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VASSILIEV KNOT INVARIANTS AND
THE STRUCTURE OF RNA FOLDING.

Louis H. Kauffman * and Yuri B. Magarshak!
September 10, 1993

1 Introduction.

It is the purpose of this paper to introduce certain combinatorial structures into
the study of RNA folding. These structures are useful for the classification of
foldings and for the topological classification of the embeddings of these foldings
into three-dimensional space. Both the abstract classification and the topolog-
ical classification are highly relevant to problems in molecular biology - where
these folded structures are instantiated as molecules in a three - dimensional
ambient physical space.

The paper is organized as follows. In section 2 we discuss the basic idea of a
folding (folded molecule) and graphical models for such foldings. We introduce
the use of the Brauer monoid for the classification of non- embedded foldings.
This introduces a multiplicative structure into the set of foldings and we discuss
the structure of the resulting algebra. Section 3 discusses the relationship of
foldings and topological invariants of embedded rigid - vertex graphs. Vertices
arise in foldings as loci of a linear sequence of base pairs. We translate these
folding vertices into standard 4-valent vertices and thereby obtain a translation
of rigid vertex invariants to the category of folded molecular structures. This
section discusses both Vassiliev invariants and a more general scheme that pro-
duces invariants of embedded foldings from any topological invariant of knots
and links. Section 4 gives specific information about the Vassiliev invariants.
In particular, we show how to construct a Vassiliev invariant of type 3, and
we illustrate how Lie algebras give rise to Vassiliev invariants. The appendix
discusses this last point in more detail. This key relationship between Lie al-
gebras and Vassiliev invariants provides an interconnection among topological
invariants, Lie algebras, Feynman diagrams and significant indices for protein
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foldings. These connections are just beginning. We conjecture that these rela-
tionships occur at biological as well as topological levels of natural structure.
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2 Foldings and the Brauer Monoid.

The purpose of this section is to introduce our abstraction of an RNA folding,
and to give a method of enumerating such foldings in terms of the Brauer
monoid [BR], an algebraic structure that generalizes the symmetric group on n
letters. The Brauer monoid is of independent interest via its relationship with
the theory of group representations [BR] and with the theory of invariants of
knots and links ([BW], [K3], [KV]). ,

In order to begin, we need an appropriate mathematical abstraction for
RNA. To this end, let us discuss some of the properties of the RNA molecule.
The molecule is a long chain consisting in a sequence of the bases A (adenine),
C (cytosine), U (uracil) and G (guanine). The pairs [A and U] and [C and G]
are capable of bounding with each other. It is characteristic of RNA that the
molecule can bond with itself. We say that two bases are paired if they are so
bonded.

Thus, an abstract RNA molecule is just a linear sequence of the letters
A, C, G and U. A folding of the molecule is a possible pairing structure with
respect to the given sequence of bases. For example, we could have the chain

-+ CCCAAAACCCCCCUUUUCCC...- - - and the corresponding folding

* Y am C—-C—A—-LL—-C—-C-—.C__ e o
o
A-W
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A—W
A-U
_ -
X e
C—c-—-cC

This folding can be indicated on the chain itself by a diagram ( see also [M]
[KMM]) with arcs connecting the paired bases:

)
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..Cccc AAAA ccccuuuuiccc:--

We may abstract this to a diagram that simply indicates the form of the pairing:

It is often the case that a sequence of repeated bases pairs with another
[ sequence of repeated bases. This results in a basic pairing node of the form
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ot

Note the directions on the arcs of this node that correspond to the sequence
of bases. The arcs are oppositely oriented just as in our example:

N,
'

Any multiplicity of connecting arcs is possible, but we shall adopt the con-
vention of four such arcs for pictorial purposes.

On the other hand, in an unfolded diagram it is useful to abbreviate a
multiplicity of connecting arcs to a single connecting arc as in

abbrevi ¢+€»

Abbreviated arcs will be indicated by solid nodes —4 as shown
above. The solid nodes will be called the feet of the connecting arcs. Thus, we
have the correspondence

<>

i
{
{
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With these conventions, we can indicate the form of a great multiplicity of
1 foldings (see Fig.1).

o, @_w&/’
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It is these forms that we are interested in classifying, first abstractly and then
with respect to their possible embeddings in three dimensional space. The
remainder of this section is devoted to the abstract classification.

First, note that the collection of arc diagrams bifurcates into those diagrams
with non-intersecting arcs (examples (i), (ii) and (iii) in Fig.1) and those with
arcs that necessarily intersect (example iv on Fig.1). We shall refer to foldings
that correspond to arc diagrams free of intersections as secondary structures.
The rest are tertiary structures. The simplest tertiary structure is the ”pseudo-
knot” illustrated as example (iv) in Fig.1.

