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Some Notes on Teaching Boolean Algebra
by

Louls H. Kauffman

I) Introduction

These notes constitute a sketch of some ideas for teaching
boolean algebra that I have found particularly useful. I feel
that the approaches sketched here are particularly helpful on a
number of levels:

We shall begin with a very simple symbol system that is
mildly geometric. This makes for an easy introduction for students
harboring the usual fears of symbolics. It also allows for dis-
cussion of Jjust what 1t is we do when we set out a formal system.
Finally, this system leads immediately into some simple problems
involving recursive calculation: (hence its interest for computer
science).

Recall that a boolean algebra is a set B with binary opera-
tions +,X and a unary operation a +» a’ satisfying:

1) + and x are commutative, associative.

2) + and x distribute over each other.

i

That is: a + (bxe) = (a+b) x (a+c)
a X (b+c) = (axb) + (axc)
Va,b,c,e B.

3) (a’)’ = a Va ¢ B.

al :
AN Ya € B.

al

o




5) There exist unique elements 0,1 € B so

that 0O x a

il

0, 1l x a=a

1l
]_J

O+ a = a, 1+ a
Ya ¢ B. And 0O’ = 1.
6) (a+b)’

Il

a’ x b, VYa,b e B.

a+ a’
7) 5 % af

o

é} Ya € B.

Examples of boolean algebras abound:

i) Let B = the set of subsets of a set X.
Let O

il

g, the empty set, and 1 = X.

Let a+b=alUb (union of a and b)

]

and a X b =anb (intersection of a and D).
ii) Let B be the set of diagrams composed from

elementary diagrams of type P ) =B g N

S

2 p’

The elementary diagrams are interpreted as single-

throw switches. s /{F%*_ o
Y p =

1
p =0
Each letter p € & can take the two values p = 0, p = 1.

For a switch labelled p, O denotes "Open" and 1 denotes

"elosed". (For p’ it is the opposite.)

We define addition and multiplication of elementary diagrams:

where p e & (£ a set of symbols).
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In general an element of B will be a diagram of type ->{J>—
where the inside of the box is some switching network whose only
free ends are the input and output of the box.

The boolean identities refer to the behavior of these nets:

Thus (p+4+ q) X r=(p x r) + (g x r) means that

P P—T —
%»{: j}+_~k-%>u and oy have the
%

— ]
same switching behavior. %

This important example is due to Claude Shannon and forms the

essential basis for designing computer circuitry.

iii) Let ~e>*~>—- denote a device that inverts a signal.

That is, we now imagine digital signals flowing through

the network and O—é%%»— 1, 1ﬂe»+er-o indicate that

0 inverts to 1 and 1 inverts to O.

a)




B) a : L Concurrence of wires will
a
b i::::::>>—_-’ denote boolean multiplica-
tion.

(Thus the O-signal dominates the 1l-signal.)

Addition can be manufactured:
4

@ = ab] W)= '+ b = @
o @b)=a'+b =a+b.

This third example serves to introduce our symbol system.

We write a| for a’.

That's all. The idea is due to G. Spencer Brown in his book

Laws of Form.

This has the advantage of letting us eliminate parentheses:

(a’v’)" = a] Bl |

(We have already stopped writing a x b and just use ab.)

a’ = a| = a;-%»»FJr—
@

-
b

a+b=(a’'d) = =l bl| =

il

A >

b >

O
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Brown had one other notational idea:

Let | denote O
Let (blank) denote 1!
Then | | = 0x 0 =0= |

while || = ¢/ = 1 = (blank)
Hence: | || =]
o=
iv) This last business may be clarified by the following

consideration: We are really talking about a simple

binary distinction such as inside (I) versus outside

(6).

We let ~ | denote
the operation of

changing sides so

that
6| =1
I =06

We agree that II = I and 66 =6 (redundancy of name-calling).
This gives the mini-boolean algebra isomorphic to {0,1}.
(I:? we, dec;de +lq_q,+ o dvm‘m.«.‘(‘es sSo +L'4--l- L = e". B¢+>

SCe ne.x'l"

P"‘jc e )




Now suppose we are g0 lazy that we decide to indicate the

outside by @& but the inside by (blank).

