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J. Solving Quadratic Equations by Iteration.

2

You already know that ax”~ + bx+ ¢ = O has the general solu-
2
tion x = ~b & ga = dac . Thus, for example, x? - x=-1=0 has
the roots x =150 ang x= lhé}éﬁi. Let's look at this in
another way. If :
x2 -xXxX=-1=0

then : xe =X+ 1
and therefore ‘ x2/x = (x+1)/x
so x=1+ 1/x.

Thus if we define the function f£(x) = 1 + 1/x, then a solution to
our quadratic equation will be a fixed point x such that =z = £(x)
It will be a point left fixed by the function . |

The reason that this is interesting is that we can actually
-approximate a SOlution by iterating f£. Try the following experi-

ment on a calculator:

£fx) =1+ 1/x

f(1) =1+1/1 =2
£(2) =1+ 1/2 =1.5
£(1.5) = 1.666...
£(1.666--.) = 1,625
£(1.625) = 1,615+
£(1.615--+) = 1.619...

£(1.619...) = 1.617---

'3(1.617...) = 1.618+++ & J;E%QE



As we keep applying f over and over again, we get closer and
closer to the root (1 + J5)/2. |
This provides‘ a way of numerically apprbximating the roots of
an equation. Hence it can be used to advantage if you have a cal-
culator or a small computer. The method can be used for other

equations than degree 2. You might like to try.

X -x -x-1=0
x3 = x2+ X+ 1

x3/x2 = (x2+x+ 1)/::2
x =1+ (1/x) + (1/x°)

So let g(x) =1+x+-% and try g(1), eg(l), eza(l),...
‘ X

n times

o\

Let f£%(x) = ££f ... £(x)|

Getting back to f£(x) = 1 + 1/x, note that

£(1) =1 + 1/1

f2(1)=1*?(lT)'=1+11%
1
r3(1)‘=1+f2(l) =l+—

1
l+l



Exercise 1. Using f as above, show by direct computation that

£(1) =2/1
£2(1) = 3/2
£(1) = 5/3
£*(1) = 8/5
£7(1) = 13/8

and generally that fn+l(l) is obtained by
1) add numerator and denominator of f£7(1).

' This will be the new numerator of f£7T1(1).

2) The denominator of fn+l(l) is the
numerator of f£°(1). |

Thus i
fs(l) = (13+8)/13 = 21/13

. f7(1)_= (21+13) /21 = 34/21

ete...

The series of integers

i, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,...

1/ | I
l1 2 3 5 8 13 ...
+ + + + + +
112 3 5 8

is called the Fibonacci Series (invented by an Italian mathematician -
Fibonaccl in the 1500's) and has many interesting properties. For

example



12=12 41
1.3=2% -1
2.5=3%+1
3.8=5 -1
In particular, we have seen that the fractions -]l:, -?_— ’ % ,%,—g—,...
converge to ;h%%JZE .
Exercise 2. ILet's look at x° - 2x - 1 = O.
a) Show that x2 - 2x - 1 = 0 has roots
x=1%+.2.
b) Show that x is a solﬁtion of x°-2x-1

if and only if h(x) = x where h(x)=2+1/x.

Compute h(l), ha(l), h3(l), hu(l), using a
calculator. Compare h (1) with
1+/2=1+1.414... = 2. 114...

By working out the fractions

h(l) =2+ 1/1 =3
h(3) =2+ 1/3=1T/3
h(7/3) =2 + 3/T = 1T/

h(17/7) =2+ 55 = 3% , n(3%) =

we get a series of numbers

3, T, 17, 41, 99,...

What are the next few numbers in this series?



e)

£)

What does the series have to do with .27
HINT: ' Compare 99/41 with 1 + .2,

Explain why the equation

2+ 1 =1+ /2

makes sense!

HINT: From what we have done you should begin

to see that l—;—‘/j =1+ 1 makes
1+ 1
1l

+ 1 .
l+ ¢ e @

sense in terms of the approximations. Also, if

x=1+ 1 , then x =1+ & .

F i— .

What number is represented by

3+ 1
5+ L

53+ 1
3+

Y
>+ 1

—

3 +

L
3+ ... 9

34+ ...



g) What number is represented by

JE 4

1
M2+

bl
+
[~

+1
J2+ ... ?

Exercise 3. What number is represented by

"t A+t Ao =W
(HINT: w=JT + W) ’



ITI. But Not All Quadratics Solve by Iteraﬁion.