We now discuss the following simple strategy for enumerating all arc dia-
grams ( for secondary and tertiary structures). First bend the backbone (i.e.
the line representing the linear sequence) into a ”finger”as shown below.

<

A given arc diagram involves the pairing of 2N points for some positive integer
N. Array the first N of these points on the bottom arc of the finger, and the
second N on the top arc. Draw the connecting arcs in the bounded space of the
finger. The example below shows this correspondence in a special case.

<&
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It is now a small step from the finger diagram to the tangle diagram consisting
in two rows of N-points with arcs connecting the total 2N points in pairs. The
arcs are restricted to the space between the two rows of points as shown below

(Figure 2).
<e>® <<->ﬂ
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Figure 2
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Thus we have shown that foldings on 2N points are in one-to-one corre-
spondence with tangle diagrams with two rows of N points.

Let Ty denote the set of tangle diagrams with two rows of N points. Note
that two such diagrams are equivalent if and only if they denote the same
pattern of point connections. The pattern of intersections of arcs in the tangle
is, however, relevant to the structure of the entire set of tangle diagrams. Every
tangle diagram can be decomposed as a product of elementary diagrams of the

T

—— " >
Ta Tz Ta-|

Al 121, 113

L L a L(J,V__ {
The product of tangle diagrams is obtained by attaching the bottom row of one
diagram to the top row of the next diagram as indicated below.

1
—
A | A 1
T AB Tily

—»

111 I

Some products produce loops that are unattached to either row of points. For
example letting § denote the loop, we have U? = 6U;. See Fig.3. Thus, set-
ting 6 = 1, we obtain an algebraic structure, the Brauer Monoid [B] (see also
[BW],[K3]), on the set of foldings on 2N-points. The set of possible RN A-foldings

has a rich algebraic structure. This is useful for classification and enumeration
of foldings, and we suggest that it will eventually have even deeper implications
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for molecular biology. It is worth stating some of the algebraic structure of the
Brauer monoid explicitly for arbitrary loop value é. Here is a summary:

i. § commutes with every element of Tiy.
ii. Iy is an identity element.
jii. T2 =1, BT T = Tip1 TiTis
v. Uiz = 6U;
v. T;U; = U;T; = U;
vi. TyUip1 = Ti41UiUiya, UsTigr = UiUia 7o

These relations abstractly specify the complete structure of (T, 8), the Brauer
monoid of N-tangle diagrams with loop value §. In Fig.3 we have indicated
the diagrammatic picture that accompanies each of these relations. In Tig.4
we have listed all elements of T3 as tangle diagrams, arc diagrams, and some
corresponding foldings.

Fig.4 illustrates the sort of taxonomy provided by the Brauer Monoid. There
are 15 structures in all, 15 being the number of ordered foldings on six sites. We
have labelled these structures (1), (2),...,(15). Note that (1) — (5) are secondary
structures. These form the subalgebra of the Brauer Monoid that is generated
by {In,Ul,Uz,...,UN_l}. Call this subalgebra T'Ly. it is the multiplicative
structure of the Temperley-Lieb algebra [BA] (see also [K3],[K1],[KV].) This al-
gebra occurs in statistical mechanics, and it is the basis of the construction of
the Jones polynonial in the theory of knots. The structures (6) — (10) are ter-
tiary structures occurring as products of Ty, T5, ..., Ty -1. The algebra generated
by {In,T1,T2,...,Tn—1} has N! elements and is isomorphic with the symmetric
group on N letters. In other words, these foldings are in one-to-one correspon-
dence with all permutations of N objects. Finally, the foldings (11) — (15) are
mixed structures- products of U;’s and Tj’s. The first pseudo-knot occurs at
(7). We have illustrated particular embeddings in three-space associated with
the structures (10) and (15). It will be interesting to compare this approach
to the combinatorics of foldings with other methods. In particular, it appears
to us that there is a fruitful interaction of the Brauer monoid technique with
the methods of Magarshak and Benham in [MB]. This will be the subject of
another paper. It is also of interest to compare our approach to that of Penner
and Waterman [PW)]. Penner uses the secondary structures, with some extra
conditions, to create a cell structure for a moduli space for hyperbolic struc-
tures on Riemann surfaces. This gives a point of view on the topology of the
space of all (unembedded) secondary structures.

We now turn to the matter of embeddings.
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3 Embedded Foldings, Graph Invariants and
the Vassiliev Invariants.

