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This paper is an exposition and extension of ideas begun in the work of G. Spencer-
Brown (Laws of Form). We discuss the relations between form and process,
distinction and indication by the use of simple mathematical models. These models
distill the essence of the ideas. They embody and articulate many concepts that
could not otherwise be brought into view. The key to the approach is the use of
imaginary Boolean values. These are the formal analogs of complex numbers —
processes seen as timeless forms, then indicated (self-referentially) and re-entered
into the discourse that engendered them. While the discussion in this paper is quit=
abstract, the ideas and models apply to a wide range of phenomena in mathematics,
physics, linguistics, perception and thought.

———rma

1. Introduction

Our theme is best indicated by the following experiment,and by a corresponding
passage from the beautiful work, Cymatics by Hans Jenny (1974):

Sprinkle sand over the surface of a metal plate; draw a violin bow carefully along the
plate boundary. The sand particles will toss about in a rapid dance, swarming and forming
a characteristic pattern on the plate surface. This pattern is at once both form and process:
individual grains of sand play continually in and out, while the general shape is maintained
dynamically in response to the bowing vibration.

“Since the various aspects of these phenomena are due to vibration, we are confronted
with a spectrum which reveals patterned figurate formations at one pole and kinetic-dynamic
processes at the other, the whole being generated and sustained by its essential periadicity.
These aspects, however, are not separate entities but are derived from the vibrational
phenomenon in which they appear in their unitariness . . . The three fields — the periodic
as the fundamental field with the two poles of figure and dynamics inevitably appear as
one. They are inconceivable without each other . . . nothing can be abstracted without
the whole ceasing to exist. We cannot therefore label them one, two, three, but can only
say that we have a morphology and a dynamics generated by vibrations, or more broadly
by periodicity, but that all these exist together in true unitariness.

... It is therefore warrantable to speak of a basic or primal phenomenon which exhibits
this threefold mode of appearance.™

Here, Jenny has allowed himself to speak generally about a wealth of
experience and concrete experimentation with the effects of vibration on
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various media ranging from sand on a vibrating plate to fluids in three-
dimensional space.

These are poetic ideas, metaphoric notions, and yet they have reflections
in all fields from the wave/particle duality of quantum physics and the forms
produced in concrete media by physical vibration, to the oscillations and
distinctions that we make at every moment of our lives.

Our object is to find and explore a language that expresses these ideas and
is sensitive to them. Such a language should be internally consistent and
externally meaningful. The calculus of indications created by G. Spencer-
Brown in his book Laws of Form is admirably suited for the project. The
purpose of this paper is to extend Brown's language to exhibit how a rich
world of periodicities, waveforms and interference phenomena is inherent
in the simple act of distinction.

There is nothing new about the idea that an entire universe of forms comes
into being with the making of one distinction. In mathematics this idea is
reflected by the use of the binary system, and more centrally by the
construction of the natural numbers from the empty set via the operation
of forming a collection. We wish to focus on these same themes, but our
aims are more fundamental. For example, we would give attention to the
construction of the empty set itself. This set, ¢ = { }, is obtained by bracketing
or framing nothing. Notationally, the frame is given by the brackets. These
brackets indicare a distinction on the planar space upon which the brackets
are written. The open space of the plane is construed as an indication of
nothing (that is, the absence of set members).

Of course, these are remarks about the notation, about the specific choice
of frame. In point of fact, we conceptualize the empty set by first framing
nothing and then throwing away the frame! That is, we require that the
mathematics be independent of the vagaries of notation. Nevertheless, it is
significant that in the beginning of set theory or the beginning of Boolean
algebra, the very process that the mathematics proposes to discuss is inevitably
mirrored in its own language and notation. This mirroring quality of the
language is essential for our understanding. We believe that recognition of this
point leads to a number of fruitful avenues, and we hope to illustrate these
avenues in the paper.

Our use of Spencer-Brown'’s notation also reflects these issues. His calculus
of indications is based on the sign 71 . Our comments about the empty set
apply equally well to this mark 7] which indicates a division of the plane.
This notation is actually very close to the notation of Boolean algebra. For
example, one standard notation that corresponds to@ is @ (see Fig. 1).-

Brownian Boolean
al a
ab ab
alb ab
al bl ab
aibill ¢ fad] c

Fig. 1
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These is nothing obscure or esoteric about our notational system. Typo-
graphically, it is very similar to standard notation. Furthermore, it allows
parenthesis free expressions by generating its own divisions. Most importantly,
it focuses on the fact that the algebra it supports can be interpreted as speaking
about the distinctions engendered by its own typography.

It has often been pointed out that the formal structure of G. Spencer-
Brown’s work, and a fortiori of the present work, is equivalent to some form
of Boolean algebras or switching automata. Although, in a strict formalist
sense, this is correct, this line reasoning misses an essential point: A change
of context and style (notation) may reveal the intuitive and conceptual under-
pinnings of a field, in a way that other, formally equivalent systems, do not.
- A simple example is Roman and Arabic numerals.

The relations between the formal structure of Boolean and indicational
algebras are quite obvious, and were discussed by Spencer-Brown in his original
work (1972, Appendix 2; see also Varela, 1975). The point is that one may
see Boolean values (true or false) or switching algebras (on or off) as particular
cases of a more fundamental ground which is the act of indication. A two-
state abstraction is seen rooted in a specific cognitive act. From this starting
point, an entirely new vision of traditional Boolean formalism can be obtained.
Furthermore, the actual significance of some of the postulates in these algebras
is made transparent in a way that was hitherto impossible. A good example of
this occurs in what is here called a transposition algebra, to be discussed later on.

We wish to mention that the algebras here called brownian are formally
isomorphic to De Morgan algebras. As there is a large literature on such non-
standard Boolean algebras, we use Kauffman (1978b) as an entry point, rather
than including an extensive list of references. Thus, if we make little mention
in this paper to the vast literature on Boolean algebras and algebraic logic, it
is not because we wish to ignore these sources, but rather because we wish to
emphasize the change in context.

In order to accomplish this program, we first present an extension of
Spencer-Brown’s algebra that is capable of handling periodic indicational
forms, We then discuss how oscillations relate naturally to the re-entry of
forms, that is, to their self-referential quality. +

The following is the outline of the paper.

Section 2 recalls Spencer-Brown’s calculus of indications and discusses
re-entry and oscillations in a general way. Section 3 shows how to make an
algebraic construction for elementary waveforms. (This construction has also
been discussed in Kauffman (1978) where it is used to construct De Morgan
algebras from Boolean algebras.) In sections 4 and 5 we develop an algebra
analogue to Spencer-Brown’s primary algebra. In Boolean terms it corresponds
to dropping the law of the excluded middle. This allows wave-form models; we
call such algebras brownian algebras. Sections 5 and 6 develop more models

1The present paper grew out of our interest in the work of Spencer-Brown on indicational mathematics,
and its relevance for systems theory and mathematical foundations. In the cases of social and biological
systems, the complementarity of pattern/dynamics is quite apparent. It points directly to an examination
of recursive, self-referential dynamics generating coherent autonomous unities. For this background and
for the motivations from systems theory the reader should consult the following papers: Goguen & Varela
(1978, 1979), Kauffman (19782, b), Varela & Goguen (1978), Varela (1975, 19784, b), Wadsworth
(1976). We need not explicitly retake this background and motivation in the present paper, as its theme i
of independent interest.
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for brownian algebras, discuss an algebra of periodic sequences of varying
periods, and present a way in which waveforms can interfere with each other.

Sections 7 and 8 examine the relation between waveforms and recursions or
re-entry of forms. Section 7 discusses some periodic properties of iteration
for indicational operators. In section 8 we examine recursion in a broader
sense, and establish some relations between waveforms and fixed points.
(This construction for recursion and fixed points is more fully given elsewhere:
Goguen & Varela, 1979; and Varela & Gguen, 1978)

Section 9 discusses the relations between geometrical and indicational
forms. Section 10 is a summary.

2. Recalling the calculus of indications

The calculus of indications (Spencer-Brown, 1969, 1972) is based on one
symbol, 71, the mark. It can be viewed as an abbreviation of O , and hence
makes, by cleaving it, a distinction upon the plane in which it is written. In
the context of the calculus of indications, the mark is taken to be the name
of the outside part of a distinction in an arbitrary domain or indicational
space or as an instruction to cross the boundary of this distinction.

This gives rise to two forms of equation:

Al. Form of Condensation 171="1
A2. Formof Cancellation || =

Here the blank indicates the un-marked state. These equations have various
interpretations. Thus Al is indeed the form of condensation, where two things
are realized to be identical in form. The two marks in Al may be seen differently
by regarding the left mark as making a distinction in the plane, while the right
mark is a token or name for the outside part of this distinction. When we see
the mark that makes the distinction as itself indicating the outer space, then
the two uses condense giving ~1 71 = "1

Similarly, form A2 may be interpreted by the sentence: To cross from the
marked state is to enter the ugmarked state. Here the outer mark is interpreted
as an instruction to cross from the state indicated within it. The outer mark
is an operator in this interpretation. Operating on itself, it cancels itself.

