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Abstract

The complex numbers (ii = -1) and the dual
numbers (i*i = +1) are reconstructed from a point
of view that is closely related to algebraic logic.
A theorem is proved about the uniqueness of the
multiplicative structure of these systems. The
metric of Minkowski spacetime and a parametrization
of the forward light-cone are shown to fit easily
into the formalism given here.




1. Introduction

In [2] T introduced a construction that pro-
duces DeMorgan algebras from Boolean algebras; and
pointed out its similarity to the construction of
the complex numbers from the real numbers. In this
paper I shall pursue this analogy further, produc-
ing what I believe is a useful new way to view the
complex numbers. '

First recall the method described in [2] for
constructing a DeMorgan algebra from a given
Boolean algebra B (with complementation a =+ a’

"and binary operations -ab and atb satisfying the

usual axioms). Let T:B -+ B be given by the formula
T(b) =b”., Then T has no fixed point in the al-
gebra B. In order to sblve the equation T(X) = X~
and have the solution live in an appropriate alge-

bra it is necessary to go to a larger domain 2.

In [2] I let B =B x B with new inversion
(a,b)” =(b",a”), and binary operations (a,b)(c,d)

(ac,bd), (a,b) + (c,d) = (atc,b+d).. Then B is
DeMorgan algebra and there are many solutions to

oW

= X” in B. The two basic solutions are

£= (1,00 and L= (0,1).

More generally, suppose that T : B - B is
given by the formula T(x) = ax + bx” for some

fixed elements a,b € B. Then the sequence T(x),

Tz(x), T3(x),... has period two, If we define T

. % + B by ?(X) = aX + bX” (a(b,c) = (ab,ac))

then (T(x), Tz(x)) and (Tz(x),'T(x)) are fixed

points for T. Thus fixed points for T are built
from the sequence of iterates of TI.

Now transpose.these ideas over to the real num-

bers R. Let T :R‘-»-R’ (R® =R_—{o}) be given
by the formula T(x) = -x_l. Then T(x) = x if

and only if xz = -1. Iteration of 7T with start-
ing value 1 produces the sequence 1, -1, 1, -1,

1,... . The analogy with DeMorgan algebras suggests
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that the two square roots of -1 could be repre-
sented by the:ordered palrs [l 17 and T-1, ,1].

In Section 2 I shall carry out an expllc1L re-
construction of the complex numbers that allows the
identification V-1 = [1,-1]. 1In the order of con-
struction there is first an appearance of the dual
numbers a + bi where i*1i = +1 (* denotes the
multiplication in the dual numbers). Let_q: de-

" note the complex numbers and [D the dual numbers.

Let complex multiplication be denoted af - and dual
multiplication be denoted’ a*B . Then each multi-
plication can be expressed in terms of the other
by the formulas :

aB = ——(a*s + a*B + a*B - a*B)

a*B = %(as + of + aB - ap)

(o is the conjugate of a).

We shall show that the assumption of the existence
of such a reciprocal relationship determlnes these
formulas (Theorem 2. 2)

We then obtain a very symmetrical view of the
metric on Minkowski spacetime [5]. Let/V\ = CxD
and T tM~> R be given by T(A,B) = o —~ g«g.
Then I corresponds directly to the usual space-
time interval. This is discussed in section 3.
Section 4 discusses a parametrization of the for-
ward light-cone in this formalism and its relation-
ship with the Pauli spinor algebra. Section 5 com-
pares our constructions with G. Spencer-Brown's
primary arithmetic P and its natural dual P*,

At least on the level of analogy, complex num- =
bers, dual numbers and spinors may all be regarded
as outgrowths or extensions of Boolean algebra,
hence as forms of algebraic logic.

2. Complex Numbers

The theme of this section is that complex num-
bers arise naturally in considering a process (or
pattern) that may be viewed in two (at least) dif-
ferent ways. Perceptual examples of this phenome-
non abound (figure-ground relationships, multiple
interpretations of a scene,a word or a phrase,
opposites that are seen to be parts of a larger
whole). Perhapslthe simplest. example is an unend-
ing lincar pattern of period two:

.. .ABABABABABABABABABABABABA. ..

This pattern can be seen either as an unending re-
petition of AB or as an unending repetition of
BA. Each view reproduces the pattern, but struc-
tures it differently.
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Let [A,B] denote the AB view and [B,A]"

denote the BA view. Define [A,B] = [B?A] to be

the conjugate of [A,B].