In order to study the topology of RNA foldings in three dimensional space it is
necessary to specify an appropriate mathematical model for this topology. We
take the lead for this model from the form of our basic bond vertex:

B 1T

We take this to be a rigid vertex by which is meant that the configuration of
bonding arcs is rigid (not subject to any twisting) while the oriented arcs that
enter or leave the vertex are topologically flexible. This means that the following
moves are available with respect to the vertex:

L] ?A

< S~
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These moves (and obvious symmetries obtained by mirror imaging) plus the
usual Reidemeister moves [K1] away from the bonds constitute our topological
model for rigid vertex isotopy [K4]. For the record, the basic Reidemeister moves
are shown below:

T. /\_/Deje\/\)
e D

‘/\‘\/

The invariants that we are about to discuss are indeed invariants of rigid-vertex
graph embeddings in three dimensional space. However, they are formulated
in the mathematical literature with respect to a rigid vertex with a different
structure. This structure is as shown below.

In this vertex the strands that bond go cross-wise to one another, forming a
vertex with two in-going and two out-going lines. Mathematical formulations
with respect to this transverse vertex are particularly convenient and symmet-
rical. Consequently, we shall define a conventional relationship between the
transverse vertex and the bond vertex so that they can (up to a translation) be
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used interchangeably.
Definition. By convention, we take the following relationship between bond
vertex and transverse vertex.

=

W\

_ =>< ng‘

From the point of view of RNA-folding, this serves as the definition of the
transverse vertex. An invariant of rigid isotopy for transverse vertices will au-
tomatically be an invariant of rigid isotopy for bond vertices (and conversely).
Thus we shall discuss invariants in the context of the transverse vertices. The
translation between bond vertices and transverse vertices is simple, but it does
involve a definite shift of context. For example (and this is quite important), we
can "resolve” a transverse vertex into a crossing of two lines that do not touch
in two possible ways:

l<

PR
J AN
e ~

These resolutions are most natural in the transverse context, where we visualize
the vertez as a stage tn the act of passing one line through the other.
Translating this scenario to the bond vertex, we find
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Thus the resolution of the bond vertex involves a recombination that may have
no biological significance in the context of RNA. It is interesting to speculate
about the possible meaning of mathematical operations in terms of biology. In
this case, we justify including such recombinations because they allow us to
calculate topological invariants.

Now, let us begin the topology. First of all, suppose that Zx is an invariant
that assigns a number to an oriented knot or link K so that if K and K’ are
related by a sequence of Reidemeister moves, then g = T4 . Given such an
Tk, we can define an extension of Z to include rigid vertex graphs. We do this
by the equation

by = 4% - 3%

(this is part of a more general scheme, see [KV]). More specifically, let G be a
graph embedding with rigid vertices Vi,Va,...,Va. Let €= (€1,€2,...,€n) be a
vector with ¢; = +1 for each i. Let [27] denote the set of these vectors. Let G(€)
denote the link or knot that is obtained from G by replacing V; by a crossing of

type €;. Here /\< has type +1 andy& has type —1. Let |€] denote the
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number of ¢; = —1 in & Now define Z¢ by the formula
Ig= y, (-D)Za (1)
ee[2n]

This formula gives a well-defined value to Zg in terms of the values of 7 on
knots and links and it is obvious that Z satisfies the formula

b2 = 47 - I

where the small diagrams are regarded as parts of an otherwise unchanged larger
diagram.

We now have the following basic lemma [KV].

Lemma. If 7 is an ambient isotopy invariant of knots an links, then its
extension to rigid vertex graphs, as defined above, is an invariant of rigid vertex
isotopy.

Proof. We just check one case of rigid vertex isotopy, leaving the rest as an
exercise for the reader.

N oY
=dzocl — foce

b
&

= b7 Yy,

Example. Let Vk(z) denote the Conway (Alexander) polynomial of K, for K
a knot or link. Then Vg is determined by the axioms [K1]

Vig — Vg =EVg
Vo =4 .
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Thus, in the graph extension, we have

Vil =g ~\hg =27

From this we see that if G has n vertices, then V¢ is divisible by 2". If we
think of Vg as a set of numerical invariants (the polynomial coefﬁc1ents) then
we have

VK = Z C,‘(.K)Zi
i=0

(ci eventually zero for any given knot or link K). The statement that G with n
vertices = 2"|Vg then becomes: ¢;(G) = 0 if G has > i vertices. We say that
the invariants ¢; are of finite type. Note that they also satisfy the identity

GR = Cxd - Gg

This leads to the following
Definition. An invariant Z, of rigid-vertex graphs, is said to be a Vassiliev
invariant of finite type i, if it satisfies the following rules [V], [BL):

P S B R

2. Tg = 0 if G has more than i vertices.

Thus we have shown that the rigid- vertex graph extensions of the coefficients
of the Conway polynomial, c;(G), are Vassiliev invariants of type i.