Before proceeding into calculation, it should be remarked that the reader
of this page is himself or herself, a mark distinguishing a space. Thus this
calculus is self-referential in the broadest sense. In fact, one of the essential
features of this approach is that the scribe and the forms of description are
reflections of one another. We become individuals by making distinctions;
The distinctions we make reveal (and sometimes conceal) who we really are.

These initial forms of equation lead to a calculus of expressions that Spencer-
Brown calls the primary arithmetic. In this system one considers arrangements
of marks such as

i Bl i I'm
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An expression like e is regarded as a clear distinction if for each mark in the
expression there is no ambiguity about which marks it contains and which
marks contain it. In this notation, this is made clear by examining the horizontal
overhang of each mark. If O were used instead of 1 , then a well-formed
expression would simply be any finite disjoint collection of rectangles in the
plane. Thus we would write

e = |11 O []

For two expressions e and f, we write e = f if there is a finite sequence of

steps of type Al (condensation) or A2 (cancellation) leading from one
expression to the other. Thus

=l

D
'

e i i e
—||-—| _—ll (A2)

- ] —_| (A2)

z — 1l (a2)
1
e = | (A2)

The following facts_c:-m be shown.

(a) If e is any well-formed expression, then e can be obtained by a sequence
of steps from one of 71 or

(b) There is no sequence of steps leading from 7] to
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Hence each expression is equivalent to either the marked or the unmarked
state, and this will be referred to as its value. Two methods of evaluation are
worth noting. The first method is in the form of calculation as indicated above:
one looks into the deepest space of the expression, where there are marks that
do not contain other marks. At such places condensation or cancellation may
be applied. In the second method, one regards the deepest space as sending
signals of value up through the expression to be combined into a global
valuation. To do this, let m stand for the marked state,and »n for the unmarked
state. Thus mm =m, mn=nm =m,nn=n, and ml =n, nl=m. Now use

these labels as signals as in the following example:
—|m[n im

T ===l =31,

Here —] has the value n = . This procedure starts from the
deepest space and labels those values that are unambiguous until a value for
the whole expression emerges. Here is one more example:

= 917 |9

n

=]
— 10T

T w0,

Hence e = 1.

It should be noted that these methods are quite compatible. They reflect
the dual nature of an expression as (self) operator or operand. Viewed as an
operator, the expression filters its own inner signals, creating a pattern or
waveform that culminates in its evaluation. Even at this level, the relation to
the Cymatics metaphor of figure/vibration/dynamics (that is, to the descriptive
pair figure/dynamics that may represent the polarities of vibration) is quite

n Im

apparent: The geometric form of the expression represents the figure; -

calculational steps are an elementary dynamic; signals of value moving through
the expression represent a kind of periodic vibration.

This relation of form and dynamics is even more apparent if we allow
an expression to contain a variable that wibrates (i.e. changes in time).

Consider e = al|

If a = n then e— nlmnlm
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If a = m then e— minlmn.

If a varies from n to m periodically, then the signals n and m will form
a moving pattern analogous to the moving light patterns on a sign in Times
Square.

Taking another point of view, we may regard the signals as moving outward
like ripples on a pond so that a time-like vibration by a yields a pattern of
the form

That is, we may suppose that each time ¢ = m, a mark appears so that if
time is represented as +=1,2,3,4,...then

a={mt odd

n t even

and the outward expression grows in the pattern:

2 33 T ,—_lﬂ

Viewed in space we would see something like

where the deepest space is now indeterminate due to its vibration. Here the form
is maintained by the vibration (or growth) at its center. Since the deepest
space is indeterminate, calculation has abated. Form and dynamic have become
one with the vibration. Nevertheless it must be noted that part of the vibration
has been remembered as the external spatial pattern of the form. This pattern
is maintained (by the central vibration) against the dynamical pressure toward
simplification (via calculation).

Viewed entirely spatially, this temporal form becomes an infinite expression
consisting a descending sequence of marks. As such, its interior repeats itself.
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The form becomes identical to part of itself. Thus, for f as given above,
f = A =71 (see Varela, 1975). This description, f = j—"],where f re-enters
itself, can thus be seen as a self-reference. This is the spatial context.

Temporally, we may view [ = )_'] as a prescription for recursive action
f—fA . Thus 1T— 1—" s, .. and this regenerates the waveform.
Thus vibration yields self-referential spatial form, while the associated recursive
dynamic to the self-reference unfolds the vibration (once again) into a temporal
oscillation. We shall deal with these relationships of recursion and re-entry of
forms to oscillation in greater detail later in the paper.

It is now appropriate to consider Spencer-Brown’s algebra for (finite
expressions: Various algebraic patterns are seen to be true in the calculus of
indications. Thus al = a, a1bl ¢ = acl bel and alal =  for any finite
forms a, b, ¢. This leads to an algebra with initial equations and a number
of consequences. At the end of this section we have given a table consisting
of these initials and consequences, forming the primary algebra. Formally,
the primary algebra is an axiomatic form of Boolean algebra written in the
notation of the calculus of indications. We feel that there is a significant
conceptual gain in placing Boolean algebra within this wide indicational context.

[t is also desirable to deal with infinite forms and/or waveforms algebraically.
An apparent paradox seems to emerge: Suppose that the primary algebra is
applicable to forms such as f= fl.Then

f = j_“‘ = f? = ﬁ_ﬂ =

Hence [ = ﬁ = f = . How are we to interpret this? The simplest way
out is to realize that in Spencer-Brown’s calculus of indications we have the
marked state which is purely spatial having no tremporal component, and the
unmarked state connecting everything else. Thus f, being vibratory, has been
cast into the unmarked state. It has been so cast by the form of position
plpl = . If we wish to articulate temporal forms we can do so by limiting
the cancellation given by the form of position. We shall show how to do this
in the next section. The result is an algebra where there are many ‘self-
interference’ terms of the form plp| . Cancelling all such terms yields the
primary algebra. Leaving them gives an algebra capable of caring for vibratory
forms and self-reference.

Index for primary algebra

Initials
J1. pipl= (position)
12, prigrl = piglr (transposition)
Consequences
01. al = a (reflection)
02. ablb = alb o (generation)
03. Tla =71 (integration)
04. glbla = a (occultation)

05. aa = a (iteration)
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06. aiblalbl = a (extension)

07. @bl ¢| = acl bTd (echelon)

08. albricrl = albiclal rl (modified transposition)
09. Arlairl XAy Al = Fabl 7% . (crosstransposition)

The primary algebra is complete with respect to the primary arithmetic
(calculus of indications). That is,« = B is a consequence of J1 and J2 if and
only if @« = f is a theorem about the arithmetic (see Spencer-Brown, 1972,
p. 50).

3. A waveform arithmetic

Consider again f = f1. By taking successive replacement of f in its equivalent
form we have a sequence

AAL A

Now, if we let f take the two possible initial values 71 and 7 , and apply
condensation, we get two sequences

i N P M| e e e R
and
A, 7, 7, L L, L

These two sequences can be looked at as the successive values of two basic

waveforms
A I I I I
je= o LT LTLILILT

This temporal interpretation of re-entering expressions which can take no
values in the primary arithmetic, was first proposed by Spencer-Brown himself
in Chapter 11 of Laws of Form. He calls these temporal values imaginary
Boolean values. A few years later, in the preface to the American edition of
his book he says:

What we do in Chapter 11,is to extend the concept (of imaginary numbers) to Boolean
algebras . .. The implications of this, in the fields of logic, philosophy, mathematics, and
even physics, are profound.

What is fascinating about the imaginary Boolean values, once we admit them, is the light
they apparently shed on our concepts of matter and time. It is, [ guess, in the nature of us
all to wonder why the universe appears just the way it does. Why, for example, does it
not appear more symmetrical? (Spencer-Brown, 1972, p. xi).

Actually, Spencer-Brown did not develop the formal side of these ideas
extensively in Chapter II; he pointed into a rich direction, but did not exhibit
specific constructions. On the other hand, his book is a courageous attempt
to deal with these issues, beginning as it does in the simple, undefinable soil
of distinctions and moving upward into formal realms. We now present a specific
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developmen* of imaginary values. We hope that what is seen from our work
may help to explain the importance of Spencer-Brown's ideas.

As a first step toward making temporal expressions well-defined objects,
note that in the example provided above 71 = i if we interpret 71 as ordinary
inversion plus a half-period shift. That is, suppose we have a periodic pattern

X =...abababab ... thenwedefine
xl =...5lalkalplalblal...
Thus if

A il i Bl i T i BT

then

A, AlEEEEEEE A

Sl

/1

Note also that jj = T1since at any given time either i or j is marked.