A and B could be merely symbols on the page,
or they could stand for entities with other struc-
ture. To obtain the complex numbers we assume that
A and B represent real numbers and let
C-= {[A,B]|A,B €ER}. The following combination
rules lend themselves for consideration:

1) [A,B] + [C,D] = [A+C,B+D]
2) C[A,B) = [CA,CB] A,B,c,D e K
3) [A,B]*[C,D] = [AC,BD]

Let 1 = [1,1] and i = [1,-1] so that

S ki = 41,

"Note that [A,B]= (é%g) 1 +(?%§§ i, and hence

[A,B] has the form atbi. Thus C with the *
multiplication is isomorphic to the dual numbers
D. (see also [3]). :

" Here D = {atbi|a,be R} and a+bi = a-bi,
(at+bi)*{c+di) = (actbd)+(ad+bc)i. The isomorphism
f (C,*)—> D is given by the formula £([A,B]) =
T (A43) + 2 (A-B)i . Note that £([A,B)) = £([B,A])
= .ETTKTETS. Hence conjugation is preserved by f.

A little exploration now reveals that if we de-~
fine a new multiplication On'cz with the formula
aB = %{u*ﬁ+@*§+&*6—a*é) for «a,8 6(3, then the
resulting system is isomorphic to the usual complex
numbers. This may seem to be a rather complicated"

: 2 i .

route to i = -1, but it is the point at which
the snake bites its tail: As the next lemma shows,

each multiplication is expressed in terms of the
other by the same formula! :

Lemma 2.1. Let o*B and af be defined as above.
Then a*B = %—(aﬁ+a@+&8—&é).

- The proof is a straightforward calculation and
will be omitted. The specific form of this rela--
tionship between the two forms of multiplication is
determined by symmetry assumptions?




Theorem 2.2. Llet ¢ be endowed with two multipli-

cations af and o*B satisfying:

i) aB = Elq*g + Ezu*ﬁ + E3&*B + I

a*p = EldB f E2d§_+ EB&B + Eaaﬁ where

RS
4 !

"By, B,y By D€ R.

ii) aB, op, aB, aB are linearly independent
: as elements of the real vector space of
functions from ﬂﬁﬁto_ 8 :
i1i) o*B = a*B, ap = ap.
iv) o*B = B*a, aBf = Ba, 1*1 =11 = 1,
1% = —if.

. (131 o (ZLL1)
Then (El’hz’E3’E4) = 2;292’ 2 292a2;2 .

Proof. It follows ffom i) that

2 - - _—
7 b3 = 3
E,a*g = EjoB + ElEzuﬂ * §1E3a8 + E E, 0B
- - - 2 — -
% = f .
Eza g EzElaB + EzaB + EZE3dB + EZEAGB
- - —-— .2 =
% = F T A )
E3a B E3Ela8 + E3E2u8 + E3aB + E3E4u8
- —_ - - 2
D X = . . B . T
E4a>8 EALluB + E4E2a8 + E433a3 + E4a§.
Hence » )
g = (E2+E2+E2+F2) B + 2(E.E.+E_E, )ap
0B = (B FE TR FEJab & 2(E B)TE,E, JoB

+ 2(E1E3+E2E4)u8 + 2(E1E4+E2E3)a8-

Therefore it follows from ii) that

2,2, .2 12

El+E2+E3+E4 =1

E E +E.E, =0

172 7374 .
,(*%)

ElE3+E2E4 =0

ElE4+E2E3 =0

It is easy to see from this list of conditions that

- either all four E, -are non-zero or only one of

k
is non-zero. In the latter case the possible solu-

tions for o*B are *oB, *aB, *aB, +af . However,
by assumption ii) the middle two choices are not
commutative thereby violating iii). The outer two

choices do not satisfy 1%k = 1 and 4i*i = -ii .
Thus we may assume that all of 'El’ EZ’ E3, Eal aré
non-zero. Further analysis now shows that Ei.= E;
= E§ = EZ and hence AEi =1, k=1,2,3,4.. It
also follows from (**) that only one of the Ek
can be negative. If E or E is negative then

2 3
the multiplication will not satisfy diii). Hence
the only possibilities are




and

B o By =9 By =5 B =

This completes the proof of the theorem.

-l
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Remark. It is worth noting that the view of com-
plex numbers presented here fits very well with the
usual geometric interpretation. '

a + bi = [a+b, a-b]

We see at+bi as a periodic oscillation between
a+Db and a - b. Consider, in the complex plane,

*a point orbiting a on the real axis by a distance

|b]. (See Figure 1.) The orbit intersects the
real axis at a + b and a - b .