The iteration method doesn't always work! You know that some
quadratic equations don't even have any real roots. For example
x? + 1 = 0. What happens if we try iteration here? Well

X +1=0

X = -1
x?/x = -1/x

x = ~-1/x.

Let ' F(x) = -1/x
P(1) = -1
FF(1) = F(-1) = +1
FFF(1) = F(+1) = -1
FFFF(1) = F(-1) = +1

And so it goes, Jjust oscillating back and forth between +1 and

-1.
In order to get a solution to x? + 1 = 0 mathematicians had
to invent a new number 1 = ./~1 so that 22 = -1, You already

known quite a lot about this.
It is, however, very interesting to see what kind of patterns
arise when we attempt to solve a quadratic, whose roots are imaginary,

by the iteration process.



Example: . x? - X+ 1=0 s80 Xx =

2
Iteration: x2 =Xx -1
x=1-1/x

Let F(x)_= 1-1/x

F(2) =1 -1/2 = 1/2
F(2) =1-2=-1
P (2) =1-(H) =2

F4(2) =1-1/2 =1/2.

So F“(a) = Fl(z) and the sequence has
periOdB: '2]:"-1,2’-2];,-1;2!%!-1323'°‘

Extra Credit Exercise 4: Try out more examples of this type.

For example, investigate X° - x + 2 = O along these lines. That

1is, try iterating f£(x) = 1 - 2/x.




III. Complex Numbers and Optical Illusions.

You are probably familiar with the so-called Necker cube illu-

sion: It is a picture of a cube that can be seen in two ways.

The illusion, and the way we tend to oscillate back and forth be-

tween the two views, is generated by the ambiguity of +
which the mind interprets as a crossing of type + or of type

] ' .
| . That 1s, like u::ﬁ:: or q%: )

Of course both cubic views are just in your mind, and certainly

the difference between the two views is purely imaginary (a matter

of image-ination)!
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I like to think of +J/~I and -./~I as being something
like the two views of the Necker cube. They are both our attempts
to "jump out" of the oscillating paradox presented by x = -1/x.
How, you may ask, do you arrive at two views from the paradox?

Well, let's éee (I'd better think fast.), the paradox arises
by trying to solve x = -1/x by iteration. We start with -1
and get +1, then -1, then +1,...

-1, +1, -1, +1, -1, +1, -1, +1, -1, +1,...
But we could have started with +1 and then
+1, -1, +1, -1, +1, -1, +1, -1, +1, -1,...

If you and your friend had each started at the same time, one
with +1, the other with -1, you'd find yourselves chanting
opposite numbers at the same time! Each taking a different view

of J-1.
Let's put this another way. Suppose I start intoning:

PLUS, MINUS, PLUS, MINUS, PLUS, MINUS,...

and you listen to me. After a while it will start sounding

PLUS MINUS, PLUS MINUS,... and then it will switch to MINUS PLUS,
MINUS PLUS, MINUS PLUS,.;. I'm not doing that! You're doing it.
The difference is in yoﬁr Imagination, and you get two views
(soundings really) of my chanting in a way perfectly analogous

to the Necker cube illusion!
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Thus we might try to say that J~1 is "really" the pair
[+1,-1] (or is it [-1,+1]?) where this denotes the PLUS MINUS
take on the sequence ... PLUS MINUS PLUS MINUS...

It is actually possible to make mathematics out of these

i1deas. The algebraic version is called matrix algebra. In matrix

algebra we represent /-1 by an array [_g (]5] and -.-1 Dby an

array [g -é:l (I'11 tell you about the zeroes in a moment). Notice

how and @ are the basic ingredients in the array, just

as we have wanted.
The zeroces are locations for the real part (which does not

oscillate). In general a complex number a + bJ=1 1is represented
by the array [_22 . Thus 3 + 4,/-1 corresponds to [_2 ;]

In this system the array [% g corresponds to 1+ 0./-1 =1,
the number éne. The next exercise shows you how to multiply these

matrices to make things work out right. For more information read

“the chapter on matrices in the text.

Optional Exercise 5. Define the product of two matrices by the

formula

xz]AC _[xA+zD xC+ zB
w y4dlD BJd ~ LwA+yD wC+yBl*

Thus

BIRY-BE phEn-1a3
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mow:. ») [ ST4 8- (80

0 170 17 _r-1 0
o) [Jellacl=[5 23
(This corresponds to (J_-l)2 = -1.)
' "[a DbDJfec 4] _[ac-bd ad+be
c) [-b c][-d c] - [ad+—bc ac - bdJd’
(a+bi)(c+di) =
(ad - be) + (ad+ be)i.