Now the sequence . . . ababab . . . can be looked at in a different way,
somewhat similar to the construction of the complex numbers from the real
numbers. That is, we think of the ordered pair (a,b) as representing the
essential features of the sequence. This shift in perspective permits a more
detailed algebraic treatment of the notions described above.

1]
-~
-

3.1. Definition. Let B be any algebra (or arithmetic) satisfying the initials for
the primary algebra. Let B= {(a,b) la,b € B}
and define (i) (@b)] = @l,al) (inversion plus shift)

(i) (a.b)cd) = (ac,bd). ((ab),(cd) € B)

Let i = (71,77) and j = (7,77). Make the identification B C B viaa = (a,a) for
aEB.

The smallest collection of such pairs representing waveforms is, in fact, one
containing no variables, but only the constant elements 7, 9,i,j . Callit
the waveform arithmetic V. By the previous definition we see that:

3.2. Proposition, Let P= 71,71 denote the primary arithmetic.
Then ¥V =2£.

As required, the basic waveforms i,j arise out of the static forms of the
primary arithmetic. They also return to it by the relation 1= jj.

Next, note the following :
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3.3. Proposition. In B occultation and transposition are valid,
andi =T71,j=71,ij="1
Proof. We shall verify occultation and leave the rest of the proof for the reader.
Let X = (a,b), Y = (c,d). We must show that X1 ¥] X = X in B:
X Y Xx=@LaNcd)l (ab) (3.1 (i)
=(blc,ald) (ab) (3.1(i)
@d],5ld )ab) ()
=(ald|a,Blc]b) (i)
=(a,b) (occultation in B)
X Hx=x.
This proposition suggests that in the waveform arithmetic and the related
algebras & the relevant initials may be occultation and transposition. The next
section develops this idea.

3.4. Remark. Note that (as in 33)if X=(ab), Y=(c,d) then R ¥ = Bl c,ald)
in B. It is interesting to consider this in the light of Spencer-Brown’s
interpretation of implication (see Spencer-Brown, 1972, p. 114). In
interpreting the primary algebra for logic, Spencer-Brown lets 7] stand for T
(true) and  stand for F (false). Then g - b becomesa b. Thus in X ¥ resolves
into two implicationsin B: b >candaga— b:

X: wabababd,,

VL

iwed ede d..

Thus, if X = Yin B is taken to be X! ¥ we see that implication in B has a
temporal component. Each term of the Y-series is ‘implied’ by the previous
term of the X-series. Further study of this remark promises to be very
interesting.

4. Brownian algebras

Letab, ..., p,q, ...beacollection of variables, and let expressions involving
the cross, 71, and these variables be defined as in the primary algebra. That is,
. Whenever A,B are expressions, then A1, Bl, 41 B, AP ,AB, are also expressions.
The variables themselves are expressions, as are “1and (blank). Take the
following two initials as valid :

Initial 1.  Occultation
Il Dl q]p=p conceal

—
~

reveal

Initial 2.  Transposition
I2 orl q_rll = plglir collect

e
~

distribute

Call any algebra satisfying Il and I2 a brownian algebra. As in the primary
algebra, the cross operates on whole expressions and the juxtaposition
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operation (continence) a,b = ab also operates on any finite collection of
expressions. Since it simply expresses the distinctness of these expressions
viewed together as a whole, continence has no particular order properties. In
more orthodox algebraic systems this would be expressed explicitly by
introducing initials for commutativity and associativity. Here it is not so much
that commutativity and associativity are tacitly assumed, but that we are
articulating a level at which they do not yet exist! Service is paid to this point
by ignoring commutativity and associativity in all subsequent demonstrations.
Since the cat is already out of the bag, we must make do with tacit conventions
to substitute for true simplicity. We now derive some forms of equations valid
in these algebras.

Consequence 1. Reflection

Cl. oal = a reflect
rei?i_ect
.Demonstration.
@ = ald al (I1)
= gllalal ]a (I
=1 alla (I2)
= dla (an
= a an.
Consequence 2. lIteration
C2. aa=a iterate
re;t—erate
Demonstration. aa=al a D
=a (I1).
Consequence 3. Integration
(C3) Ta="1 reduce
’ aug‘;nent
Demonstration a ﬂ (1)
=7 ] an).
Consequence 4. Echelon
(C4) @ bl cl = ac1 Bl ¢l break

make
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Demonstration
Told = a1l (C1)
= za B dl (12)
= aa Bl ol (C1)
Consequence 5. Combination

(C5) A A Bl =aA combine

—
=

split

17 5 Al (C1)
av ol /| (12)
= @bl rl| (ch)

The next two consequences are special cases of C5 and C4 respectively, We
articulate them because they are related to corresponding forms in the primary
algebra,

I

Demonstration al r] Bl r|

]

Consequence 6. Catalysis

(C6) abl bl = @l bl b Bl release

—
=

dissolve

Demonstration Apply C5.
Note that if & Bl = (blank), as in the primary algebra, then C6 becomes a
crossed form of generation (see the index for the primary algebra in section 2).

Consequence 7. Tension

(cn Z1blal ol = a1 b Bl atone

—
=

attend
Demonstration. Apply C4
If 5 Bl = (blank), then tension becomes a1 bl a1 31 = a] = a, the form
of extension in the primary algebra.

Consequence 8. Modified transposition

(C8) albrl crl = @l Bl clal rl collect

—
~

distribute
Demonstration

al brl crl

al brl crﬁ“ (ChH)

al B el r (12)
al bl clal fl  (C4).

I
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Consequence 9. Distribution

(C9) Bl ql risi prl pst gl gsl  shuffle

cut
Demonstration
STalFsl=p sl g sl (12)
= Pri Psi qﬁ qsil (12)
= prl psi grl gsl €n
Consequence 10. Modal crosstransposition
(C10) regglate
aCc;mmodate
2 Xl 2 Yla al ZIl = 3% &l vl al o XYZ|
Demonstration

2Xl 2l Yl a al Z

=Xzl 71l a1 zll a1 a] 7l (C8)
X1 vl zll al xla @ vl (cs)

a X| a1 Y| a1 al XYZI (C6, C1)

(We thank Mark Kauderer for this demonstration.)

It is worth comparing the consequences in the brownian algebra with the
corresponding results (see index at end of section 2) in the primary algebra.
01,02,03,04,05 and 08 are valid in both algebras. Catalysis is the brownian
image of generation ;tension corresponds to extension in the primary algebra;
model crosstransposition corresponds to_crosstransposition. In each of these
cases cancellation of terms of.the form Bl pl yields a corresponding result in
the primary algebra.

By adopting the initials occultation and transposition we have constructed
an algebra closely related to the primary algebra that automatically avoids the
cancellation of Pl _p] . As we have seen, these self-interference terms 21 pl
are important for handling waveforms. For these purposes they should be
articulated rather than ignored.

By taking the initials (I1) and (I2) we have done no violence to Spencer-
Brown’s original grounds, but have simply adjusted our sights to perceive
patterns already inherent in the form.

It is also worthwhile to compare this change of language (the primary algebra
versus brownian algebra) to other more complex linguistic situations. For
example, in Benjamin Wharf’s studies of Hopi Indian languages (see Wharf,
1956) he finds language structures that allow a view of the world that is
probably closer in spirit to the waveform algebra than to the primary algebra
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(which keeps the all or none quality of Aristotelian logic). To change viewpoint
it is not enough to simply throw away a rule (say throw away ppll = ). This
abandonment must be embedded in a positive framework (such as the
brownian algebra) that consistently holds open the possibilities hoped for, Thus
we have in the pair Primary algebra/brownian algebra a prototype for many
issues involving change of perspective and shift of language.

5. Completeness and structure of brownian algebras

We have already seen that the arithmetic V generated by 71,0, {,j with 71=,
j1=j and ij = 7 satisfies I1 (occultation) and I2 (transposition). Hence V is a
model for a brownian algebra. All of our consequences hold for expressions in
V. In fact, the next theorem shows that brownian algebra is complete with
respect to this arithmetic.

5.1. Theorem, let a and B be two algebraic expressions. Then a = B is a
consequence of Il and I2 if and only if a = 8 is true in the arithmetic V.

The proof of this result requires some preliminary work as outlined below.

The first result we need is an algebraic reduction of form (similar to Theorems
14 and 15 in Laws of Form).
5.2. Proposition. Let a be any expression in the brownian algebra. Then « can
be reduced to an expression involving no more than four appearances of a given
variable. More precisely, suppose that X is a variable in «. Then there are
expressions A,B,C,D involving no appearance of X so that

a=AXI BYICXXID.

Proof. First note that, by using echelon, any expression is equivalent to an
expression no more than two crosses deep. Hence we find that

a = Xai bl ...XaJ b, Xe;l Xdj ... Xc| Xd,)| Xel... Xe, f

where Qy, ... :al’hbl! w iw e :bn:cls- .. :cm:dl: % 8 # :dl’J’Iselr ek 1ep,f are
expressions in which X does not appear.