/’—.‘f?’_‘\\\\\\"a+bi = [a+b,a-b]

N =
/~ N

aTb a v a+b

I ——

. . - 2.2
Remark. Let o = atbi. Then oot =a +b~ and

a*q = az—bz. In the sequence notation we have
2 .2
(4,81(A,8) = 272 ana [A,BI*TA,B] = AB . De-

fine norms in the complex and dual numbers respec—
tively by N (a) = oa, N¥(a) = a*q.

It has been remarked [4] that the norm in the
dual numbers gives it the structure of a spacetime
plane (one space coordinate and one time coordi-
nate). Note that the lightcone (i.e. the set-of
points with vanishing norm) is then given by the
set of [A,B] such that AB = 0. Hence the light-
cone consists of the multiples of p =.[1,0] and
q = [0,1].

Note that p =gq, q =p, p+q =1, p*p = p,
1t 1-4 -

3 = * = - e
q*q = q, p*q = 0, p 5 0 4 5 -

Thus if we had constructed [[) over the two element
Boolean algebra, then the lightcone would have form-
ed a Boolean algebra with conjugation corresponding
to complementation. Thé Boolean pattern is reflect-
-ed in the real construction. '

“pep
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3. Minkowski Space

Let € denote the complex numbers and © de-
note the dual numbers. Define I :€xD—>R by

I(a B) = aa - B* = N (a) - N¥(8).

Lemma 3.1. If o =X + iy, B =T + iZ bélong to
C and O respectively, then

I(o,B) = Xt +v2 4+ 2% - "_rz .
Hence M = €X{D with the interval I M—+R can
be identified with the Minkowski spacetime of spe-
cial relativity [5].

Remark. This version of spacetime has appeared in a
somewhat different guise as hermitian 2x2 matrices
(see [6]). Let

Wu <T+Z | X—iY)‘ %, 1.z, 1€R

X+i¥ T-Z

Then

THZ  K-iY
~ 2 2 2 2
D =" - X - -z,
et <X+i§? -7 T -tz

This representation is formally identical to ours,
but avoids the use of the dual numbers. Each repre-
sentation has its own advantages.

Qur lepresentatlon with its close symmetry
between @€ "and [D , is very suggestive mathema-
tically. Here cvents of spacetime are paired
points (o,B) from the mirrored planes C andD .
A point. (a,B) 1is on the lightcone in four dimen-
sional spacetimeexactly when the norm of ~o in
C agrees with the norm of 8 in O . Each of .
C and D arise from the less structured fi , and
G itself comes about by delineating views of the
pattern ...ABABABAB. In this sense gpacetime
arises naturally w1th the making of a distinction
(compare [7]).

Remarkably, the hermitian viewpoint also has
Minkowski space bound to a distinction.  Here the
arena is quantum mechanical (see [6]). Let S be

a quantum system with two observable states P and

Q. Then the wave-functioms for S consist of all
pairs of complex numbers Zl’ z, such that

2 2
|2, | |
correspond to the collection of hermitian sperators
on S. Thus in this system the observables corre-
spond to the space of 2x2 hermitian matrices

+ |22 = 1; the observables for the system

It would be very interesting .to better under-

stand these relations between our mathematical view’

and the view point of quantum physics. (See also

(0.




I believe that the phenomenological view of
complex numbers (as sketched in Section 2) is sig-
nificant in this regard. Spacetime;‘for an obser-
ver, is constructed from an enormous number of ‘dis-
tinctions generated just as we have generated the
distinction between [A,B] and [B,A], or between

Cand D --—- by framing a viewpoint of a ground-
form where a distinction is latent. To observe at
all entails such choice. Mathematical spacetime is
the bare bones of this process.

4. A Parametrization of the Light Cone

For each pair of complex numbers (a,B) € (?XG:
form the following element A of M=CxD : :

A= (Ao Ay) = (aB, [aa,8B])

Lemma 4.1. The element A liés on the lightcone of

M- That is, N A)) = N*(Az)

Proof. N (Al) = (GE)?gﬁa = aa BB = N¥Q

completes the proof.

2)v. This

Note that when o =0 or B =0 then the ex-
pression for A reduces to the form (0, [0,k]) or
(0, [2,0]), corresponding to the lightcone in the
Minkowski plane as discussed at the end of Section
2. Since ao and BB are both positive, this does
not. parametrize the entire lightcone.

In fact, this parametrization is equivalent to
one that arises from the Pauli spin matrices in the
hermitian represéntation. That is, if

T+Z x—iY>= <1o)+ (()1>+Y<O—i)
XHIY  T-Z Mo/ X 10/ T Y \4 of
1 o>
+z(0_l |
_10) 0=1o)0=(01
let 05" \g1/>% " \o-17"%"\10/°

£70) -

03—' .. O .

