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What is the relationship 
between

logic and biology?



Classical Aspects:
Self-Reference,

Recursion,
Imaginary Values.

Symbols and 
reproducibility of

symbols.

Separation of 
object and reference.







The Non-Locality of Impossibility











domain of real numbers usually assumed in working with numerical recursions. This
last example is worth comparing with the infinite nest of boxes. If we ask for a fixed
point for FðxÞ ¼ 2þ 1=x we are asking for an x such that x ¼ 2þ 1=x: Hence we
ask for x such that x *x ¼ 2xþ 1; a solution to a quadratic equation. And one
verifies that ð1þ Sqrtð2ÞÞð1þ Sqrtð2ÞÞ ¼ 2ð1þ Sqrtð2ÞÞ þ 1: Hence x ¼ 1þ
Sqrtð2Þ is an example of a fixed point for F(x).

On the other hand, following the proof of the theorem, we find that

J ¼ FðFðFð. . .ÞÞÞ ¼ 2þ 1=ð2þ 1=ð2þ 1=ð2þ %%%ÞÞÞ;
an infinite continued fraction that formally satisfies the equation J ¼ FðJÞ: In this case,
we can make numerical sense of the infinite construction. In general, we are challenged
to find a context in which the infinite concatenation of the operator makes sense.

The place where this sort of construction reaches a conceptual boundary is
met in dealing with all solutions to a quadratic equation. There we can begin
with the equation x *x ¼ axþ b with roots x ¼ ðaþ Sqrtða * aþ 4bÞÞ=2 and
x ¼ ða2 Sqrtða * aþ 4bÞÞ=2: If ða * aþ 4bÞ , 0 then the roots are imaginary.
On the other hand, we can rewrite the quadratic (dividing by x for x not zero) as
x ¼ aþ b=x ¼ fðxÞ:

Associating to this form of the quadratic the eigenform

E ¼ fðfðfðfð. . .ÞÞÞÞ;
we have

E ¼ aþ 1=ðbþ 1=ðaþ 1=ðbþ %%%ÞÞÞ with fðEÞ ¼ E:

Thus, E is a formal solution to the quadratic equation, and the consecutive terms

E1 ¼ a; E2 ¼ aþ 1=b; E3 ¼ aþ 1=ðbþ 1=aÞ; . . .
will converge to one of the roots when the roots are real, but will oscillate with no
convergence when the roots are imaginary. Nevertheless, this series and its associated
eigenform are very closely related to the complex solutions, and the eigenform provides
a conceptual center for the investigation of these relationships (Kauffman 1987, 1994).

We end this section with one more example. This is the eigenform of the Koch
fractal (Kauffman, 1987). In this case, one can symbolically write the eigenform
equation

K ¼ K{K K}K

to indicate that the Koch Fractal re-enters its own indicational space four times (i.e. it is
made up of four copies of itself, each one-third the size of the original). The curly
brackets in the center of this equation refer to the fact that the two middle copies within
the fractal are inclined with respect to one another and with respect to the two outer
copies. Figure 3 shows the geometric configuration of the re-entry.

In the geometric recursion, each line segment at a given stage is replaced by four
line segments of one-third its length, arranged according to the pattern of re-entry as
shown in Figure 3. The recursion corresponding to the Koch eigenform is shown in
Figure 4. Here we see the sequence of approximations leading to the infinite
self-reflecting eigenform that is known as the Koch snowflake fractal.
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Five stages of recursion are shown. To the eye, the last stage vividly illustrates how the
ideal fractal form contains four copies of itself, each one-third the size of the whole. The
abstract schema

K ¼ K{K K}K

for this fractal itself can be iterated to produce a “skeleton” of the geometric recursion:

Figure 3.
Geometric configuration of
the re-entry

Figure 4.
Recursion corresponding
to the Koch eigenform
which leads to the infinite
self-reflecting eigenform
(Koch snowflake fractal)
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The Framing of
Imaginary Space.
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phase-shifted from the original one by one half-period. The
juxtaposition of the these two waveforms yields a marked state.
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With this interpretation we would like to keep position  as a rule
about the reentering mark. But we also note, that as a waveform
the reentering mark, taken all by itself, is indistinguishable from its
crossed form.