Note that X2 bl = X1 511 b] by combination (C5). Similarly, Xd Xdl =
XX dl X2l dl . Thus the proposition follows at once from these facts and
repeated applications of C5.

The next result involves evaluating an expression at. 71, T, i,j. Thatis, we
shall have an algebraic expression a = e(X) involving a variable X. The
expression & may be viewed as a functionon ¥ ={71, ,4,j} that givesa
value in ¥ when all of its variables are replaced by elements of V. Similarly,
a( D, oM, ofi) and o) are also functions on V. (Here X is replaced by 71, 7, /
and j respectively). In the next proposition the symbol = refers to equality of
functions on V.

5.3. Proposition. Let (X) = XA XI Bl X X1 Cl D where A.B.CD are
expressions involving no appearance of the variable X. The following equalities
of functions on ¥V are valid :

oM =4AD , of)=BD
a)a@) = ARAD
oi)| )l = D.
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Proof. The first two equations are obvious. For the last note, since 71 =i, afi) =
FATBIOD =iA BOND (using C5 twice). Similarly, ofj) = jAl Bl D.
Hence (letting £ = Al BICl ) we have
a ()] (j)" = i£] DI jEi Dl
= FEIEN D (12)

= ijJEID €1,6H
= TTEI D Gi=")
L@ a2 = D an.
Finally, () a() = iEl D jEl D
=T i El D (C2, C5)
=41 El D @ = j7=)
=E D G ="

La(@a() =ABAOD.
This completes the proof of the proposition.

Proof of Theorem 5.1. We are given two algebraic expressions « and f such that
a = f can be proved as a theorem about the arithmetic V. This means that a=
as functions on V. We wish to show that under these conditions a = 8
is demonstrable from the initials I1 and I2. The proof will proceed by
induction on the total number N of variables in the two expressions.

If N=0, then =D and = D’ where D and D’ are constants, By hypothesis,
D = D' and there is nothing to prove. Note that the only algebraic constants are
“Yand (blank).

Thus we assume that N )} O and that the theorem is true for a smaller V. Let
X be a variable appearing in one or both of the expressions . By Proposition
5.2 we can assume that a= XA X1 BIXXI Cl Dand B=XA41X1 B1 XX C'| D’
where A,.B,C.D.A" B',C', D' are expressions involving no appearance of X.

By the evaluations of Proposition 5.3 and the hypotheses of this theorem it
then follows that the following formulas are demonstrable: -

i AD=A4A1D
(i) B1D = B1 D'
i) D=D
(ivy ARAD =A1TB1C1 D'.
We now apply modal crosstransposition (C10) to demonstrate « = §:

a=XAXB XX ClD

= XAIX BIxXIA B ol D (C10,CD)
= XA DX B D x XDl A B QO Dl (12) .

Now substitute, using equations (i) — (iv), reverse steps, and conclude that
a = B. This completes the induction step and the proof of Theorem 1.
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Some technical comments are in order here. We have actually proved that
any free brownian algebra is complete with respect to V. That is, given a set S,
one can form an algebra B(S) by regarding the elements of S as variables with
no special relations. We then form a set of expressions E(S) by tue following
rules:

(1) s 1is an expression for each sES.
(2) 71 and (blank) are expressions.
(3) If X and Y are expressions, thenX! , Y1 | and XY are expressions.

The initials I'1 and I2 generate an equivalence relation ~ on E(S). We let B(S)
= E(S)/~ and say a = g if a ~ B for a, B € E(S). The collection of equivalence
classes, B(S), will be called the free brownian algebra on the set S.

Note that V itself is not a free algebra. The relations 711=i,71 =jand ij="]
are not consequences of I1 and 12, If $ ={ij} , then V may be regarded as the
result of placing extra relations on B(S). We shall not formalize this notion
now, but shall return to it in section 8 when algebraic structures for self-
reference are discussed.

We can now examine not only the initials and consequences of a given
brownian algebra, but also the relations between algebras. The structure
preserving maps between the objects of a given class are at least as important as
the objects themselves. Thus we now give the definition of homomorphisms
between brownian algebras.

5.4. Definition. Let B, B' be brownian algebras. A homomorphism h: B = B8’ is
a set-mapping such that
G ¥=
h(T1)="1
and hA(x Y)=h(x)h (¥)

h(x1) = h(x)
for all elements x, y € B.

It is well-known that in a free algebra B(S) any homomorphism is determined
by its values h(s) for s€S. In the case at hand, a homomorphism between a
brownian algebra B and the waveform algebra ¥V, amounts to assigning to each .
variable s€S a value in the waveform arithmetic. Using this language, Theorem
5.3 may be reformulated as follows: '

5.5. Theorem. Let B(S) be a free brownian algebra on the set S. Then for e, f €
B(S), a = B if and only if h(c) = h(B) for every homomorphism k: B(S) - V.

This theorem, in turn, has another reformulation that places B(S) inside a
larger waveform algebra. We first need the notion of a cartesian product of
algebras (not to be confused with the ~ construction of section 3).

3.6. Definition. Let B and B' be brownian algebras. Then the product algebra
B x B' is defined by taking the cartesian product of the underlying sets and
defining operations by

(i) (a,p)] = (al;p) (inversion but no shift)
(i) (a,b)(cd) = (acbd).
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Similarly, if 4 is an indexing set and we have algebras B,, a€A then we can
form the product of all of these and denote it by I1 B,.
acA

Remark. A wave interpretation for this product construction will be given more
fully in the next section. However, suppose that B = B' = R where R is another
brownian algebra. Then a€B means that a = (x,y) where (x,y) connotes a
periodic pattern...xyxy ... .Thus

a=...xyxyxy...
b=...zwzwzw . ..
and
ab=...@x2)yw)xz)(yw)...EB.
However, we may choose to view . . . xzywxzyw . . . as a pattern of period 4.

The element (2,6) € B x B formalizes this notion. In general 8 x ... x B
(k factors) can be interpreted as an algebra of patterns of period 2%.

5.7, Theorem. Let B(S) be a free brownian algebra on the set S.Let A ={ h:B(S)
=+ V } be the set of homomorphisms of B(S) to the waveform arithmetic V.
Let V; denote (a copy of) ¥V, corresponding to each homomorphism HEA.
Then there is an injective homomorphism

6: B(S)—— 01 Vy .

heA
Proof. Define & by &(x)= gAh(x) for each x € B(S). (Note that i: B(S) = V}.)

Since x =y in B(S) if and only if A(x) = h(y) forallh €4 , we have x = y if and
only if §(x) = &(y). Hence d is injective.

In fact, Theorem 5.7 is true forarbitrary brownian algebras. The proof of this
more general version follows from further reformulations and the use of deeper
results about De Morgan algebras. For references, and a discussion of this point
see Kauffman (1978b).

From our point of view, this result is quite significant, since it shows that
any brownian algebra may be seen as a subalgebra of a wave-form algebra Il V.

- hed
The latter is generated entirely by self-reflexive elements, that is, by solutions
of x = XI.

Thus the wave forms associated with the simple re-entering form x = X1= "
stand at the base of all our considerations. The ‘real’ logical or indicational
values such as 7] are seen as combinations of synchronized waveforms (ij = 7).
This principle remains true in the general context of all algebras satisfying
occultation and transposition.

In this regard it is worth noting that the self-reflexive elements of a brownian
algebra are irreducible. That is:

5.8. Proposition, Let B be a brownian algebra containing X such that Xl = X If
X=YZwithN=YandZl=Z,thenX=Y=2,

Proof. Note that the proposition will follow if we show that AB=AC=8=C
whendl = A, Bl =B, O=C.(X=YZ=YX~= YZ=X=Zetc...) To prove
this, we proceed as follows:
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B=TH Al B an

= B4l B (8=B)
=CA B (CA =AC=AB = BA)
= Q4 8 C=0,A=12)
= CBl ALl (12)
= CR Al (4B =AC)
= B4l ¢ (12)
=BAlC (A = A,R =B)
= CcAl ¢ (BA = CA)
=04 ¢ (D=0

B =C an

This completes the proof.

6. Varieties of waveforms and interference phenomena

In the algebra B, associated to a brownian algebra B, we find period two
sequences of elements from B. Thus for a,b € B we have the correspondence
(a,b) v ...ababab ... .So far, however, we have encountered only waveforms
of period 2, namely those of the waveform arithmetic V. There is no reason to
stick to patterns of period 2 (high frequency) in the context developed so far.
Let us now discuss explicit constructions for waveforms of arbitrary period.

6.1 Definition. Let p be an even positive integer and let k = p/2 so thatp =2k
Let B be a given brownian algebra. Define Sp(B) to be the set of sequences in B
of period p. That is

' Sp(B)={a={a,} ,nE€Z la, EBand ay+, =a, foralln} .
(Z denotes the set of integers.) This collection of sequences can be transformed

into an algebra by extending the operations of continence and crossing in the
following way:

(i) ab={(@b),}, (ab), =a,b, fornE€Z
and a b € 5, (B).