0’ 61’ 02, 03 are called the Pauli
spin matrices. They satisfy the identities

2 2 2 _ o 1 R
o = 02 = 04 = 0y 0,0, io,, 0,04 io),

The matrices o

= jg., and hence form a version of the .quater-

9371 2
nions. . v
To obtain a point on the lightcone let
- - = k. -
u = (g) and u = (a,B) . Define X = uo, u for
k=0, 1, 2, 3. Then it is easy to verify that

—_—
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(XQ)2 = (Xl)2 + (XZ)2 + (Xa)2 and hence that the
Xk yield a parametrization of the positive light-
cone (see [8]). In fact, it is not hard to verify
that this parametrization via the Pauli matrices
translates directly to the element of Lemma
4.1. It correpsonds to the Hermitian matrix

(aa oB
0@ B

Hopefully, this is only the beginning of an
interaction between these formulations.

é, Primary Arithmetic and its Dual

In his book, Laws of Form [7], G. Spencer-
Brown shows how to develop Boolean algebra from a
ground that is simpler (at least to the eye of a
geometer) than the usual set theoretic basis.
Mathematically, the structure of this primary

arithmetic is as follows: ©Let P denote all

finite disjoint collections of circles (of various
sizes) in the plane. Size does not really matter,
and two such collections (called expressions) are
regarded as the same if one can be re-arranged to
the other by sliding or expanding the circles (but
not pushing one circle through another). Thus

00

00 is the same expression as 0 0 0 0

Two ‘basic steps are introduced: 0 0 = 0
(coﬁdensation) and C)-é (cancellation). 1In the

second step the two concentric circles are removed
from the configuration in which they stand. At the
outset each type of step must be performed as speci-
fied. " That is, condensation requires two empty ad-
jacent circles, and cancellation requires two con-
centric circles with the inner circle empty.

Any expression can be uniquely reduced by
these steps to a single circle, or eliminated en-
tirely. For example:

@9:-@9 o= @o—o

In order to see that the reduction is unique it
suffices to give a well-defined method for comput-
ing this reduction directly from the expression.
Let m denote the circle (marked) and n denote
the blank state (unmarked). Then label the éxpres-
sion using <>==x1,Q3 =m mm=m, AN = N, mn = m,
starting from the innermost circles:

This labelling process is easily seen to yield the
same result as the step procedure. It amounts to

viewing the expression as a signal-processing de-

vice with each circle in it acting as an inverter

to the signals inside it.

T
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This prlmdty arithmetic P Lends itself to
algebraic description. For cxample .@ a

for any expression a in D . Note that in order
to do this by a sequence of steps, we must first
reduce ‘a to m or n, then apply cancellation,

then re-construct a .( v+ can stand for a se-
quence ‘of steps). Juxtapdsition of expressions is
the composition law in the algebra and is denoted
by ab. Any number of expressions can be juxta-
posed. Thus commutativity and associativity are
implicit in the topological background.

The primary arithmetic contains no solution to
®@ = a (corresponding to a” = a) but there is
an obvious solution if infinite expressions are

allowed: 4
be an infinite descend-

array of concentric circles. Certainly J = C:).
Adding such elements to P involves extensions
analogous to the formation of DeMorgan algebras

(see [3]).

Now consider that P itself is something like
the complex numbers--its 'mumbers'' live in the
topological plane. Furthermore there is a candi-
date for "dual numbers' ®*, obtained by switching

‘the condensation and cancelation rules:

P ] P*
00 «—0 00~

@D ~ ()’f* 0 | .

P* is an "exterior" calculus; the result of a sim-
plifying step procedure is obtained at once by a

" mod-2 count of the number of outer circles.

That is, @ < 0 'in  P* and so

® Q@ .. @~00...0«~0 or

(blank) according as the number of circles is odd
or even. P* is algebraically very weak (just so
with ® ) but it contains a solutlon to X<
(namely X = 0).

Juxtaposition in P* can be expressed via the
operations in P . The formula is

<b"‘¢@ Then O%0= . Note the‘ anal-

ogy with our formula (Lemma 2.1) expressing the re-
lation between complex and dual multiplication.

I offer these remarks about P and PF in the
hope that they will spark further development.
The analogy with space-time is particularly
strong: P represents the hierarchical time-
bound, process-oriented, interior side. P* cor-
responds to the world of exterior surfaces of - un-
known internal structure. P and P*, taken together,
yield a void: 0 -— 00 —> :

' [ o4 p*

In this regard it is worth noting that in our
space-time interpretation of Cx “) the time
coardinate occurs onlv in D




‘To quote an old result. of seorge Gamow: The

‘tre:zsure is buried»at V-1 ! (See [1] page 47),
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