The virtue of the Vassiliev invariants is that, being of finite type, they are
determined by their behavior on a finite collection of graphs. These graphs
can be interpreted as RNA foldings! Thus the Vassiliev invariants can give us
information about the structure of embeddings of RNA foldings and they are
also a way to look at the abstract structure of these foldings.

We shell give specific examples shortly. But first, it is necessary to look
more closely at the translation from foldings to graphical nodes: in a Vassiliev

invariant we have 2
3% -3 =8¢

and we have made the identification

= X
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Therefore

&(ﬂ-—&\

C
N X <

|

Hence

SIRENERS iy

This is the basic equation for computing the Vassiliev invariant in the language
of foldings.

It is this equation that may be of direct use to the microbiologist interested
in the topology of foldings. Note that we can prove the basic invariance lemma
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directly:
Lemma. Let Zx be an ambient isotopy invariant of oriented knots and links

K. Define a function on foldings via

dar =d)t -4

(This is formalized just as in our discussion of 7 ;4 ).
Then, for a folding F, Zr is an invariant of rigid-vertex isotopy of the folding.

Proof. Again we just check one of the cases of rigid vertex twist:

e oxd

Y4

As an example, consider the embedding of the tertiary structure T shown below:

@7—
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Then by using the facts that the two knots shown in the above expansion are
actually knotted and inequivalent to their mirror images, we conclude that T is

not rigid-vertex isotopic to T”,

T/

nor is T rigid vertex isotopic to its mirror image. In this case, we have not
assumed that our invariants were of finite type. Nevertheless, the formulation

7= -4y

corresponds directly, via our conventions, to the basic identity for Vassiliev

invariants

4% =92 - Pz

and hence, computations of Zx can be interfaced with computations of Vassiliev
invariants.

In the next section we shall supply more information about Vassiliev invari-
ants. For the reminder of this section, we show how to reformulate our more
general rigid vertex graph invariants [K4] for the case of protein folding.
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4 Generalizing The Invariant 7.

3R == +BI>d+cdxg

define a graph invariant corresponding to a given oriented link invariant (as
explained in [K4]). Then we can reformulate Z in folding terms via:

i,

&‘("zﬂ&—: +B&/\? 5%

e

u
<y R ———
Y
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Hence (assuming Z on links is an ambient isotopy invariant)

This completes our description of the generalized invariant of foldings. It is quite
useful for studying the topology of foldings via direct unfolding, recombination
and linked recombination. If one knows either an ambient isotopy invariant Z
or the specific isotopy classes of the knots and links that occur through this
process of resolution, then a great deal of information about the topology of the
folded molecule is obtained as a consequence.

5 More about Vassiliev invariants.

So far, except in the case of the Conway polynomial, we have not discussed the
crucial matter of finite type in relation to graph invariants satisfying

VX =18 - T4

Therefore, suppose that V is of type i. Let # G denote the number of 4-valent
nodes in a graph G. Then we have the important
Fact. If V is of type i, then for # G=i, V is independent of the embedding type
of G in R3.

Proof. Suppose G is embedded with a crossing of the form N in its list of
crossings. Then let G( ,\g .) denote this embedding and G( /g )
the embedding obtained by switching this given crossing. Then we have:

FHG(R) =4+

b =A== +8J)f +c &){‘

5> 0=Ysm) = V&)~ T6(4)

Thus %(g) =C)/6’(g). From this independence of crossings, it follows
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that Vg depends only upon the abstract graph G. This completes the proof. f/
In this section we shall work entirely in the language of 4-valent nodes. Thus
a diagram

J 2

is an embedded graph with nodes labelled 1 and 2. The abstract structure of G
is represented by the pairing diagram

A I

This same diagram represents a folding structure. We see that Vassiliev in-
variants of type i assign (topological) indices to abstract folding structures with
¢ pairings. These indices do not depend upon the embedding type of foldings
with 1 pairings and they can be used to obtain information about embeddings
of foldings with fewer than i pairings (as we did in the last section).

