states that there is no possibility of making a minimal
planar uncolorable trail that is factored into smaller planar trails. The principle lends it-
self to independent investigation since one can try combining trails to make a possibly
uncolorable formation (i.e. that the grapti (T4, . . ., T,,) is uncolorable where this graph
is obtained from the formation consisting in the tréils.. . ., 7,, placed disjointly between
two blue curves.) The combinatorics behind this principle are the subject of much of the re-
search of Spencer-Brown. Spencer-Brown regards the Primality Principlécasatic(see
[8, p. 169). It is one purpose of this paper to point out the equivalence of the four color
theorem and the Primality Principle.

Theorem. The Primality Principle issquivalento the four color theorem

Proof. First, suppose the Primality Principle—that minimal uncolorable trails are prime.
Let T be a minimal uncolorable non-empty planar trail. Without loss of generdlity,
defined by a formation consisting in a single red curve (the trail) drawn between two
disjoint blue curves. We call this formatiaf(T), the formation induced by the trall.

The formation can be depicted so that the two blue curves appear as parallel lines (to be
completed to circuits—above for the top line and below for the bottom line) and the trail
T is interacting between the two parallel blue lines. In this depiction, we can set a double
arrow indicator between the two parallel lines, with this indicator entirely to the I€ft of
This double arrow indicator represents an edge that we would like to complete to form a
larger formation/coloring. Uncolorability of the trail means that there is no coloring of the
graph obtained by adding to the underlying graphF¢f’) an edge corresponding to the
double arrow.

Note that an uncolorable trail is necessarily incompletable (across the empty edge) by
simple operations. This implies that there is no two-color pathway in the given formation
of the trail from one endpoint of the empty edge to the other endpoint. We can use these
facts to count the number of curves in a minimal uncolorable trail.

First, consider a prime uncolorable trail with two blue contextual curves, and an existing
trail between them in red. This trail must consist in a single red curve. There can be no other
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red curves in the formation. There is an alternating curve incident to each endpoint of the
empty edge. Thus, there are at most two alternating curves, one for each endpoint of the
empty edge. (Other alternating curves would become red components after the removal of
the contextual curves.) If there is one alternating curve, then there is a two-color pathway
between the endpoints of the empty edge, and the formation is completable over this edge.
Hence, there are two alternating curves. Thus, we see that the curve count (one red, two
blue, two alternating) for a prime uncolorable formation with two blue contextual curves is
five.

Second, consider a prime, uncolorable trail with one purple contextual curve and one
blue contextual curve. The trail structure will then consist in red curves woven between the
two contextual curves. Once these red curves are idemposed with the purple, the formation
can be regarded as two blue curves with the trail structure passing through (say) the upper
endpoint of the empty edge, so that this upper endpoint rests on purple. Such a formation is
unfactored if and only if all curves pass through the endpoints of the empty edge. Thus, we
have a single blue curve and a single alternating curve passing through the lower endpoint,
and one red curve and one blue curve passing through the upper endpoint. This makes a total
of two blues, one red and one alternator, hence a curve cotourdbr a prime uncolorable
formation with contextual curves of different colors.

Now, consider a planar formatian(7) that is minimal, prime and uncolorable. Suppose
that it has contextual curves of the same color. Then it has curve count five by the above
reasoning. By performing a simple operation on one of the contextual curves, we obtain a
formation F’ with contextual curves of different colors. The curve counfiéftannot be
four, since four and five have different parity. Therefore, the curve couht ofust be five
or greater and we conclude thiatis factorized. Similarly, if we begin with a formation that
is unfactored and incompletable between two curves of different color, then by operating
on one of them we obtain a formation between curves of the same color. The original curve
count is four and the new curve count, being of the same parity, is either less than five (and
hence solvable) or greater than five (and hence factored). This shows that there does not exist
aminimal prime uncolorable (incompletable over the empty edge) planaF{tEl. If there
are uncolorables then there are minimal uncolorables. Therefore, no minimal uncolorable
planar trail is prime. (The trail factors cannot themselves be uncolorable, since this would
contradict minimality.) But this is a direct contradiction of the Primality Principle. Hence,
the Primality Principle implies that there are no uncolorable non-empty planar trails.