This corresponds to
Exercise § Give as many examples as you can of ambiguous situa-
tions (like the Necker cube) that have multiple interpretations.
(Look at other optical illusions, word games, things you see ‘and
hear, .. perhaps after awhile and gome imagining yqu'll begin to
wonder what ‘doesn't have a multiple interpretation!)

Exercise 7. Discuss:

Exercise 8. Discuss:
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IV. The Geometric Interpretation of J/-1.

The paradoxical nature of -1 gave early mathematicians
much uneasiness (Just as at an even earlier time there was some
anxiety over irrationals like the 2 and #) until Carl Friedrich
Gauss, in the early 1800's, save a beautiful geometric interpreta-
tion. (Also due to C. Wessel, a Norweglan surveyor and J.R. Argand,
a Swiss self-taught bookkeeper.) The geometric interpretation is
simplicity itself! We let a+bi (i =4/~1) correspond to the
point with coordinates (a,b) in ths Cartesian plane. Thus i
resides on the y-axis and stays out of the affairs of reality,
which are conducted along the x-axis. That 1s,‘the purely real

numbers lie on the x-axis.

. o+bi

This dilagram is a remarkable geometric embodiment of the statement
of Leibniz (1700's): "The Divine Spirit found a sublime outlet in
that wonder of analysis, that portent of the ideal world, that

amphibian between being and non-being, which we call the imaginary

root of negative unity."
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> %
-1 +1
Nonbeing Being

We shall often represent a point by the vector from the origin

to that point.

Thus

S 4

vector

'The vector corresponding to a point is Just a directed line segment

from the origin to that point.

We usually draw it as an arrow, with

the tip of the arrow touching the point.
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® a+ b

‘o™
o/

The first fact that dawns with this geometry is that

multiplication by i = /-1 rotates vectors by 90°.

{

Exercise 9.

angle « 1is

Exercise 10.
graph paper.
-4+ 3% make

Using the geometry in the above diagram, explain why

necessarily 90°.

Plot 3+ 4 and i(3+4i) =3i-4 = -4+3{ on
Show graphically that the vectors for 3+ 41 and

a 90° angle.

Note that we

F oW
~7

now can understand geometrically why ii = -1:
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-1 . .
I - 90 0
xiIx(+1) <« LIN — + 4
2x &)
A
X)) < >+l =2x2x2x2 % (+1)

260° = 90°+30°+90°+90"

v .
X 2x 2 % (D)

Ne

There 1s much more to this. First of all the lengths of the
vectors are contained intrinsically in the algebra of the complex

numbers. View the next diagi-am:

,\-5=a,+bé
b
|

Eg."i’»@go*wm;’::} c* =df’+ba‘
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Thus ¢ = ¥ a.2 + b2 is the length of the vector corresponding
to a + bi. Now recall that if z =a+ bi and zZ = a - bi (its
complex conjugate) then

zz = (a+bt)(a-Dbt)

= (a)® - (vi)?

a.2 + b2.

Thus c¢ = ¥zz, and lengths can be defined entirely in the algebra.

Exercise 11. a) Let z = %‘- + ﬁi . Compute zz.

2
b) Let z=12a+ bt, w=c + di. Using zw = zw,
‘show that (zz)(ww) = (zw)(zw) and hence,
(a%40°) (cP+d?) = (ac-bd)? + (ad+be)?.

(HINT: zw=(ac-bd) + t(ad+be)).

Furthermore, it 1s not Just multiplication by t = /-1 that ha.s

a geometric Interpretation. There is, in fact, a simple interpre--

tation of the product of any two complex numbers. In order to

understand this, we need to recall a bit of trigonometry:

a) 4.

S
cos(e)

=> Sin*(8) + cos?(e) = 4
(sinrCe) = Gine )

definition of sin(8)
and cos(8).

sin (@)
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ﬁ) sin(8 + @) = sin(8)cos(g) + cos(8)sin(g)
cos(8 + 8) = cos(8)sin(g) - sin(9)sin(g)

These are the angle-addition formulas. Please, just be will-
ing to use them. We won't prove them, but if you are interested.

they are in any boock on trigonometry.