We shall call the assignment Vg of a Vassiliev invariant of type i to graphs
with 1 nodes a top row of the Vassiliev invariant V. It turns out that the
topology [S] dictates a necessary and sufficient condition for these indices in the
form of a set of relations. In terms of the top row these relations can be written
symbolically as shown below: »
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Here the wiggly line indicates that the indices 1 and 2 on either end of it are
actually neighbors with no other intervening connections.
For example, at i=3 we have: '

e - Ve
- ‘Y@ ~ CV@
> 8//@3 (e.9.)
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o

=% - V5
= =3.
Zo}f@

Thus
Hence
Whence
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6 =2 D

if O{‘ has type 3.

In terms of constructing Vassiliev invariants of type 3, this means that one
only has to consider the 3-noded graph

or its corresponding folding

This makes Vassiliev invariants of tybpe 3 rather easy to compute. We assign

Teb=2, VP =1
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Now go back to 2-noded graphs such as

In fact, we see that abstractly this is the only 2-noded graph of relevance. Assign
it the abstract value 1, and define

=1.

Then, any other embedding of

is determined by the values at level 3 and the switching relations. For example,

B <1 -2,
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| @V@ =-2+4| =—4..

Similarly

W=,

o 1

Y = Wb ~ Tl
K KK °

This shows that this Vassiliev invariant of type 3 detects the topological differ-
ence between the trefoil knot K and its mirror image K*.
By the same token, we have shown that the graph embeddings

D) i D
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are not rigid vertex isotopic, and hence neither are the folded embeddings shown
below isotopic.

F =/

There are non-trivial Vassiliev invariants of all orders. These can be obtained
from the well-known skein polynomials via truncation of power-series substitu-
tions. For example, we have the theorem of Birman and Lin.

Theorem.[BL] Let Vi (t) denote the original Jones polynomial [J] as a
Laurent polynomial in K. Let Vg (e®) = Y o>  v,(K)z™ be the power series
resulting from substituting e for ¢t. Then the coefficients v, (K) are Vassiliev
invariants of type n.

Proof. See [BL] or [K5].

Another very striking result is the construction of Top Rows by Bar-Natan
[BAR] via Lie algebra and ”"Feynman diagrams”. In Bar-Natan’s construction,
the ”chord diagrams” (our folding diagrams) are extended to allow a 3-valent
interior vertex such as
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or

Bar-Natan takes as axiomatic the relation

YlLX,

Call this relation the ST'U relation.
Proposition. The STU relation implies the topological 4-term relation on

top row diagrams.
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Proof.

AL

= Y\
. Y
NN\ - PR,

The fantastic thing about this observation is that (in the context provided by
the Vassiliev invariants) it provides the core explanation why Lie algebras im-
plicate topological invariants of knots, links and graphs! For the STU relation
is actually an abstract way to state that in representing a Lie Algebra, the rep-
resentation of a commutator is the commutator of the representations. A Lie
algebra has a basis {T%|a = 1,2, ...,n} and a basic commutator formula

[Ta,Tb] — f:ch

(sum on c), or
TaTb _ TbTa — fngc

Now diagram this relation via

e et ettt
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S (T (TP
)

product of T with T®.

ab
3.

—
—

v

a

Then

T &>
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Thus, we see that by appropriately labelling the trivalent diagrams with Lie
algebra generators (or their representing matrices) we shall obtain weight sys-
tems that give rise to Vassiliev invariants (We have deliberately left out certain
technicalities about the Killing form in the Lie algebra. See [BAR].)

For pairings themselves, the weights are obtained by arranging Lie algebra
generators at the paired points and summing and tracing the corresponding
matrices. Thus

(ﬁ; (Jehe es Ma.“"*ix+ﬂ‘uceu> |

(again we have deliberately left out the Killing form). The approach sketched
here is valid when f2° is totally anti-symmetric in the three indices- such bases
are available for the classical semi-simple Lie algebras.

It is fascinating to speculate on deeper relationships between molecular biol-

£ S
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ogy and this pattern of assigning Lie algebra elements to the pattern of paired
bases in_a protein folding.

6

Discussion.

. . 4D-Interval and nucleotide algebra. Self-splicing.and RNA enzymatic

activity suggest that not only secondary structure of RNA is biologically
important, and under control, but secondary structure transitions are im-
portant as well ([PW], [MK]). In this paper secondary structures of RNA
have been analyzed without particular analysis of nucleotide sequence. To
study secondary structure transitions, it is necessary to find mathematical
formulation of complementarity of nucleotides, as well as basepairing.