Now, consider a minimal uncolorable cubic graph. Such a graph entails the possible
construction of a minimal uncolorable non-empty trail. Drop an edge from the graph and
color the deleted graph. The missing edge cannot have its endpoints on a single curve (red,
blue or alternating) in the corresponding formation since that will allow the filling in of
the missing edge and a coloration of an uncolorable. Therefore, we may take the missing
edge to be between two blues. If there is more than one trail factor between these two blues
then we would have a factored minimal uncolorable trail. Primality implies that there is
only one factor. Therefore, the Primality Principle in conjunction with the Parity Lemma
implies the non-existence of a minimal uncolorable cubic graph with a non-empty trail in
the coloration of the deletion (by one edge) of the graph. The only remaining possibility is
that after deleting one edge, the graph is identical to two curves. The dumbdHigsde
is the only such graph. Therefore, the Primality Principle implies the four color theorem.
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Conversely, assume the four color theorem. Then indeed there does not exist a minimal
uncolorable non-empty planar prime trail (since that by definition implies an uncolorable
plane cubic graph with no isthmus). Hence, the statement of the Primality Principle is true.
This completes the proof of the Theorenti]

Remark. This Theorem constitutes a reformulation of the four color theorem, in terms of
the Primality Principle. This reformulation takes the coloring problem into a new domain.

In the work of Spencer-Brown this reformulation has been investigated in great depth.
The capstone of this work is an algorithm called freity pass[8, pp. 182-183]that

is, intended to extend formations across an uncompleted five region whenever the given
formation does not already solve by simple operations. Spencer-Brown has stated repeatedly
that this approach gives a proof of the four color theorem. Itis not the purpose of this paper
to give full review of that work. We recommend that the reader consult Spencer-B8pwn

5. The parity pass

We shall say that a formation isdeficientrelative to a grapl if it formates all but one
edge ofG. We shall say that a formationjidanar uncolorablel-deficientf the underlying
graph is uncolorable if one adds a single designated edge to it. In discussing the Primality
Principle in the last section, we have considered situations where a graph is formatted all
except for a single edge. In that section we showed that the four color theorem was equivalent
to the Primality Principle which states that one cannot build planar uncolorable 1-deficient
formations by combining colorable trail factors. Experience in working with the calculus
of formations tends to bolster one’s belief in this principle. There is another approach to
coloring, also due to Spencer-Brown that sheds light on this issue. It is well known since
Kempg[5] that if one could give an algorithm that would color a cubic map in the plane when
a coloring was given at all but one five-sided region, then any map could be colored with four
colors. In this section, we describe an algorithm (the parity pass) that is designed to handle
the five region in the context of formations. Spencer-Brown assertgihan a planar
formation that isl-deficient at a five-regiarit is either completable by simple operations
or at some stage in the parity pass algorithm the resulting formation is completable by
simple operations/NVe refer the reader {8] for more details about the context and possible
proof of this algorithm. The purpose of this section is to give a condensed description of
the parity pass, and to urge the reader to try it out on “hard” examples.

View Fig. 17. This figure contains a complete diagrammatic summary of the parity pass.
There is an initial diagram and five successive transformatian®, C, D, E) to related
diagrams. The last diagram is locally identical to the first diagram. Each transformation
consists in a single idemposition of a closed curve on the given formation. In some cases,
this curve goes through one of the empty edges, coloring it, while transforming one of the
edges at the five region into an empty edge. Thisdsraplex operationin other cases, the
transformation is a simple operation on the given formation. In&a€tandD are complex
operations, whileB andE are simple operations. Each operation can be performed if the
given formation is not completable by simple operations at the five region. Conversely, if
one of the operations in the parity pass cannot be performed, then that starting configuration
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Fig. 17. The parity pass.

can be solved by simple operations. We will not prove these statements here, but we will
give a worked example after some further discussion.

At each stage dfig. 17we have indicated with small dark circles the edges along which
the idemposition is to be performed to get to the next stage. Specifically, performingy step
requires an idemposition in blue along an alternating curve plus the drawing of this curve
across the missing edge and the cancellation of a blue edge by the operating curve. The
existence of this idemposition is required to perform gteftepB entails idemposition in
red along a purple/blue alternator. This is the same as following the indicated blue curve
with a red idemposition. It is required that the indicated blue curve is distinct from the other
blue curve indicated in the local diagram. Sentails idemposition in purple along a
blue/red alternator. Step entails idemposition in blue along a red curve and demands that
the two local red segments are part of one curve. Steptails purple idemposition along
a blue/red alternator that must be distinct from the other alternator locally indicated. If all
steps of the parity pass can be performed, then one returns to a local configuration at the
five region that is the same as the starting position.