Example: 4. eo° o (300) Show that
| 2T sin(30%) = 12
Q
39 - cos(30°) = .J/3/2
cos(30°)

Solution: By flipping the triangle we see that
sin(30°) = cos (60°)

and cos(60°) = cos(30%+30°)

= éos(Boo)cos(BOO) - 5in(30°)sin(30°)

cos® (30°) - sin® (30°)

= (1 -sin®(30°)) - sin(30°)

8in(30°) = 1 - 2 sin>(30°) .

sin(60°)

60° O
cos(go°)
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sin(30°) =>

XxX=1 - 2x? or

Hence if x

2x? +x-1=0

-1 + ,/1+8
2.2

=> X = :lEEE ==-1 or 1/2

5L sin(30°) >0 => |sin(30°) = 1/2

=l=>x

since sin2(300) + eos2(300) =1

we get |cos(30°) = J/3/2].

Now let's consider complex numbers of unit length. These are

_of the form z = a+bt with a2+b2 = 1.

Z=a+b?

b

@

Thus we see that if € 1is the angle that the vector of 2z makes
with the x-akis, then
a = cos(8)

b = sin(9)

and \ z = cos(@) + tsin(8)| .




20.

With this help we can prove the following.

Theorem. The product of two complex numbers of unit length is a

complex number of unit length. The angle of the product with the

x-axis is the sum of the angles of the factors.

In other words,

[cos(8) + + sin(8)][cos(g) + ¢ sin(ﬁ)]
| I |

[cos(8+4) + t sin(8+4)]

The same result is true about the angles for the product of any two

complex numbers. In general, the length of the product is the pro-

duct of the lengths.

J2

Example: z = cos(45°) + ¢ sin(45°) = S+t 2

. Therefore we

ol

expect that

22 = 2z = cos(45%45°) + § sin(45%+45°)

= cos(90°) + t sin(90°)
=0+ t-1

22=i

Indeed: (2 +i42) (2 + ;42

—*/52+2i*/§2-'/§2
=5 T - 1
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Here is the proof of the theorem:

[cos(8) + 1 sin(8)][cos(g) + ¢ sin(d)]

[cos(0)cos(d) - sin(8)sin(4)] + i[sin(e)cos(ﬁ) + cos(8)sin(4)]

(by multiplying these complex numbers)
[cos(8+8) + t sin(6+4)]

(by using the trigonometry formulas for

the addition of angles).
Thus the result is just an expression of the angle addition formulas,
using complex numbers.

We leave it to you to see that the length of the product is

the product. of the lengths. (HINT: You can write any z 4+ 0 in
the form z = RW where R > 0 and W has unit length.) (Or see
Exercise 11.)



22.

For example z=3+4i=«}32+42 ( b + 4 ;)

and length of (2 + -g- i) s

2 |
[P &7 - 5L -aan

One of the consequences of this result on the geometry of complex
multiplication is that we can solve the equation 2D = 1 for

n _different roots. This is done as follows:

Let @ = cos(inoo-) + sin(%o) .

, Herev w = cos(%g)+ 1 siﬁ(j%o)

= cos(45°) + isin(45°)

3 _
w="2 4 ;L

Then 1, w, w2,...,wn-l are the n-distinct solutions to z® = 1.

Our geometry.of multiplication tells ué that 1, w, w2, ... are

equally spaced around the circle by increments of the angle 360°/n..



Example: Find all solutions to the equation 23 = 1.

| on: 60°%Y , . .. (360°
Solution: Let w = cos(%) + i sm(lB_)
w2 = cos(120°) + i sin(120°)
6 \RO° = -cos(60°) + { sin(60°)
+ 1, i3
9=zt

Let's determine me in two ways:

9 Fe(-3+i D) (34
(-3 - (D) +2(-2) (L) :

34

€
i

-g‘ . o

|4
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b) By the theorem

2 360° | 360°
- w=w=cos(3+3)
- 360° |, 360°
+ tsin(,3 + 3 )
4
= cos(240%) + i sin(240°)
W

-cos(60°) - i sin(60°)

. 2 1 _J3
oo w---2- 21.

(Note that we got the same result!)

Thus the solutions to the equation 23 = 1 are
1 . 3 1 « J3
L(3+ i ), {5 - *fez)
I I

2
w w

Hence

2> -~ 1 = {z-1)(z-w)(z=c).

Exercise 12. Find all solutions to the equation z6 = 1.

Gauss proved the Fundamental Theorem of Algebra which says
n-1
Z -

+...+ alz + ao =0

that any polynomial equation anzn +a, 4
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has solutions in the complex numbers. If a + O there will be
n solutions (sometimes counted with multiplicity as in (x-3)2=0).