As has been demonstrated recently (see [M] and [M2]), from the formal

definition of nucleotides as two hierarchical negations, follows the repre-
sentation of nucleotides by four 4 x 4 matrices of the form:

a d b ¢
¢c a d b

[a,ble,d] = b ¢ a d (2)
d b ¢ a

Namely, one pair of complementary nucleotides is represented by unit ma-
trices [1,0[0,0], [0, 10, 0]. Another pair is represented by matrices [0, 0[1, 0]
and [0,0]0,1]. One can check that multiplication of four matrices

i=[1000,0, -i=[0,10,0], 7=10,01,0], —2=1[0,0/0,1] (3)
coincides with that of unit complex numbers i, —1, : and —2 cor-
respondingly (see [M2]).

From the postulate that complementary nucleotide matrices sum to' zero

it follows, that
Ow = [1,1]0,0] < 0 and 0c =[0,0]1,1] < 0 4)

This condition is satisfied if one determines four-dimensional complemen-
tary interval, generated by linear combinations

[a,b]c,d] = a[1,0]0, 0]+5[0, 1]0, 0]+¢[0, 0|1, 0]4d[0, 0|0, 1] with non-negative
coefficients a, b, ¢, d of unit matrices.

Let the 4D-complementary interval be defined as follows:

(a=b,0lc —d,0) = (a—b)i+ (c—d)i if a>bandc>d

(a—15,0[0,d—c) = (a—b)1+ (d—c)(- z) if a>bandd>c

(0,b—ale —d,0) = (b —a)(— D+ (c—d)i if b>aandc>d

(0,6 — al0,d —c) = (b — a)(—1) + (d—e)(- i) if b?c)zandd>c
5

I(a,blc,d) =
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So defined, the 4D-interval is a 4 x 4 matrix. Multiplication and addition of
intervals 5 is defined as usual matrix operation. It is rather straightforward
to prove that the set of intervals 5 is a field. Moreover, 4D-intervals 5 is
a commutative division algebra of the order 2 over the algebra of 2D-
intervals

Z[a,b] =

(a—b) 3(1) ifa > b
0 1 (6)

(b—a) 1 0 otherwise
The set of all 2D-intervals, with multiplication and addition defined as cor-
responding matrix operations, is isomorphic to the algebra of real numbers
[M2].

The set of all 4D-intervals, with multiplication and addition defined as
corresponding matrix operations, is isomorphic to the algebra of complex
numbers.

One can interpret the 4D-complementary interval geometrically (see de-
tails is [M2]). To any matrix [a,b|c,d] there corresponds another matrix
P = I[a, b|c,d]. The matrix P can be considered as a projection of matrix
[a,b]c,d]. In this interpretation, the 4D-interval I is a projection opera-
tor. The set of matrices P = I[a,b|c,d] with a,b,c,d > 0 constitutes a
4D-octant. Interval (projective) matrix P belongs to the first quadrant of
one of four planes [X,0[Y, 0], [X,0(0,Y*], [0, X°|Y,0], [0, X¢|0,Y*]. These
four mutually orthogonal quadrants with the projective oper-
ation 5 make a complex plane over the set of matices [a,b]c, d]
(with a,b,¢,d > 0) ! This surprising result proves the validity of complex
number representation of nucleotides, proposed recently by Magarshak
and Benham [MB].

. Complex numbers representation of nucleotides. Now we sketch

the approach of Magarshak and Benham [MB] for the representation of
secondary structures. In this approach complementary base pairs G and
C receive the labels 1 and —1, while A and T receive the labels 7 and —3
(12 = —1). In a diagram for the folding the bases are labelled 1,2....n and
an n X n matrix M is formed so that
_ | =1 iis paired with j (i # j)

M _{ 0  otherwise (7)
The sequence of bases is mapped to a vector ¥ with entries 1, —1, ¢ and —3¢
as explained above. It is then easy to see that M ¥ = #. Thus, for a given

nucleotide vector ' the set of possible foldings is in 1-1 correspondence
with the matrices M such that M7 = V.

Matrix M is a solution with eigenvalue 1 of the equation M¥ = , where
(what is unusual), vector ¥ is given, and matrix M is unknown [MB].
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The matrix M can be interpreted either as a structure matrix, or as a
transition operation, which transforms free (i.¢.totally dispaired) state of
RNA molecule into the final secondary structure. More generally, one can
define transition matrix T = MoM; = MoM{ ! which transforms initial
secondary structure M; into the final secondary structure Ms. A well
formulated account of this method is given in [MB].

Vassiliev knot invariants, analyzed in this paper, can be interpreted as
these of solutions of the equation M# = ¥. In a sequel paper the topo-
logical invariants of transition matrices and secondary structure dynamics
will be studied.