......=

= (all by itself)
One way to get partially out of this dilemma is to make two
imaginary values i and j, one for each waveform and to have the
following waveform arithmetic:
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The waveform arithmetic satisfies occultation and transposition, but
not position. It is similar to the three-values Calculus for Self-
Reference, and has a completeness theorem using these values. This
rich structure is directly related to a class of multiple valued logics
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to satisfy this equation. It is akin to solving,

by attempting to create a space where “I” can be both myself and inside myself, as is true
of our psychological locus. And this can be solved by an infinite regress of Me’s inside of
Me’s.

In a similar manner, we may solve the equation for J by an infinite nest of boxes

Note that in this form of the solution, layered like an onion, the entire infinite form reenters
its own indicational space. It is indeed a solution to the equation

The solution in the form

is meant to indicate how the form reenters its own indicational space. This reentry notation
is due to G. Spencer-Brown. Although he did not write down the reentering mark itself in
his book Laws of Form, it is implicit in the discussion in chapter 11 of that book.

It is not obvious that we should take infinite regress as a model for the way we are in
the world. Everyone has experienced being between two reflecting mirrors and the
veritable infinite regress that arises at once in that situation. Physical processes can happen
more rapidly than the speed of our discursive thought, and thereby provide ground for an
excursion to infinity.
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Fixed Point and Self-Replication
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gx = F(xx)

gg = F(gg)

Church-Curry Fixed Point Theorem



B,x B,x X,x

Building Machine

(x is the blueprint for X)

Let b be the blueprint for B.

Then B,b builds itself.

B,b                 B,b B,b



Indicative Shift

A           B

“A refers to B.”

#A           BA
Then HVF

"HVF"

"#HVF"

After

Before

Suppose that   M           #.

Then   #M           #M.

And if  g            F#,
then #g           F#g.

self-reference

Godelian self-reference



M #

# M # M 

Self Reference occurs at the Shift 
of the Name M of the 

Meta-Naming Operator #.

“ I am the 
Observed link

Between myself
And

Observing myself.”
(Heinz von Foerster)



In a Nutshell:

Rx ---------> xx
then

RR---------->RR



So far, this is the story of the 
classical logic of self-replication

and self-reference. 

We know that DNA engages
in self-replication.

How does the DNA self-rep
compare with our

familiar self-replication
at the level of logic and 

recursion?
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replication loops

DNA

DNA

DNA

topo I

topo II

topo II

Figure 1 - DNA Replication

In logic there is a level beyond the simple copying of symbols that contains a
non-trivial description of self-replication. The (von Neumann) schema is as follows:
There is a universal building machine B that can accept a text or description
x (the program) and build what the text describes. We let lowercase x denote
the description and uppercase X denote that which is described. Thus B with
x will build X. The building machine also produces an extra copy of the text
x. This is appended to the production X as X, x. Thus B, when supplied with
a description x, produces that which x describes, with a copy of its description
attached. Schematically we have the process shown below.

  � �  
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B, x −→ B, x; X,x

Self-replication is an immediate consequence of this concept of a universal building
machine. Let b denote the text or program for the universal building machine.
Apply B to its own description.

B, b −→ B, b;B, b

The universal building machine reproduces itself. Each copy is a universal building
machine with its own description appended. Each copy will proceed to reproduce
itself in an unending tree of duplications. In practice this duplication will continue
until all available resources are used up, or until someone removes the programs or
energy sources from the proliferating machines.

It is not necessary to go all the way to a universal building machine to establish
replication in a formal system or a cellular automaton (See the epilogue to this paper
for examples.). On the other hand, all these logical devices for replication are based
on the hardware/software or Object/Symbol distinction. It is worth looking at the
abstract form of DNA replication.