(i) 1= {(@ WYy, @hn=a,, , k=p/2
forn€Zanda € Sp(B).

Thus crossing is accomplished by combining ordinary inversion for B with a
half-period shift (whence p must be even). This extends the previous use of
crossing for the A construction.

By way of illustration, consider a sequence of period 4, and the special case
B = P (the primary arithmetic); that is, consider S4(P). Take one such
sequence a,
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o T LML
. al

Ll g i 5 RS
Thusala = a

It is easy to verify that occultation and transposition hold in S, (8). Thus
Sp(B) is a brownian algebra. The next result gives a more precise ldea of the
structure of this algebra, by showing that it is indistinguishable from tuples of
forms of period 2.

6.2. Proposition. Let B be a brownian algebra. Then we have the following
isomorphism of algebras:

E

S,(B)=1* B
=1

where 8; (=1, . .. k) denotes (a copy of) 8 corresponding to each of the
integers 1 through k, and k = p/2.
Proof. Let 5p(B) ={ (af) | = (o, ..., %), B=(:,... Be)and oy, BEB

for1<i,j< k} . Define opemtlons in §,(B) as follows: (o, ﬁ)(a,ﬁ)
(e oy, ... £ 0k ), (ﬁnﬁ:,-- BeBE)), @B = ((Bi,... B, (],.. c4l).
Then §,(B) is a brownian algebra, and we may map S, (B) to Sp(B) by the
functlon h: Sp(B)—— S, (B)where h (a) = ((a,,... ak), (akﬂ, ) ,a,,)) This is
clearly an 1somorphxsm On the other hand, we have an lsomorphlsm

g: 5, (B)—— n* B,

I=1

given by g(a,8) = (o, ,8,), (23 ,8;), . . . ,(ax ,Bx)). Hence the composition g oh is
the desired isomorphism.

When p = 2 this result shows that S, (8) = B as expected. When B = P, the
primary arithmetic, then,

S,(P=n* ¥
=1
(where ¥} is a copy of V). For the example of a € S, (P) discussed above, one
obtains S, (P)= V' x Vanda < (1,7, CWH,"M=C,/).

By combining two sequences in the same indicational $pace, we produce an
interference between the waveforms they represent. This is what is involved in
the extension of crossing in (ii) above. Interference follows quite naturally for
waveforms of the same period (but arbitrary frequency). We are left with the
question of interference of waveforms of widely different period, so that we
may handle the resulting patterns in an adequate way. One approach, presented
below, is to concentrate on the least possible period resulting from the
mterference

Let lcm (p,q) denote the least common multiple of the integers p.g. For even
integers p,g the least common multiple is also even, and we may define a
mapping p: Sp(B) x S;(B) —S,(B) where r = lcm (pg) and u [(a,b) 1, =
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anby . Thus two sequences of different period interfere to form a new sequence
whose least period divides the least common multiple of the initial periods. By
choosing to look at interference in this way we are simply stressing the high
frequency components of the interference pattern. We are also insisting on a
rule for assigning period to the interference pattern that will work well
algebraically. Least common multiple has this property, as we shall see.

What are the difficulties in constructing an algebra of sequences of varying
periods? The first point can be seen in the waveform arithmetic V. There ij = 7]
where 7 andj have period 2. If we must assign a period to 7, then 2 = Iem (2,2)
seems to be the natural choice! We might say that the mark, 7, in V resonates
with period 2. This leads to no confusion since everything in ¥ (or B) has
period 2. In the more general situation 71 may have to be regarded differently
depending upon the assigned period. Consequently integration in the form
"l = "1 will fail. It will hold only if we disregard the period of a. Since the
marked state represents the observer, it is not surprising that we should find a
spectrum of marked states, each corresponding to a different resonant
condition. In order to capture this aspect, we define a generalized brownian
algebra as follows.

6.3. Definition. A generalized brownian algebra is an algebra satisfying the
initials

(i) aa=a (iteration)

(ii) al =a  (reflection)
Note that such a generalized algebra has nothing more than exterior
descriptions of calling (7171= 71) and crossing (1 = (blank)).

6.4. Definition. Let B be a brownian algebra and let S(B) denote the set of
periodic sequences in B with even (assigned) period. Ifa, b € S(B), then we
write a = b when a, = b, for all n, and p(a) = p(b) (p(a) = the period assigned
to a). Operations are defined as follows:

(i) (ab), =a,b,, plab) =lcm (p(a) p(b)).

(i) @), =a,, , k=pa)2

p(al ) = p(a).
Since lemflem (x y),z) = lem (x, Icm (v z)) for any integers x,y,z, the operation
(i) is associative. Associativity becomes explicit at this point.

Another way of putting our observation about resonant marked states is to
note that we may assign any period p to the empty sequence ¢p=...,,,, ... €
S(B). Then gl = .. .71, 71,71, 71,... also has period p. Thus we cannot write
“1=...71,71, 7, ... without noting its period.

6.4. Lemma. S(B) is a generalized brownian algebra.
The proof is immediate,

In order to understand the structure of S(B) we now give conditions under

which occultation and transposition hold.

6.5. Theorem: Let ab,c € S(B) be members of the sequence algebra for a
brownian algebra B. Then

(i) @16l 2 =aifand only if p(b) divides p(a);

(ii) 21 Bl ¢ =ac bell whenever the largest power of 2 dividing NV is the same
for N = p(a), N = p(b) and N = p(c).
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The following lemma will be used in the proof.
6.6, Lemma. Let k(a) =‘;'p(a) for any a € §(8). Then
(i) p(d) Ip(a) (x|y means x divides y)
= p(a) | (k(ab) +k (a)).
(ii) If p(a) = 2%N, p(b) = 2°M when N and M are odd,
then p(a) | (k(ab) + k(a)) and p(b) | (k(ab) + k(b)) .

Proof of lemma. The proof is omitted.

Proof of theorem. If @1 bl a = a then p@1 bl a) = p(a). But p(@ b a) = lcm (p(a),
p()) and . p(a) = lem (p(a), p(b)) and this implies that p(b) |p(a).

Conversely, suppose that p(b) |p(a). Then for any n,a, , (4p)-x(a) = 9n Since
k(ab) + k(a) is a multiple of p(a).

Hence ‘ i

@bl a), = @5l ),a, |
= Tp-k (ab)-k(a)] On-k(ab)| %n

= m bn-k(ab) a,
= a, (occultation in B).

This proves (i).

To prove (ii) first note that since lcm (lem (xy),2) =lem (Iem (x.z2), Iem
(,2)) for any integers x,,z, p(@ B c) = p(acl bcl ) for any a,b,c € S(B).
Thus we must show that @ Bl ¢ and acl bcl are identical term by term. We
are given that p(a) = 2°N, p(b) = 2°M, p(c) = 2R where N,M and R are odd.

Then (al Z o) (al B )n-k(ab)l Cn

= Ay g (ab)-k @) Pnox @ab)-e )l Cn

= 5151 ¢,
Since p(a) | k(ab) + k(a) and p(b) | k(ab) + k(b) (by Lemme 6.6.) .
On the other hand,

(acl ECH )n = (acl bcl )n -x(abc)]

= (8C)n_x (abc)-k (e -k (abe)-k vl
= (ac),] ®o)l
Since p(ac) | k(abc) + k(ac) and p(be) | k(abe) + k(be) (by Lemma 6,6) .
= 8p Cp| Op Cp
= 4,15, ¢,
= @ ol C)y
This completes the proof of the theorem.

Remark. If we let S2(B) denote the set of elements 2 € S(B) such that p(a) =
29M for Modd,then transposition is satisfied in S*(B). Call an algebra satisfying
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iteration, reflection and transposition a transposition algebra. We see that for
each a, S%(B) is a transposition algebra. By (i) of 6.5 it is not a brownian since
@ bl a = aif and only if p(b) 1p(a). It is easy to verify that echelon,
combination, catalysis, tension, modified transposition and modal cross-
transposition are valid in any transposition algebra. Occultation is not a
consequence, as the models S% B) show.

Remark. 1t is worth noting exactly how close a transposition algebra comes to
being a brownian algebra. If we include the initial b = 7, then we can get
occultation as a consequence:

a=dMa=aa Blal=aABlal= T8la=Ta =a.

Thus "1 becomes relativized to the period of the sequence that it interacts with
in a generalized brownian algebra. We can assert that ~1b = 7] for any b only by
allowing the frequency of ~1to change with b. Nevertheless, the rules 17 1="]

-and 1 = (blank) still hold. Even if 71 is seen to be resonating at a given
frequency, it still calls and cancels itself.

7. Constructing waveforms

In dealing with waveforms, we have so far assumed that there are sequences of
elements from an algebra B. The relationship between the sequences and the
underlying algebra has remained mysterious. We now show that the operations
of the algebra B itself are capable of generating oscillations, by the simple
expedient of recursion. That is, given an algebra B and an algebraic operation
T:B — B, we consider the iterates 7° =1, 7' =T, T? = ToT,.,. T"*! = T"oT
If there is an integer p such that 7"*P = T™ for all n, then T can be used to
produce sequences of period p.