. Non-Watson-Crick basepairs and Hermitian forms. The theory presented
in the present paper is developed specifically for the analysis of the RNA
and DNA structures with Watson-Crick basepairing. But it cad be gen-
eralized. If non-Watson-Crick nucleotides U and G (number j and k) are
paired, the structure matrix S becomes Hermitian. Let the transition
from the secondary structure S; to the secondary structure Sy = T2151
be performed. The transition matrix of the inverse process Tb; is complex
conjugate to the matrix T75, so any transition matrix T5; = S257 1=5,8
is unitary.

Let analyze Hermitian form

n n
H(S)'—‘gTSg:ZZSikgfgk ‘ o (8)
i=1 k=1
If complementary nucleotides g; and gy = gf are real, i.e. equal to £1,
then element (i, k) of the Hermitian form 8 H(S)ix = H(S)ki = Sixgi gr =
Srigig: = (=1)(-1)1 = 1. If complementary nucleotides g; and g5 = gf
are tmaginary, i.e. equal to &1, then any nonzero element (i,k) of the
Hermitian form 8 M(S)ix = H(S)ri = 1. We see that in any case the
Hermitian 7(S) is positive. Moreover, for arbitrary nucleotide sequence
g and any secondary structure S, which this sequence can form, H(S) =
const = n, i.e. is just equal to the number of nucleotides in the chain.
Sure, this trivial model can be modified. We begin with definition of the
matrix &£ such that:
i. element (k,k) is equal to the energy FEj, associated with non-
paired nucleotide number k,
ii. element (j,k) is equal to —(E; + AEj/2), if and only if nu-
cleotides j and k are paired, and
iii. all other elements of matrix £ are equal to zero.

The Hermitian form

H(E) = glég =) > Eagin |

i=1k=1
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is increasing by the AEj; if the bond (jk) is making. This property can
be used for calculation of a partition function of RNA secondary structure _

formation.

. Partition function of complementary structures (Co-partition).

Finally, we wish to point out here that the Magarshak-Benham approach
to foldings gives rise to a natural partition function of the form

Zg = Z :f)‘e_ﬁE(M) (10)
M:M7

where E(M) is appropriately chosen energy functional for the foldings,
and T is temperature, k¥ Bostzmann’s constant. For example, one may
take E(M) = 3[G — C] + 2[A — U] where [G — C] denotes the number of
G — C pairs while [A — U] denotes the number of [A — U] pairs. (The 3
and the 2 are the number of hydrogen bonds needed in each case)’.

Analysis of the algebra, generated by nonconventional basepairs, goes out
of the frame of this contribution and will be discussed elsewhere. Partition
function analysis also will be the subject of a sequel to this paper.

. In this paper the 3-dimensional disposition of atoms was not introduced

directly. But the model can be modified. Namely, one can introduce
a complementary field, which acts on complementary nucleotides only
[M2]. This is a short-range force field, responsible for basepairing. In
complex-numbers designations, complementary force is proportional to
04:,—gx, Where g; and g are complex values of nucleotides number i and
number k. In other words, compelmentary force attracts nucleotides, if
and only if they satisfy the trivial equation:

gi+gr =0 (11)

and orients them in accord with their disposition in DNA duplex. One
must include the complementary force into the model in addition to the
force fields, typical for double-stranded DNA (see, for instance, [SO]). So
there is a hope to compute 3-dimensional structures of one-stranded RNA,
as well as RNA secondary structure formation.

. Topological code. Topological properties of equations, which describe some

key biological processes, often determine the solutions of these equations.
For instance, it is known that solution of equations of stationary enzyme
kinetics is determined by the graph of corresponding enzyme reaction (see,
for instance [VG] and [VM]). The same statement is true for electron trans-
fer rate in proteins and some other biologically important macromolecules

1We thank Nancy Wood for suggesting this particular energy function.

P
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(see [OBG] and [MMJ]). In this paper, a relationship between RNA sec-
ondary structure and Vassiliev polynomials has been found. So the hy-
pothesis, that one of the languages, which nature uses in vivo, is
topological language, seems to be reasonable.

Appendix 1. It is the purpose of this appendix to give a quick derivation
of the necessity of the 4-term relation (see [S])

in a Vassiliev invariant. To this end, consider the following embedded isotopy:
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Let us write the symbol {abcd) for the Vassiliev invariant of the left-hand con-

figuration, and z for the switch of a given crossing labelled z. Then we can
write

(abed) — (abed) = (ebcd)

where (ebcd) denotes the replacement of the crossing a by a 4-valent node ().