In a given example, the reader can deduce from each transformed diagram the locus of the
putative operation that produces it. This locus, and the type of operation can be deduced by
comparing the changes between the diagram and its transform. We also leave to the reader
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Fig. 18. Culprit number one: (1) Stage A of parity pass applied to culprit number one; (2) Stage B of parity pass
applied to culprit number one; (3) Stage C of parity pass applied to culprit number one; (4) Stage D of parity pass
applied to culprit number one. Idemposition cannot be performed and formation is completable at the five region.

the verification thatvhen a transform cannot be accomplishéebn the domain formation
can be completed by simple operations originating at the five region

Itis afascinating exercise to performthis algorithm on examples. Success consistsin being
unableto apply one of the four operations of the parity pass, since this inability implicates
a solvable formationFigs. 18 and 19 give two examples for the reader to examine.
These exercises involve quite a bit of diagrammatic work, but it is worth the effort. In
Figs. 1§1)—(4) we show the work involved in solving the exampld=@j. 18by the parity
pass algorithm. In this case, one can apply sfeBsandC of the algorithm. Step cannot
be applied and one can sdéd. 184)) that the formation at this stage can be solved by
simple operations. To see this, examffig. 184) and note that after a simple operation
on the curvel, one can place a purple curve around the five region that fills in the missing
edges and does not cancel any remaining edges.

In these examples, culprit number oreg. 18 solves via parity pass after application
of A, BandC. Culprit number two ig. 19 will solve via parity pass after application Af
and B. Culprit number two is an example of a “good try” at making a factorized minimal
uncolorable in the plane. As we mentioned, Spencer-Brown asserts that either the parity
pass solves any five region extension problem, or the problem could have been solved by
simple operations at the outset.

6. The Penrose formula
Roger Penrosf] gives a formula for computing the number of proper edge 3-colorings

of a plane cubic grapli;. In this formula each vertex is associated with the “epsilon”
tensor

Piji =~ —Lejji

as shown irFig. 20
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Fig. 18. continued.

One takes the colors from the dét 2, 3} and the tensog;;; takes value 1 foijk =
123 231, 312 and—1forijk =132 321, 213. The tensor is 0 whejk is not a permutation
of 123. One then evaluates the grdphy taking the sum over all possible color assignments
to its edges of the products of tiRg;; associated with its nodes. Call this evaluatiah.

Theorem (Penrose. If G is a planar cubic graphthen[G], as defined abovés equal to
the number of distinct proper colorings of the edges of G with three carshat every
vertex sees three colors at its edges



Louis H. Kauffman / Discrete Mathematics 302 (2005) 145-172 165

—1]

Start Formation

|
|

[ J
] J
Idemposition Curve L

=
Part B Completed

Fig. 18. continued.
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Proof. It follows from the above description that only proper coloring&afontribute to

the summatiodG], and that each such coloring contributes a produet ¢f—1 from the
tensor evaluations at the nodes of the graph. In order to segihe equal to the number

of colorings for a plane graph, one must see that each such contribution is egualfbe

proof of this assertion is given iRig. 21, where we see that in a formation for a coloring
each bounce contributasl = —/—1./—1, while each crossing contributed.. Since there

are an even number of crossings among the curves in the formation, it follows that the total
product is equal ta-1. This completes the proof of the Penrose Theorem.
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Fig. 18. continued.

It is easy to see from the properties of the epsilon tensol thpsatisfies the recursive
identity shown inFig. 22 Here, we have thd0] = 3, whereO denotes an isolated curve,
and the recursion formula includes graphs with extra crossings as shown in the figure. This
use of formations gives a vivid access to the theory of the Penrose formula.

7. The Eliahou—Kryuchkov conjecture

The EK conjecturd6,1] is about “reassociating” signed trees. The teeassociation
comes from the algebraic transform of a produek)c to a producta(bc). In a non-
associative algebra these two terms can represent distinct algebraic elements. In a tree,
a trivalent vertex can be regarded as a representative for an algebraic product in the sense
that two edge labels are multiplied to give the third edge label at that verteXi§e23
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Fig. 18. continued.

for an illustration of this pattern. In this figure we show how two distinct trees correspond
to the two associated productsh)c anda(bc).

The basic reassociation pattern in binary tree form (each vertex is incident to three edges)
is shown inFigs. 23and24. Note that in the lower half dfig. 24the trees are labeled with
the colorsp, r andb with the product of any two of these colors equal to the third color. In
this case, we see that the tree diagram has illustrated the idebtit= pr =b=rp=r (br).