For example, let T(x) = X1 . Then T?(x) = x and T"**=T" foralln. T
produces the sequence: x, X1, x,x1, x,x\, ... In this case we have an algebraic
version of the sequence. That is, if x€B, then a = (x,%1) and 8= (x1, x) belong to

and represent two phase-shifted versions:

a:,,.xXlxxlxXxl...

B:.. X1xxlxxlx...

We are given T:B — B and obtain the corresponding mapping 7: 8 - &
defined by the same formula. Note that

T@)=a= 3N = @,7) = x7) =a

and T(B) = B. Thus the sequences generated by T become the fixed points of 7",
This correspondence holds more generally, as is shown in the next two results,

7.1. Proposition. Let B be an algebra (or arithmetic) satisfying all the initials
for the primary algebra. We shall say that B is primary. Then an algebraic
mapping T:B — B will generate sequences of period at most 2.

Proof. Since T is an operation in the primary algebra, it has a canonical
structure with respect to the variables that it operates on; in fact T(x) = &
b x|l ¢ for some a,b,c € B not containing x. A simple calculation shows that
T*(x)=T(T(x))=abx) al &1 1 c and that T (x) = T(x). Hence by induction
onn, m*2(x)= T (x) for all n.
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7.2. Theorem. Let B be primary, and T:B — B an algebraic mapping. Let T be
the corresponding mapping on B. Then there exists a ZEB such that 7(Z) = Z. In
fact, we may take Z = (T(x),T? (x)) or Z = (T* (x),T(x)) for any xEB.

Proof. To see that Z = (T(x),T? (x)) is a fixed point for T, first note that for any
Z=(a,p)EB,

NZ) = adA bAc
= (acgp)l b(A A ) ¢
= (apl, ad ) (ball, bPl )e
@Pball ¢, a@d BB ¢) .

Thus it suffices to show that
T(x)

aT*(x)] 6 T(x)| ¢
and

T*(x) = aT(x)| bT*(x)] ¢

when T(x) = a@x] bxl c.
This is a straightforward computation.

Thus the algebraic structure of B reflects the properties of periodic
sequences that are generated from B. Sequences from B become algebraic
fixed points in B.

What we see emerging here is a beautiful harmony among oscillations,
re-entering forms, algebraic operations and their fixed points. So far we have
seen that the re-entry of a form to its own indicational space, as inx =x1= O,
gives rise to a fundamentally new arithmetic ¥, where we have the waveforms i
and j. These are fixed points for the cross 71in the new algebra V. We can
attempt to generalize this situation by showing how every re-entering form will
give rise to an oscillation: the fixed points of the operator represent the spatial
view of the oscillation, while its associated sequences represent the temporal
context. Now in order to do this, we have to be able to construct an algebra
where infinite expressions are defined, so that we are assured that every
algebraic expression actually has a fixed point in the same algebra, rather than
in a larger one (as'in the waveform arithmetic where i is in ¥ but not in P). We
provide such a construction in the next section, and in so doing we will see that
the correspondence between pattern (re-entry) and oscillation (sequences) will
be partially lost. Although every re-entry form will oscillate, a given waveform
can be generated through many alternative operators when they are allowed to
re-enter,

The remainder of this section will be devoted to procedures for generating
sequences of arbitrary period. As we have seen, sequences of period 2 may be
generated by an operator with a single variable. In order to generate sequences
of period other than 2, it is necessary to use recursion on more than one
variable. For example, let T:P x P = P x P (P denotes the primary arithmetic)
be defined by T(x,y) = (1,x1 }1 ). Then




Form dynamics 195

7 (7,3 =07,
7 (7,7 = (3,
7 (31,31) = (71, 51)

and hence T produces two entrained oscillations of period 3:

We say that T produces an oscillation of period 3 and dimension 2. Notice that
we may also represent this two-dimensional waveform by the spatial pattern of
re-entry of the operation which generates it: That is, 7(XV,¥V) =
(XV,YV) represents the spatial fixed point and in this case,

XY= Y Y XY yVI:ﬁLI. Hence XV = _||—_LI_

We now show that it is a simple matter to determine operators T that
produce a given wave-train.

71.3. Definition. Let P denote the primary arithmetic, and P =P xPx...x P
the n-fold cartesian product of P with itself. An algebraic operator T:P? — pn
is a function

1"

S B B T T B T e B 1
G 1 It B B e o

T(xl:---axn) = (Tl(xl )--‘sxn)l'-'aTn(xl ""gxn))
where each T (x,, ..., x,) is an expression in the primary algebra involving
the variables x,, . . ., x,. We say that T is periodic if there exists an integer p

such that 7p*" = " for all integers n>N (p and n are non-negative integers)
where N is some specified integer.

Example. Let T:P* — P? bedefined by T(x,y) = X171, x 5| ).NowP? =

ab,ecd wherea = (71,71),b = (7,7 N),c = (71, V)andd = (77, 7). It
is easy to verify that T(a@) =b, T(b) = ¢, T(c) = d and T(d) =c. Thus we say
that T has period 2 since 7®** = 7" for n>1. Note that T°# T since T(a)
= b while T°(@) = d. With this definition we immediately obtain the
following result:

7.4. Theorem. Every algebraic operator is periodic.

Proof. Pn has cardinality 2" (with respect to arithmetic values). Hence for any
fixedx = (xy,...,x,) € P",theset{ T"(x) in = 12,...}is finite. Thus
the sequence T(x), T?(x), . . . must be eventually periodic for each x. Since
there are a finite number of such x, the least common multiple of the
corresponding periods is necessarily a period for 7.

1.5. Theorem. Let n:P" -+ P be the projection to the first co-ordinate, n(a, ...,
@) = . Letla = {a,}In = 1,2,...] be any periodic sequence of values
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from P. Let p be the least period of a, and choose n so that 27-? < p < 2™IThen
there exists an operator T: P* — P7 of least period p, and a starting vector of
values x € P" so thata, = (T (x)) forn = 1,2,....

Thus the sequence a can be seen as the first component of an n-dimensional
entrained oscillation.
Proof. We shall give an algorithm for producing the requisite operator. The
following notation is convenient. Let b = (b, b,, . .. , bp) € P, and let
A(b) = 4,4, ...A wherea; = 1ifb; = TVand 4; = 0 if b; = 7. Regard
A(b) as an integer expressed in the binary system. Let $2(b) be the
corresponding decimal integer. Let 9(b) be the following operator:

8(b) (xyy. o, x,) = by (X )02 (x3) ... 0, 0x,)]
where b;(x) = Xl if b; = 71
x if b, = 7.
Note that 8(b):P" =+ Pand 8(b)(x) = 1+ x = b. For computations it is
often useful to use 2(b) as the name of 8(b).
Nowchoose b, ,b,, ... » by € P so that
(i) b; #+ b; if i.# ).
(li) “(bk) = ag lk = 132:' < s P
This can be done since 27-2 < p < 27

Let Tp(xy,...,x,) = 8(bey) o (bay)...0(ba,) where a;,...,, is
the set of indices a such that kth co-ordinate of b(c+1) is marked (we view o
modulo p so that bpgy = by). Finally, let T(x,,...,x,) = (T, (x),... .
Tilx))

It is easy to verify that T(b,) = bit, and T(b,) = b, .Thus T produces the
desired periodic sequence. This completes the proof of the theorem-

In order to illustrate the foregoing theorem, suppose that we wish to
produce the period 5 oscillation:

Thatis,a; = T,a, = 7,85 =7l,a, =7V,a; =71.Thenwe taken = 3 and
we may choose b, , . .., bs asin the chart Fig. 2).

Hence .
Q(by) = 4,2(0,) = 0,2(b;) = 5,2(,) = 1,Q(;) = 2.
Hence
T, =20 =xyz] xpzl = xz1
T, =1 =xyzl
Ty =05 =Xyzl x1yzl

Thus T'(x,y,z) = (X2, xy zAXpzI X1 y 21| ) .
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In general there will be many operators T such thata, = #7"(x) fora given
sequence a = { @, } . We can easily generalize this lemma to embed any
entrained oscillation (of arbitrary dimension) in a higher-dimensional
oscillation without repetitions (in the sense that b; # b;fori +# j). Applying
the same algorithm, we thereby obtain an operator T wf;ose projected iterates
give rise to the original entrainment.

In the next section we look more closely at the formal structure of this
category of operators.

8. Re-entering forms and infinite expressions

In the primary arithmetic there is no separation of operator and operand. The
mark, 71, takes both roles as context and viewpoint demand. We have
constructed certain ‘complex’ arithmetical forms (such as i and j of the
waveform arithmetic) but these have not been constructed as operators.
Rather, they are seen as fixed points of an operator. Thus 7] = iand 71 = j.In
order to return to a viewpoint wherein such fixed points are seen also as
operators, we need to re-consider the self-referential context.