Our example of z8 - 1=0 is a special case of Gauss' Theorem.

Exercise 13. a) Find all solutions to z° = -1. (HINT: if =1

then (-x)3 = =1.)

b) Solve z> =2. (HINT: If x = 1, then (32x)> = 2.)
Another special case of Gauss' Theorem is the quadratic formula.
which exhibits the roots of a quadratic:

a.x2+bx+c=0

-b & *1132 - hae
2a

There are similar formulas for cubics and fourth power equations

=~>x=

but not for any higher degrees. This negative result (and many
positive consequences) was proved by Evariste Galois (in the 1700's).
Galols died in a duel at the age of 21, but in his short life, left
a legact of mathematics that continues to bear fruif even i:o the

present day.

Exercise 14. (Solving the Cubic.)

a) Show that by setting Y = X - a/3. we may reduce the
cubic equation

% +ax° +bx+c=0

to the form Y2 + PY +Q = 0.
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b) Reduce X’ + X* + X+ 1 =0 to the form YD+ py+q = O
via Y = (X-1/3) and determine P and q.
¢) Consider the cubic equation

X +PX+Q=0 (P and Q constants).

Let X = A + B, substitute and show that we get

A% + B2 + (3AB+P)(A+B) + Q = O.

Thus we would get a solution if

A +B+qQ=0

3AB + P = 0.

But if 3AB + P = O, then A’B® = -P>/27. So we

would have
A+ B =-q
a%p° = -P 21
Knowing P and Q we can solve for A3 and 33 since they

are the roots of the quadratic x? + Qx -~ P3/27 = 0, Hence we

can take cube roots of the solutions to this quadratic. add them

up and get solutions to the cubic. This is an outline of a general

method for solving the cubic.
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S -Q =6
3
-PPper = - (231 _
3
Sowe have A2 + B = -Q = 6
A3B5=-P3/27=8.

Hence 'AB, B are the solutions to

x2 -6x+8=0
(x-2)(x-4) = 0,
So we take A3 = 2, 33- = 4,

Letting w = cos(120°) + 1 sin(120°) = - -2]=+ g t We have

i 1 pA
A =22, 23y 238

and 11 1
B =4, Yo 8.

Hence the solutions X =A+ B of x - 6x - 6 = 0 are

- i 1 1 1 1 1

x=2+ 8 or 2w+ B or 238 + W, (Note that we need
AB = -~ % real Since the original conditions are A +B3 =-Q =6
3AB = -P = 6.)
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Ry 1
Problem: Check by.direct substitution that 23 + 43 and
e

1 1 .
23a:+ 43u? are solutions to x3 - 6x - 6 = 0.

(HINT: You may use the fact that «’ =1 and that 1+ w+o=0.

Do not write out w in its real and complex parts.)

Problem: Find the solutions to the cubic = - 6x - 9 = 0.
(HINT: Note that x = 3 is a solution. Hence you can check
your answer by another route!) |

Work this out using the method of solution that we have out-
lined.

e
A 4

Remark: Any cubic equation has real roots, but the problem of
solving the cubic gave great impetus to the development of complex
numbers! There are many cases where the only way to get a formula
for the real root of a cubic involves using imaginary values. This
will happen when the associated quadratic equation has imaginary
roots. (Try solving © - 3x - 1=0.)

This ends our journey into some of the intricacies of poly-~
nomial equations and complex numbers. For a return to the ideas
in part I you might enjoy the following iterative scheme for
solving a cubie (for a real root):
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X = Rx + § (R=-P, S=-Q above)

=D 2x3 = x3 + Rx + S

2x = x + R/x + S/x2
1 .2
x =~§(x + R/x + S/%%) = £(x)
To get a sequence of numbers converging on a root of x3 = Rx+ S
take a constant K and compute
£(k), £e(8), £re(w),...
For example, if you try this for
1 2
£(x) = E(x + 6/x + 6/x%)

you get

£(1) =31+ 6+ 6) =32 = 6.5
£2(1) = 3.7825
£2(1) = 2.89%40
£*(1) = 2.8k18

£9(1) = 2.8480
£8(1) = 2.8u72
f7(1) = 2.8473
£8(1) ='2.8473
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So 2.8473 should be an approximate real root of x3ﬁ-6x - 6 =0.
We know that 2%/2 4+ 4173 15 a real root and in fact, you can check
that this is a good approximation to 21/3 + 41/3.