Thus, in this case the multiplication is associative. If we deciderthat pp = bb = 0 with
Or=r0=0b=b0=0p=p0=0, thenthe systefr, b, p, 0} is not associative and two-colored

trees changed by a reassociation move as indicated in the figure may have different coloring
properties. Note that if we have a colored tree (three distinct colors at a vertex) we can take
the two cyclic color ordergbp clockwise ompb clockwise) as denoting two possible signs
(plus and minus, respectively) that can be assigned to the vertices of the tree. In the context
of the conjecture we are about to discuss one considers arbitrary assignments of signs to
the vertices of a tree. The relation with coloring is left out of the game momentarily.

Here is a remarkable game! We shall give signs to the vertices of a tree. We allow
the reassociation move inside a larger tree only when the two adjacent vertices in the
reassociation are assigned the same sign, and then both vertices receive the opposite of this
sign after the reassociation. Such moves are calfged reassociation moves.

Eliahou—Kryuchkov Conjecture. Given any two connected trees (with cubic vertices and,
atthe ends, vertices incident to single edges) and the same number of timigs$aan edge
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Fig. 19. Culprit number two.
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Fig. 20. Epsilon tensor.

r

incident to an end vertex in the tre@)en there exist assignments of signs to the vertices of
the two trees so that one signed tree can be transformed to the other signed tree by a series
of signed reassociation movéde shall refer to this conjecture as the EK conjecture.
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Fig. 22. Penrose formula.

It was known to the authors of this conjecture that the four color theorem follows from it.
In[2] it has been shown that in fact the EK conjecture is equivalent to the four color theorem.
We mention the EK conjecture here to point out that it implies timet can edge color the
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ab

a b (ab)c

a(bc)

Fig. 23. Multiplication, trees and associated products.

two trees so that one tree can be obtained from the other by reassociation moves on the
colorings as shown ifig. 24using formationsThese reassociation moves on the colorings
are particularly nice in that they do not involve changing the colors only reconfiguring the
graph. The proof of this statement follows directly from the local coloring depict&thin
24. There is a particularly nice pathway of colorings leading from one colored tree to the
other.

In this way, the formations make the nature of the reassociation move clear and show
how coloring is related to the EK conjecture. It is remarkable that the four color theorem is
equivalent to this very specific statement about coloring trees.



Louis H. Kauffman / Discrete Mathematics 302 (2005) 145-172 171

NN
TN

We can also see just how the EK conjecture is related to the vector cross-product refor-
mulation of the four color theoref]. In the vector cross-product reformulation of the four
color theorem, we are given two associated products of the same ordered sets of variables.
Thevector product conjecturthen states that there exist assignments to the variables from
the set of generatofs, j, k} of the vector cross-product algebra in three-dimensional space,
such that each of the two given products is non-zero in this algebra. This is sufficient to make
the two products equal, since if they are non-zero then all partial products are non-zero and
hence each product may be viewed in the quaternions. Since the quaternions are associative,
it follows that the two products are equal. In this sense, the vector product conjecture is
actually a conjecture about the structure of the quaternions.

The relationship of the vector product conjecture with graph coloring is obtained by
forming a plane graph consisting of the two trees, tied at their single roots and tied at their
branches by non-intersecting arcs, so that the left-most branch of the left tree has the same
variable as the right-most branch of the right tree and the product order in the left tree is
left-to-right, while the product order in the right tree is right-to-I&tlving the equality of
the two products is equivalent to coloring the graph consisting in two tied trees.

Let the two associations of the productrofariables be denotddandR.

Proposition. The EK conjecture implies that there exists a solution to the equétierrR

in the vector cross-product algebra plus a series of algebraic reassociations taking L to R
such that all of the intermediate terms in the sequence of reassociations are non-zero when
evaluated as vector cross products
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Proof. The proof of this assertion is easy to see using the formalism of formations by
translating signs to colors as we have illustrate&ion 24 and using the interpretation of
products via trees as shownigs. 23and24. The signs at the vertices are derived from
the fact that in the cross-product algebra we hgve+k andji = —k. One replaces b, p

by i, j, k. Local signs in the partial products in the trees can then be used to decorate the
vertices of the tree. This completes the sketch of the proaf.

This extra texture in the vector cross-product formulation, and its relationship with the
guaternions may provide new algebraic insight into the nature of the four color theorem.
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