Then we have the equations

(abed) — (Ezlzcd) = (ebcd)

abed) — (abed) = —(a e bed

ga@cdi - éai_iagg = —é_az“; . d)> (12)
(abed) — (abed) = (abze)

Since the isotopy shows that (abed) = (Ezl;éq'), we conclude that
(obcd) — (a o bed) — (ab o d) + (abze) = 0

This relation translates into the 4-term relation on a top row. To see this, choose
a given external connectivity for the diagram (abed):

’.—----\‘
' -

>\
X

e
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and translate into chord diagram language:

<obed> —<T e cdd—<@E+d> +<EFTH>=0




We must emphasize once again that it is quite extraordinary how this simple
topological requirement is tied so directly to the Lie algebra patterns (see end
of the last section of this paper) via the intermediate STU identity

It should also be mentioned that

is the Casimir insertion into the Wilson line [K1] appropriately discretized for
the content of combinatorial link invariants.

Appendix 2: Complexity and Proximity of Foldings.

In this appendix we make some remarks about the possible use of a braided
generalization of the Brauer monoid for measuring the proximity of a folded
RNA molecule to its unfolded version. In other words, we are interested in a
measure of the complexity of the folding. Recall that in section two we have
represented abstract foldings via patterns such as
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D

giving a correspondence with elements in the Brauer monoid.

An embedded folding can be (if the chain itself is unknotted) ”pulled” into
Brauer monoidal form, but the monoid strands may be woven about one another
as in the simple pull'of a pseudo-knot shown below.

R~
v XD

abbreviate N
>

~ 29,

It is clear that it makes sense to measure the complexity of the pseudoknot
by including the braiding structure of the attaching arcs. However, in some
cases, more than one braiding structure will correspond to the same structure
of attachment. For example, in the case above we have
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2 e

and also

‘ L5 «» LN

(by swinging the given arc in one of the two possible directions around the
oriented axis). This is a reflection of the fact that the following three pseudo-
knots are almost isotopic:

v

>

We say almost isotopic, because the three pictured pseudo-knots are isotopic up
to twists of the sort shown below in a regular isotopy:
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I 2 <

There are some interesting subtleties in even the simplest examples. For exam-
ple, call a pseudoknot simple, if it gives rise to an unknotted embedding of its
axis when all the pairing nodes are eliminated:

The standard pseudo-knot is simple:
More complex examples of simple pseudo-knots are easily manufactured. For

—p

example,
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P is a simple pseudoknot with only one (multiple) pairing node. Translating
into the language of attaching arcs, we have

')O<<——>>—>/Q\8/ N

/_\

~ = —>

/49 ]

> >

IS o —

In this last representation we have an unknot - axis, but the attaching arc is
entangled with the axis. This weaving reflects the complexity of the pseudoknot
P.

One way to analyze the complexity of P is to compute the invariant Zp
defined via

S =d)1 -4
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(see section 3 of this paper). This is the analogue of the Vassiliev invariant for
folding. We obtain:

The two links obtained in this resolution are non-trivial and so we see that this
pseudoknot is quite distinct from

and in fact it is quite complex. For example, it is topologically distinct from its
mirror image. v

If we try analyzing P via the braid monoid (generalized Brauer monoid)
picture, then another complexity arises: . '

Pe». /5o7) «» e,
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The entwinement of the axis with the attaching arc yields a new phenomenon
for articulation. We can capture this phenomenon by adding to the vocabulary
of the braid monoid top and bottom fixture elements of the form:

ONmartT

— D, D3Sy De D7 S5 59

or

U O

= C) 1(J3 -4;'{-&,5’&745’,(177

The basic parts of a top fixture consist in double strands such as

S

and an attachment as in

=T

We use lower case letters to describe bottom fictures.
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Then, any simple pseudo-knot can be expressed in the form of a product:
(Top Fixture)(Word in Braid Monoid)(Bottom Fixture). For example,

&
<
S« =

:ED\ 0355:]@“ 0(.3 u,zO;OflOi "L;,] EJ ‘ClgAJ‘g‘]

A simpler example is
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=i,

The difference in complexity of [S1][s1] and
[D1D3D5][U1U3U2030'2'104U3]{d1d335] can be regarded as a measure of the
”topological proximity” of the foldings

and A

We have concentrated in this appendix, on the possibility of measuring the prox-
imity of different simple pseudoknots because this is a topic that can have actual
application in microbiology. A long strand molecule has a high probability for
unknotted self- entanglement. If this molecule can undergo self-binding (as in
RNA) then some of these unknotted states of the strand can become simple
pseudoknots of varying degrees of complexity.
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