DNA consists in two strands of base-pairs wound helically around a phosphate
backbone. It is customary to call one of these strands the “Watson” strand and
the other the “Crick” strand. Abstractly we can write

DNA =< W |C >

to symbolize the binding of the two strands into the single DNA duplex. Replication
occurs via the separation of the two strands via polymerase enzyme. This separation
occurs locally and propagates. Local sectors of separation can amalgamate into
larger pieces of separation as well. Once the strands are separated, the environment
of the cell can provide each with complementary bases to form the base pairs of
new duplex DNA’s. Each strand, separated in vivo, finds its complement being
built naturally in the environment. This picture ignores the well-known topological
difficulties present to the actual separation of the daughter strands.

The base pairs are AT (Adenine and Thymine) and GC (Guanine and Cyto-
sine). Thus if

< W | =< ...TTAGAATAGGTACGCG...|
then

|C >= |...AATCTTATCCATGCGC... > .

Symbolically we can oversimplify the whole process as

< W | + E −→< W |C >= DNA

E + |C >−→< W |C >= DNA

< W |C >−→< W | + E + |C >=< W |C >< W |C >

Either half of the DNA can, with the help of the environment, become a full DNA.
We can let E −→ |C >< W | be a symbol for the process by which the environment
supplies the complementary base pairs AG, TC to the Watson and Crick strands.

  � �  
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Self Replication Schematic

DNA is a Self-Replicating Form
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The base pairs are AT (Adenine and Thymine) and GC (Guanine and
Cytosine). Thus if

< W | =< ...TTAGAATAGGTACGCG...|
Then

|C >= |...AATCTTATCCATGCGC... > .

Symbolically we can oversimplify the whole process as

< W | + E −→< W |C >= DNA

E + |C >−→< W |C >= DNA

< W |C >−→< W | + E + |C >=< W |C >< W |C >

Either half of the DNA can, with the help of the environment, become a
full DNA. We can let E −→ |C >< W | be a symbol for the process by
which the environment supplies the complementary base pairs AG, TC to the
Watson and Crick strands. In this oversimplification we have cartooned the
environment as though it contained an already-waiting strand |C > to pair
with < W | and an already-waiting strand < W | to pair with |C > .

In fact it is the opened strands themselves that command the appearance of their
mates. They conjure up their mates from the chemical soup of the environment.

The environment E is an identity element in this algebra of cellular interac-
tion. That is, E is always in the background and can be allowed to appear
spontaneously in the cleft between Watson and Crick:

< W |C >−→< W ||C >−→< W |E|C >

−→< W ||C >< W ||C >−→< W |C >< W |C >

This is the formalism of DNA replication.

Compare this method of replication with the movements of the universal
building machine supplied with its own blueprint. Here Watson and Crick
( < W | and |C > ) are each both the machine and the blueprint for the
DNA. They are complementary blueprints, each containing the information to
reconstitute the whole molecule. They are each machines in the context of the
cellular environment, enabling the production of the DNA. This coincidence
of machine and blueprint, hardware and software is an important difference
between classical logical systems and the logical forms that arise in biology.
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ax = b(xx)

with its crucial repetition as well. In the fixed point theorem, the arrow is
replaced by an equals sign! Repetition is the core of self-replication in classical
logic. This use of repetition assumes the possibility of a copy at the syntactic
level, in order to produce a copy at the symbolic level. There is, in this pivot on
syntax, a deep relationship with other fundamental issues in logic. In particular
this same form of repetition is in back of the Cantor diagonal argument showing
that the set of subsets of a set has greater cardinality than the original set, and
it is in back of the Gödel Theorem on the incompleteness of sufficiently rich
formal systems. The pattern is also in back of the production of paradoxes
such as the Russell paradox of the set of all sets that are not members of
themselves.