Then: 6] = (blank)

(blanE?j = 0

or: o]

| =06 (%)

Il

and substituting{“}l =

gives | | =

Similarly, 66

Il
@

. Once again we have

It is easy to wax philosophical at this point, but we shall
refrain! Note however that | has a dual interpretation: some-
times as operator X| = X', sometimes as operand || =]’ = O =
1 = (blank). But then, so does the lowly pawn in chess have a

dual role.

<S ;Hce I - chL'l k) ) e’ aw“"oma""l’cc,”y Cjom;nﬂ.‘l'es ° )
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(1.)

=

I

(1)

= |

|

()

(1)

nln
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(4.)
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Its a very nice exercise to prove that every expression re-
duces uniquely to'*T or (blank). The problem of uniqueness of
value (that you can't get from | to (blank) via steps of
type 1 and 2) is a nice prototype for many recursive situations.
We have a method of calculation that can lead to the same result
by many different paths. What is needed is a gtandard method
whose result does not change under moves of type loand 2.

In this case we Jjust view the expression as an inverter net

and process the signals!

‘:\_ﬂ < 1 jo 4 (o :% —:_\——ﬂ:o:j

(note that 4= (blank))




Since, in a net >tto— = S (.“T\ =)

S g R (1=

we see that uniqueness of valuation follows from the net-work

behavior.

I1I) Linear and Non-Linear Language
The language involving | 1s non-linear in that it involves

two planar dimensions: ﬁn_‘_‘_‘jj.‘_ﬂj - 17 -—l -]—-) ‘

I set the following exercise to my class of computer scilence

students: Design a linear, parenthesis free language that describes
elements of the |-language. Your linear language should be suit-

able for use in a graphics program that draws |-expressions.

There are many possible answers to this. The best was in-

vented by Sharon Saluski. She actually did write a Plato graphics

program and this is available and working somewhere in SEO.

Her solution: Use symbols =~ , + and (space) (which we de-

note by 11).

— > + Joins expressions

-— 3 )| separated by a blank.

— - A7 Iterated +'s cause
_—— e [T a search for corres &

—_—— - - - -‘-ﬂzﬂl of t—d's for joining up.
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Thus —_—— e b b e -

l

=151 =0

In any case, there is ample room for concrete discussion of
various cases of language and language representation.

It is also interesting to see how adept one becomes at
visually computing values in |-language. This leads to various
quite practical discussions about pattern recognition and parallel

processing.

IV) Conventions

2’%\7‘1 OK.

‘_‘1"‘

<]

What about

=0\
Y

s

2y

7
WK
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If you search for the bottom of e you get in a loop.

If you send a signal thru e, then it oscillates Jjust as in

@ o—->4—>0->4 —>0-—a41->0—> -~

Examples like this can be used to discuss conventions (and tacit
conventions) about the limits of use of the formal system.

Anyway, self-contradicting loops lead to:

1v) The Liar (T his statement is g’a.\S&.\

@ is like X = X]|

XZ’—‘O'::X:B_{:]-QX:O‘:#X:].#...

Two ways out:

A) X = .* (ad infinitum)

Then geometrically X = X| and we need to figure out how

to deal with it algebraicallyv.

B) Let the process be the solutions

2 : ...01010101010101...
g; ¢ ...10101010101010...
These are the two sequences that come from X = X| depending on

whether you gset X =0 or X =1 to start. In what sense do we
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have 7| =2 2 Answer: Reinterpret ~ | for sequences as ordinary
inversion plus g half-period shift.
s = ...abababab....
» 8] = ...ba'ba'v’a’v al...
Then?-\ =Z. 3:\ =4:
24 =71 .
This leads naturally into some non-standard boolean algebras

(De Morgan Algebras).

Both A) and B) can be expanded on considerably.
A) leads to studying fractals (self-similar forms, space

filling curves...).

B) 1leads to non-standard logics and algebras.

VI) Fractals and Self-Similar Forms.

Let f = f?“\i = i l . The little hook indi-

NMotetion due
+o S‘aencer——
Broww, Fraaciscs

cates that the form "re-enters" itself.

al= = = Al =d.

Here equality just means as a geometrical (infinite) nest of

A4y+hohgy.

rectangles. In this section we explore such infinite construc-

tions but assume no extra structure (such as | | = |).




&) %= gl =
s = —3—"‘—%’_\3:3—:] (since 3‘__:3-:1:')

79123 73] 34| |

Whence

g - _ﬁﬁﬂ] ﬁﬂ (2d wfinitum)

thing below it

or &

in the tree.