What is the meaning of f = 117 We have suggested in section 2 that 1] may
be viewed as an infinite form f = 0 = || so that fis literally contained as a
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proper part of its own indicational space (f = 71). When we write f = ﬁ =
J1 we are not saying that f may be calculated from 71, but rather that fand 71
are identical as infinite forms. Seen in this light, f operates on itself by way of
the re-entry. This operation is the very lifeblood of f = 11 giving it the stability
expressed by dd = O .

In this sense the very notion of a self-contained form is closely tied to self-
reference. The extent to which a form is seen to be autonomous/self-contained
is directly proportional to how we find its stabilities. We push at it here, pull at
it there. It seems to react, stabilize, retain shape and intelligibility., How can
this come about? Even to a pure solipsist, the experience of relatively stable,
seemingly external forms must present something of a puzzle. And yet the

simple form of O = ﬁ' presents a shift of perspective. Let be given only
an operator T (say T(x) = Xl ). Allow the operator to operate on itself
infinitely asin A = T(T(T(T(T(...)))). Then T(4) = A is a formal identity.
The infinite concatenation of the operator on itself gives rise to a stability with
respect to this operation. It becomes possible to say of A: it has form. It is an
object with a life of its own.

It is no denial of reality to suggest that what we call objects are in fact
nothing more than operations taken to such a limit. In fact we do suggest this
and invite the reader to consider the idea in all of its remifications. When we
investigate natural forms we continually come upon circularities of structure
that lend stability. Are not these precisely the same as our formal images of
self-containment and self-reference?

In order to understand the main idea for allowing infinite forms, consider
the following example (due to Spencer-Brown). Let T(x) = X al bl . Then
iterating T we have, as expected,

T*(x) =xal bl al bl = xalb| = T(x).

@ bl = xa1blalbl = X2l blalblalb| = ZaTbldl bl a bla b

and if we allow this process to proceed indefinitely, we are led to contemplate

the infinite expression,
xV = . .Zlbldb
This form contains a copy of itself, and thus re-enters its own indicational

space
xV = xV alb

By going to an infinite expression, we have eliminated x as a variable and
obtained a form, or spatial pattern, which embodies the operation.
In other language, xV is the fixed point of T, for

T6V) = xVd 6| = .. Z1o1al8] = x7 .

The equation T(xv) = xV is an expression of the direct identity of these
expressions; it is not a statement that one can be calculated from the other. In

Thus
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general, by going into a suitable structure, where infinite expressions are
allowed, we are assured that every operation will have a fixed point solution,
for we can form

XV = T(NTC...))) = lim T,

n—roo

the infinite concatenation of this operator, In this universe of infinite forms we
are free to express the re-entry of forms. What needs to be examined is the
relation between spatial re-entry and its temporal quality: given a pattern, how
does it vibrate?

In order to explore this question we first have to construct a universe of
infinite expressions and see how re-entry is expressed in them more precisely.
We have two basic clues from the previous discussion. First, in order to form an
infinite expression we may allow it to grow step by step, and never command
the process to come to a halt. This involves introducing the idea of an order in
the class of expressions, so that at each successive step the new expression is a
better approximation to the infinite one. In the limit, the sequence of
approximations defines the infinite expression. This is a process somewhat
reminiscent of the idea of order, approximation and limit in calculus. (The
order being introduced here, however, is quite different from numerical
approximation). Secondly, in order to have re-entry, it is enough to consider
equations among these infinite expressions, or, in the other words, fixed points
for operators in this extended domain.

As an example, with the operation T (x) = X a] b] we may consider a
sequence of approximate expressions thus :

\C dlo| Cialbldbl C ...

where we start with an undefined ex%ression L1, and successively apply T. Here

L denotes the order relation and x¥ = lim T7(L). The reader will have to
_ .

forgive a full exposition of the details of order and approximation for infinite

expressions. We hope that we have given the flavor of it; the full technical

description may be found in Goguen & Varela (1979) and Varela & Goguen

(1978).

Thus we now assume that we have before us a well defined class B, of
indicational expressions finite or infinite. Elements of B.. look just like
ordinary indicational forms, except that they might grow indefinitely! Call B,
the class of continuous forms.

Here is a rapid sketch of some algebraic ideas that can be handled in Bo:

8.1. Definition. Let Boo(X™) be the class of continuous forms on X# = L% %,
- +.,X,} . Thatis, the variables x, , . .. , X may appear in the expressions of
B (X™)." A system of equations in Bo(X™) is a function E: X" — B (&xm)
where BL,(X") denotes the n-fold cartesian product of B(X") with itself. We
shall write X; = E;(x) as the itn equation of E (x = Cx;x3,...,x,)). The
following can be proved.

8.2. Proposition. let E be a system of equations in B, (X7). Then there is A E €
%(X™) which is a minimum fixed point for E, E(A g) = Ag.Ag is called the
solution of E over B_(X"). In fact Ap = limE*(L,1, ..., 1).

n=¥oo
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This proposition assures us that this new universe B, is large enough to
handle all kinds of re-entry. We have no idea how complex the equation £
could be; perhaps it is infinite. Thus, for the present purposes we will narrow
our scope, and consider only those infinite expressions in B that correspond
to finite re-entry (e.g. where the re-entry can be indicated on a sheet of paper.)

8.3. Definition. A finite system of equations over B_(X") is a system of
equations E such that E: X" — Bn(Xn). Here B"(X") designates the set of
n-tuples of primary algebraic expressions in the variables - x; x,,...,x, .

In this way we focus on the forms in B, that arise from (finite) operations

in B.
8.4. Definition. The set Ry of rational expressions of dimension » is the subset
of B, satisfying: R, ={A€B, | 3 4,,...,4, €B,_, and a finite system
of equations E so that E(4) = 4 whered = (4, A4;,4;,...,A,)}. Thatis,
the rational expressions are components of fixed points for finite operators.
They are single components of n-dimensional re-entering forms.

Rp is an enchanted land for self-referential forms — every operation
immediately gets an associated value (fixed point), a re-entering form
computed through the fixed point construction. Conversely, each rational form
has a corresponding operator. While this correspondence between operators and
operands is not one-to-one, we are certainly justified in asserting that it is a
matter of point of view whether a rational expression is regarded as a value, or
as a transformation. In this sense, operands (i.e. elements of R g) and operators
(i.e. certain maps Ry - Rp) are interchangeable.t

Let us now examine the relation of Ry to the temporal context. Given 4 €
Rp We know that there exists A = (4, A4,,... ,AL) €RE sothat4 = 4,
and a finite algebraic operator T of dimension n so that T(4) = A. We know
that A = lim T™ (L, L,...,1). Thus A has an associated sequence A(n)

n— oo

(n = 0,1,2,...)whered(n) = T(L,1,...,1) = T"(T). At every finite n,
each term of this sequence is finite, and thus we can reduce them algebraically
by choosing an initial value (vector) for the indeterminate termsin V = T. We
immediately see, by Theorem 7.4, that each sequence will be (eventually)
periodic. If we change the initial value we either generate the same sequence
with a phase shift, or we find ourselves in an entirely new periodic sequence.
These associated periodic sequences may be thought of as (temporal) states of
the expression 4. Thus every rational expression oscillates. To each pair(4, )
such that T(4) = A there is a corresponding oscillation and characteristic
frequency.

Thus we may say that (4, T) has a dual nature of particle (T(A) = A) and
wave (V, T(V), T*(V) , . . .). Which viewpoint comes to the fore depends on
our bias. If we insist on invariance of form, then the particle nature is apparent.
If we allow the calculational dynamic and assign values, then the wave-nature is
seen. Both viewpoints rest ultimately in the essential periodicity of the process

1This is meant to point to the idea that formal domains can be reflexive, that is, type-free. The full
extent of this idea has been proposed and explored in combinatorial logic and topology by Dana Scott
(1971, 1972; see also Wadsworth, 1978). For further discussion on the notion of rational elements of
continuous algebras see Goguen er df. (1977) and Wright (1976). Obviously what we say here is very
informal and expository, and the interested reader is encouraged to look at the aforementioned papers for
a detailed discuszion,
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we have considered.
For example, consider the re-entering form presented in section 7:

Since (being infinite) it must belong to R 8> We know that it must be part of the

fixed point of a system of equations. In fact XV = ] , and this reveals that

it is, in fact, the first component of a system (x¥ »¥) = (»¥1 , xV] VI ). Thus the
corresponding transformation is given by T(x,y) = 31, X p| ). To see the
waveform that corresponds to xV we compute the sequence of approximations
to xV (these are the first co-ordinates of (L, 1) forn = O 1 SO

_L,D,EJ_ll,ﬂlrlJH,EJ”EIE’H,._.

Thusif L = 71. then the wave is
1,7,717,7,7, ...

and if 1 = 7 then the wave becomes
1,7,7,71,7,7, ...

In each case we have a wave train of period 3. The change in choice of initial
value produces a phase shift.