There is not space here to go into all these relationships, but the Russell
paradox will give a hint of the structure. Let “ab” be interpreted as “b is a
member of a”. Then RX = ¬(XX) can be taken as the definition of a set
R such that X is a member of R exactly when it is not the case that X is
a member of X. Note the repetition of X in the definition RX = ¬(XX).
Substituting R for X we obtain RR = ¬(RR), which says that R is a member
of R exactly when it is not the case that R is a member of R. This is the Russell
paradox. From the point of view of the lambda calculus, we have found a fixed
point for negation.

Where is the repetition in the DNA self-replication? The repetition and the
replication are no longer separated. The repetition occurs not syntactically,
but directly at the point of replication. Note the device of pairing or mirror
imaging. A calls up the appearance of T and G calls up the appearance of
C. < W | calls up the appearance of |C > and |C > calls up the appearance
of < W |. Each object O calls up the appearance of its dual or paired object
O∗. O calls up O∗ and O∗ calls up O. The object that replicates is implicitly
a repetition in the form of a pairing of object and dual object.

OO∗ replicates via

O −→ OO∗

O∗ −→ OO∗

whence

OO∗ −→ O O∗ −→ OO∗ OO∗.
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it is in back of the Gödel Theorem on the incompleteness of sufficiently rich
formal systems. The pattern is also in back of the production of paradoxes
such as the Russell paradox of the set of all sets that are not members of
themselves.

There is not space here to go into all these relationships, but the Russell
paradox will give a hint of the structure. Let “ab” be interpreted as “b is a
member of a”. Then RX = ¬(XX) can be taken as the definition of a set
R such that X is a member of R exactly when it is not the case that X is
a member of X. Note the repetition of X in the definition RX = ¬(XX).
Substituting R for X we obtain RR = ¬(RR), which says that R is a member
of R exactly when it is not the case that R is a member of R. This is the Russell
paradox. From the point of view of the lambda calculus, we have found a fixed
point for negation.

Where is the repetition in the DNA self-replication? The repetition and the
replication are no longer separated. The repetition occurs not syntactically,
but directly at the point of replication. Note the device of pairing or mirror
imaging. A calls up the appearance of T and G calls up the appearance of
C. < W | calls up the appearance of |C > and |C > calls up the appearance
of < W |. Each object O calls up the appearance of its dual or paired object
O∗. O calls up O∗ and O∗ calls up O. The object that replicates is implicitly
a repetition in the form of a pairing of object and dual object.

OO∗ replicates via

O −→ OO∗

O∗ −→ OO∗

whence

OO∗ −→ O O∗ −→ OO∗ OO∗.

The repetition is inherent in the replicand
in the sense that the dual of a form

is inherent in the form.
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In the end we arrive at a summary formalism, a chapter in boundary mathe-
matics (mathematics using directly the concept and notation of containers and
delimiters of forms - compare [3] and [11]) where there are not only containers
<>, but also extainers >< – entities open to interaction and distinguishing
the space that they are not. In this formalism we find a key for the articulation
of diverse relationships. The boundary algebra of containers and extainers is
to biologic what boolean algebra is to classical logic. Let C =<> and E =><
then EE =><><=> C < and CC =<><>=< E > Thus an extainer pro-
duces a container when it interacts with itself, and a container produces an
extainer when it interacts with itself.

The formalism of containers and extainers is a chapter in the foundations
of a symbolic language for shape and interaction. With it, we can express
the form of DNA replication succinctly as follows: Let the DNA itself be
represented as a container

DNA =<> .

We regard the two brackets of the container as representatives for the two
matched DNA strands. We let the extainer E =>< represent the cellular
environment with its supply of available base pairs (here symbolized by the
individual left and right brackets). Then when the DNA strands separate, they
encounter the matching bases from the environment and become two DNA’s.

DNA = <>−→< E >−→<><> = DNA DNA.

Life itself is about systems that search and learn and become. Perhaps a little
symbol like E =>< with the property that EE =><>< produces containers
<> and retains its own integrity in conjunction with the autonomy of <> (the
DNA) could be a step toward bringing formalism to life.