F(x) = 2(x + A/x°)

will iterate to
produce Al/3.

1
2> = 1.25992105. ..

1

¥ - 1.587401052...

1 1

27 + B2 = 2.847322102...

FINIS
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SUPPLEMENTARY PROBLEMS

The following paragraphs are each a cross between a problem
and some new informetion. In each case you can have a good time
thinking through the material and trying out variations on these

themes.

This is one of the great mysterious equations of mathematics.
You know all of its symbols, 1 = /-1, 7 = 3.14159.7., except per-
haps for e. e is also a real number. Its value is approximately

e = 2,7182818... More precisely, e = limit (lﬁv%)n. For example,

nee
you can check on’'a calculator that (l.Ol)loo ~ 2.7, a good first
approximation, This number e is very special; it comes up in
studying compound interest, logarithms and it is fundamental to
understanding complex numbers.

One can see that

e* = 1imit(l + x/n)", Do you believe
nre this? Why?

Because there are good ways to evaluate this limit, e is used as

the base of the netural logarithms. Another, and computationally

X

useful, version of e is given by the formula
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Here
1! =1
2t =1-2=2
3!'=1:2-3 =6
4t = 1.2.3.4 = 24
5! = 1-2:3-4.5 = 120
6! = 1-2:3-4-5-6 = 720

ete...

Exercise: Use the above formula to get an approximation for e

by computing

L
1

1.1 .1

- N Tt Ert é%-+ =

1+ BT 3

+

Py,
™

If we allow e to have an imaginary exponent, then life gets eveh

more interesting:

Theorem: (Euler's Formula)

et? = cos(8) + i sin(8)

We won't prove this formula, but we can easily show you how and

why it works: Consider 1 + (8/n)t for Pixed 0 and large n.

—_— -

For n' very large, €/n 1is very small and hence



cos(Q/n) ~ 1
sin(e/n) =~ 8/n.

In radian measure sin(¢) = ¢ for small ¢.
In radian measure the angle is the length of
the arc on a circle of radius 1. Thus

360o = 27 radians.

Hence (l‘+ %g_ . cos(%)-+'isin(%).

Therefore

eai"e ] (l + %g)n since e* ~ (l + ﬁ)n

large n
= (cos(8) +  s10(2))"
[

cos(8) + ¢t sin(8) [Why?]

vt s cos(8) + 1 sin(8).

33.
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This approximation gets better and better for large n and

allows one to conclude the Theorem.

Exercise: Explain how the formula

e+ 1=0
can be deduced from the Euler formula e'° = cos(8) + ¢ sin(8).
(Let & =1m.)
‘Exercise: Show
J-1 ~ e™7/2,

2. Work out a formula for solving the cubic x + Px + Q = 0,

5. If x2 = aX + b, then iteration suggests that

X=a+b
a

+ b
a+b
a+ ...
In the case of real roots, which root does this represent?
(Do some calculations). Note that here we are iterating

f(x) =a+ b .
X
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If g(x) = |x

then gz(x) = x
() = ||| =
gu(X) = x

]
@]

infinitely many boxes
( (:Lgs 1dey )

men eleh = [ah

Try iterating F(x) = | x| x .

What does an "infinity box" solution to F(x) = x 1look like?
Try drawing a picture of it.
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By what rule are we generating these pictures? What is the

next stage??

A &

6. Ir e'? = cos(8) + i sin(8), then
cos(8) =% (e‘;e + e"’e)
sin(8) = (et - &7t9)

What happens to these formulas if you write

. . a2 « 2y 3
t-:*‘e =] 4+ (;_?) + (‘291) + ("38!) + ... ?
Note that since 1§ = ¢, i2 = -1, i3 = -1, i4 =1
=> iS =4, ete...
. 2 y 6
Thus e”e=1 ‘ -%f- +-§-!— -%T +...

+
=
H

+
I+
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This suggests that

and hence we are led to guess that

2 4 6
cos(9)=l-—g-?-+§7-%!—j_-_. .

3 g5 o7
sin(9)=%--§—!+-g—!--e—!i...

These series formulas for sin &and cos are correct! Yéu can
check them by taking the first few terms from each series and com-
paring the result with what you know or with the trig functions on

your calculator.

EXAMPLE: We know sin(45°) = sin(}) = @ = .707... Now

(/%) _ (a/%)> | (z/)3
11 31 51
Il

.78 L4g4uT .29884
—1552'——6—+—1-26—

.78536 .0807T4 + .00249

.70711