The inverse process is more complex. For a given sequence, there are many
operators that will generate it, and therefore several elements of Rp can be
associated to it. For example, i €V can be produced by T(x) = xl, but it also
appears entrained with other oscillations as in T(x,y) = (¥l , X1). Notice also
that the re-entrant form Ewill correspond to both i and j depending on how 1
is evaluated. As it should be in the static world of forms, phases are irrelevant.
The waveforms i and j condense to the spatial form 71.

Much remains to be explored about re-entry forms, For example, we have
not discussed the matter of algebraic structures. We feel that more work is
needed in this area, but shall end this section with an example.

Consider x = ¥x . Certainly, this equation is satisfied by the infinite form
L. If we allow iteration (az = a) as an algebraic rule about infinite forms,
then 11 will also satisfy the equation, The infinite forms Il and ] should be
regarded as distinct, and yet algebraically they are both solutions to the same
equation. In general, we can impose algebraic initials on the class of infinite
forms after these forms have been fully constructed. In this fashion the
universe of infinite forms becomes a brownian algebra,

Note that it is too much to ask the infinite forms to be a primary algebra
since, if so then

O-al-aal-oTl-
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The form of position sends the entire structure into the void!

Just as a self-referential expression has many possible stable states and
patterns so have we produced many viewpoints clustering around the general
self-referential form. Each view has its own coherence and different views are
related in remarkable ways. These remarks, unfolding the self-referential form,
only skim the surface. We see that each self-referential form has a natural
operator / operand (or wave/particle) duality. and furthermore, each
self-referential expression has an associated brownian algebra. We have
emphasized individual self-containing expressions because this context places us
closest to our experience. Each multiplicity of forms is seen within a wider
form to which it condenses.

9. On geometrical form

At this stage it is easy to see the beginnings of the connections between our
notions of form and the classical views of geometry and topology. The
geometer considers forms as topological spaces and asks for properties invariant
under various groups of geometrical transformations. In the abstract, there is a
direct analogy with our invariances T(4) = A. It would be an incredibly
complex task to translate most standard geometric notions directly into this
context. Nevertheless, this could in principle be done, since the structure of an
axiom system for geometry can express all of its operations as analogous formal
operations. The ‘geometric’ objects can then be constructed as formal
concatenations of these operators. This may give insight into the processes of
geometry,

This general view of invariance is attractive in that it embraces forms of all
kinds from the abstract geometric forms to the shapes of living things that are
so obviously continually reformed by recursive process such as we have
discussed.

A well-known example of a geometrical re-entry form is given by the division
of a golden rectangle: (Fig. 3)

Fig. 3




Form dynamics 203

Here we are given a rectangle with sides in the ratio 1:% (1++/3). Successive
cuttings of squares leads to a spiraling sequence of similar rectangles. The given
rectangle is of the same form as the new rectangle obtained by adding a square
to its longer side. This essential identity of part and whole is seen again and
again in natural forms. The whole can be seen in any part, and at any scale at
which the form is examined. Forms of this type (self-similar geometric forms)
have been given much attention recently under the name of fractals (see
Mandelbrot, 1977).

The line between the recursion and the perceived form varies just as in our
abstract wave/particle duality. When the particles are at the fore, their global
inter-relationships lead to exterior forms of description best suited to algebra
and geometry. Nevertheless, the recursion and waveform sounds continually
below and throughout these structures.

As a final example, contemplate the complex numbers. Here is indeed the
mathematical expression of an enchanted realm where waveform and geometry
live joyfully together. All mathematicians know this, and yet our point of view
gives even this place a subtle shift.

Reconsider x* + 1 = 0. View its solution as the happy wave-form solution

to the ‘paradox’ x = -x-! That is, let 7(x) = —x"'. Whence the infinite
eigenform E so that T(E) = E is given by £ = (I(TC...0)) = —(—(-
(= .. )y'y'y') and the associated wave trainis..., —14+1,—1+1,—1 +1,~1,
.2 R

Let R denote all real numbers, and let R = R x R with elements [2,b] with
ab € R. Regard [a,b] as representative of the waveform . . . abababab ce
Make definitions:

(1) [ab] + [cd] = [atcb+d]

(2) [a,b] = [ba] (conjugation is a phase-shift)
(3) V=1 =[+1,-1],1 = [1,1]

(4) [ab] *[cd] = [achd]

(5) albel = [aag] *[be] = [abac]

Now demand a multiplication o8 = of so that /=1 =-1, that is
commutative, associative and distributes over addition. Show that necessarily:
of = Y(a*B + TP + o*F — T*P).

Thus the complex numbers are easily viewed as waveforms. Multiplication

becomes a special operation involving combinations of phase shifts.

a+ /=1 =al + by/=1 =q[l,1] + b(1,-1]1 = [a+ba-b].

Thus a+by/—1 oscillates between a+b and a—b.

Re-introduce the well-known geometry so that a+b\/—1 is represented as
(a,b) in the cartesian plane. View the oscillation as a circular orbiting of a point
at a distance |b |froma on R (see Fig. 4).
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Combine the two (Fig. 5) by associating the orbit to each complex point on the
unit circle in the complex plane. In the diagram each circular orbit corresponds
to two complex numbers a + b/—1 on the cartesian circle, +1 and —1 are
degenerate circles, +/—1 is the large unit circle.

0 NIERNN
///I/Aw ORI \\\\ .

Fig. 5

This view of the complex numbers expands the real line not to the plane but to
a dancing buzzing line with an infinity of synchronized circular orbits
associated to each point.

The two points of view are in mutual support. While the temporality has in
the usual case been restricted to the one circular orbit about the origin (and its
projections as sine and cosine), nevertheless it pervades the complexes from
whatever view we take.

Thus we are only stating the obvious, but we must repeat: the complex
numbers are to the real numbers as the brownian wave-algebra is to primary
algebra. Resolution of paradox at the point of self-reference leads to the
emergence of new forms, temporal and spatial.
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10. Coda

We intended, in this paper, a discussion of form that began as simply as
possible. What is simplicity? The word simple derives from the Latin simplex, a
combination of semel (once) and plex (fold). Thus to be simple is to be of one
fold. This look into the roots of simplicity propels us at once into an entire
complex of ideas surrounding the notion of form.

Let that which is folded be some fabric of unspecified qualities. The fold
provides a distinction within the space of the fabric. And yet the fabric itself
remains essentially whole and undivided. It is our perception of the fold (our
making of it) that divides the fabric for us. The distinction is mutable — a pull
on the fabric or a change in viewpoint will restore the wholeness at once, The
act of distinction, of seeing the fold as a fold in the fabric, becomes the form as
seen. In this sense there can be no separation between distinctions and acts of
distinguishing. Herein lies the point of utmost simplicity.

Even to distinguish ourselves from the fabric is to move into a complexity of
cleavages that is far from being of one fold. In simplicity we can not distinguish
ourselves from the fabric. The fold is our fold. The act is the object acted upon.
The distinction is made and dissolved alternately and simultaneously. For there
is no sequential time in simplicity — only in the inevitable movements into and
away from complexity does the notion of time occur.

Yet in perceiving a form we are aware of time’s passage, of the succession of
that form that is seen to be the same form. To see the form again and yet to see
it as unchanged is a periodicity, a repetition of form. An underlying periodic
vibration, if you will.

The periodicity may be purely temporal as in music, or almost entirely
spatial as in the ornate frieze patterns used to decorate walls and boundaries.
These seemingly complementary views of periodicity merge when we realize
that the viewing or making of any boundary involves a periodic oscillation or
dance across it. There may in fact be no boundary other than this musical
dance. The boundary becomes vibration at a distance. Here space and time
move into one another as our perceptions move toward the one fold.

We must conclude at this point. This paper has been a combination of two
things: on the one hand we have presented a formalization for those intuitions
which are clear to us; on the other hand we have hinted at many other possible
routes in an informal,énd metaphorical way. This seems to be necessary at this
stage of study of form dynamics.

Our approach can be summarized as follows: from the basic notion of
indication and the primary algebra of indications of G. Spencer-Brown, we have
moved into two essentially complementary directions in order to bring out the
dynamic component immanent in a form. First we developed the notion of a
brownian algebra, where waveforms can be représented through sequences.
Second, we expanded indicational forms to infinitary indicational algebras
where re-entry can be expressed properly. The relations between oscillations
and pattern can then be established through an analysis of algebraic operators
which emobody the dynamic quality of spatial forms.

Even at the level of scrutiny we have achieved so far, there is great beauty in
the harmony of shapes and the vibrational quality of indicational expressions.
So far, the music of these spheres seemed to have escaped our notice, except in
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some more special forms (such as the wave/particle duality in qQuantum
mechanics). What we see in the present context is that all of these periodic
phenomena in matter, nature, and art seem to be fundamentally the same,
They stem from the basic act of distinction, of creating a duality of this and
that. This primordial act is pregnant with time, space, pattern and their dance,
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