These concepts of concatenation of extainers and containers lead, in Section
6, to a new approach to the structure of and generalizations of the Temperley
Lieb algebra. In this Section we discuss how projectors in the Temperley Lieb
algebra can be regarded as topological/algebraic models of self-replication,
and we take this point of view to characterize multiplicative elements P of the
Temperley Lieb algebra such that PP = P. What emerges here is a topological
view of self-replication that is different in principle from the blueprint-driven
self-replications of logic and from the environmentally driven self-replication
described above as an abstraction of DNA action. This topological replication
is a direct descendant of the fact that you can get two sticks from one stick
by breaking it in the middle. Here we obtain more complex forms by allowing
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then >< is an extainer.

<><> = <  ><  >
>< >< = ><><



11

Langrangian to construct the action on which the path integral is based.) One
needs to know certain aspects of classical physics to solve any given quantum
problem. The classical world is known through our biology. In this sense
biology is the foundation for physics.

A key concept in the quantum information viewpoint is the notion of the
superposition of states. If a quantum system has two distinct states |v > and
|w >, then it has infinitely many states of the form a|v > +b|w > where a and
b are complex numbers taken up to a common multiple. States are “really” in
the projective space associated with H. There is only one superposition of a
single state |v > with itself.

Dirac [5] introduced the “bra -(c)-ket” notation < A |B >= A∗B for the
inner product of complex vectors A, B ∈ H. He also separated the parts of
the bracket into the bra < A | and the ket |B > . Thus

< A |B >=< A | |B >

In this interpretation, the ket |B > is identified with the vector B ∈ H, while
the bra < A | is regarded as the element dual to A in the dual space H∗. The
dual element to A corresponds to the conjugate transpose A∗ of the vector
A, and the inner product is expressed in conventional language by the matrix
product A∗B (which is a scalar since B is a column vector). Having separated
the bra and the ket, Dirac can write the “ket-bra” |A >< B | = AB∗. In
conventional notation, the ket-bra is a matrix, not a scalar, and we have the
following formula for the square of P = |A >< B | :

P 2 = |A >< B ||A >< B | = A(B∗A)B∗ = (B∗A)AB∗ =< B |A > P.

Written entirely in Dirac notation we have

P 2 = |A >< B ||A >< B | = |A >< B |A >< B |

=< B |A > |A >< B| =< B |A > P.

The standard example is a ket-bra P = |A >< A| where < A |A >= 1 so that
P 2 = P. Then P is a projection matrix, projecting to the subspace of H that
is spanned by the vector |A >. In fact, for any vector |B > we have

P |B >= |A >< A | |B >= |A >< A |B >=< A |B > |A > .

If {|C1 >, |C2 >, · · · |Cn >} is an orthonormal basis for H, and Pi = |Ci ><
Ci|, then for any vector |A > we have
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|A >=< C1 |A > |C1 > + · · ·+ < Cn |A > |Cn > .

Hence

< B |A >=< C1 |A >< B |C1 > + · · ·+ < Cn |A >< B |Cn >

=< B |C1 >< C1 |A > + · · ·+ < B |Cn >< Cn |A >

=< B | [|C1 >< C1 | + · · · + |Cn >< Cn |] |A >

=< B | 1 |A > .

We have written this sequence of equalities from < B |A > to < B |1 |A > to
emphasize the role of the identity

Σn
k=1Pk = Σn

k=1|Ck >< Ck | = 1

so that one can write

< B |A >=< B | 1 |A >=< B |Σn
k=1|Ck >< Ck ||A >= Σn

k=1 < B |Ck >< Ck |A > .