You might call this one the Fibonacci Fractal!
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If fn denotes the number of divisions of F at depth n, then

we see at once from F = F|F| that f,=f Let the

n-1°

growth rate p = u(F) be defined (when defined) by

n-z2

. 'n
- T ii2.<fn—l>.

Thus here (fn/fn_l) = (in_i> +1=1+ l/(§95i>
n- n-:

» p o= 1+ 1/u]

1 4 - 1 2

VII) Non-Standard Algebras and Logics

2 : ...01010101...

: ° e .101-01010‘ . e

-ﬂ ='2 9 ;‘ 23, ’ Z.J:\ :-"—l (See V).
: A
In general, let B = any boolean algebra. Let B = {[a,b] | a,b e B}
Define [a,b][ec,d] = [ac,bd]

[a,b] + [c,d] = [at+c,bd]
but [a,b]f = [b',a’]. (InVef+ and ski§+)

Let 1 = [1,1], 0 = [0,0]
g = 10,11, 4= [1,0].

Think of [a,b] as representing ...abababab... (or ababab...

if you like the order made explicit.). B is an example of a
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De-Morgan Algebra. Note that since g = ?’] and 4:: 7_‘, the

algebra is not boolean.

Q@

{O:l} = {O:l:éaij

The subalgebra {O,l,é} is also a D-M Algebra and corresponds

to some people'’s notions of a 3-valued logic.

VIII) (Complex Numbers

Transpose the ideas of section VII over the real numbers R,

and we get a new construction for the complex numbers:

R = {[a,b]]| asb € R}
[a,b][c,d] = [ac,bd]

[a,b] + [c,d] = [at+c,b+d] j?=[ﬂ _q[+‘_q
T;jgi = [b,a] (conjugation) - [ _¥(]

e /kl = j..

0 [OQO], 1= [l’l]

il

K

Il

[+l:‘l]
N .
So far R = {A+kB{ A,B € RS and Ka = +1. This is not the

complex numbers. We want ./-1 to correspond to k!

[Xz = =1 = X = %% s If X =1l=2X==-1=2X=1= "‘]

A

Exercise: Show that if a,8 € R and we define

axp = %(QB + 38 + of - GA) then x defines a mult on R s.t.
i) % is commutative, assoclative and distributes over +.

ii) K¥K = -1,
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This reconstructs the complex numbers!

A
Incidently, R with the first multiplication is useful in

special relativity.
Z =X + KY

(X+KY) (X-kY)

i
N
N
Il

2 _ 42

i
b

| 22

This gives the space-time metric when (speed of light) = 1,

X = space coord, Y = time coordinate, for the space-time plane
(

Minkowski plane, h)
kK(X+KY) = Y + KX

kK = orthogonality operator for mnh.

Null lines: 27 = O Let p = ;%g
q = 1-K
2 >
P b = [1301
X = Y: X(1+k) q = [0,1]
‘X = -Y: X(1-k) p% = p
I 2
) “ =g
ptq = 1
pg = O

algebral —.

Light cone thru the origin is spanned

by {p,q} forming a mini-boolean
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IX) Finite (Deterministic) Automata

Return to inverter nets (see section I):

e 2

C;:::i::;> has two
balanced states: q;;;:f:xo and :i;;::::Li

Two inverters placed "back-to-back” form an elementary computer

memory element (or flip-flop).

We can include inputs to part a):

™

and analyze:

X Y

e.g. X=0,Y=1 _@
—— o

4 -
Let X ~~~>1. Then M~ F?O . M remembers the
state (1,0). 4 &

It is easy to formalize these notions and present a simple
mathematical model for inverter nets. Transitions can be followed
by marking the net with (e.g.) Go stones. Imbalances are se-
gquenttally re-set (possibly creating new imbalances) until the net
reaches a new stable state.

There are relationships between this sort of net-analysis

and De-Morgan Algebras (see (VIII)).
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X) Digital Chorus Line

Human counting circuit. (Have students =ct This oﬁﬁu\)

, touch release
(:EEHCh
; N

-
Each person becomes a binary frequency divider ala above indi~

cations.
Here is what might happen for four protagonists. (The left-

most person drives the assembly):




A ¢C D

AL -

touch C, making C touch D

e ® &

In this transition, A touches

causing B to touch C, and C

%W\ raises his/her arm.

A touches B, making B

and D ralses arm.

B