In the quantum context one may wish to consider the probability of starting
in state |A > and ending in state |B > . The square of the probability for
this event is equal to | < B |A > |2. This can be refined if we have more
knowledge. If it is known that one can go from A to Ci (i = 1, · · · , n) and
from Ci to B and that the intermediate states |Ci > are a complete set of
orthonormal alternatives then we can assume that < Ci |Ci >= 1 for each i
and that Σi|Ci >< Ci| = 1. This identity now corresponds to the fact that 1
is the sum of the probabilities of an arbitrary state being projected into one
of these intermediate states.

If there are intermediate states between the intermediate states this formu-
lation can be continued until one is summing over all possible paths from A
to B. This becomes the path integral expression for the amplitude < B|A > .

Sum over Paths (Possibilities)



12

|A >=< C1 |A > |C1 > + · · ·+ < Cn |A > |Cn > .

Hence

< B |A >=< C1 |A >< B |C1 > + · · ·+ < Cn |A >< B |Cn >

=< B |C1 >< C1 |A > + · · ·+ < B |Cn >< Cn |A >

=< B | [|C1 >< C1 | + · · · + |Cn >< Cn |] |A >

=< B | 1 |A > .

We have written this sequence of equalities from < B |A > to < B |1 |A > to
emphasize the role of the identity

Σn
k=1Pk = Σn

k=1|Ck >< Ck | = 1

so that one can write

< B |A >=< B | 1 |A >=< B |Σn
k=1|Ck >< Ck ||A >= Σn

k=1 < B |Ck >< Ck |A > .

In the quantum context one may wish to consider the probability of starting
in state |A > and ending in state |B > . The square of the probability for
this event is equal to | < B |A > |2. This can be refined if we have more
knowledge. If it is known that one can go from A to Ci (i = 1, · · · , n) and
from Ci to B and that the intermediate states |Ci > are a complete set of
orthonormal alternatives then we can assume that < Ci |Ci >= 1 for each i
and that Σi|Ci >< Ci| = 1. This identity now corresponds to the fact that 1
is the sum of the probabilities of an arbitrary state being projected into one
of these intermediate states.

If there are intermediate states between the intermediate states this formu-
lation can be continued until one is summing over all possible paths from A
to B. This becomes the path integral expression for the amplitude < B|A > .

12

|A >=< C1 |A > |C1 > + · · ·+ < Cn |A > |Cn > .

Hence

< B |A >=< C1 |A >< B |C1 > + · · ·+ < Cn |A >< B |Cn >

=< B |C1 >< C1 |A > + · · ·+ < B |Cn >< Cn |A >

=< B | [|C1 >< C1 | + · · · + |Cn >< Cn |] |A >

=< B | 1 |A > .

We have written this sequence of equalities from < B |A > to < B |1 |A > to
emphasize the role of the identity

Σn
k=1Pk = Σn

k=1|Ck >< Ck | = 1

so that one can write

< B |A >=< B | 1 |A >=< B |Σn
k=1|Ck >< Ck ||A >= Σn

k=1 < B |Ck >< Ck |A > .

In the quantum context one may wish to consider the probability of starting
in state |A > and ending in state |B > . The square of the probability for
this event is equal to | < B |A > |2. This can be refined if we have more
knowledge. If it is known that one can go from A to Ci (i = 1, · · · , n) and
from Ci to B and that the intermediate states |Ci > are a complete set of
orthonormal alternatives then we can assume that < Ci |Ci >= 1 for each i
and that Σi|Ci >< Ci| = 1. This identity now corresponds to the fact that 1
is the sum of the probabilities of an arbitrary state being projected into one
of these intermediate states.

If there are intermediate states between the intermediate states this formu-
lation can be continued until one is summing over all possible paths from A
to B. This becomes the path integral expression for the amplitude < B|A > .



13

5.1 Quantum Formalism and DNA Replication

We wish to draw attention to the remarkable fact that this formulation of
the expansion of intermediate quantum states has exactly the same pattern as
our formal summary of DNA replication. Compare them. The form of DNA
replication is shown below. Here the environment of possible base pairs is
represented by the ket-bra E = |C >< W |.

< W |C >−→< W | |C >−→< W |E|C >

−→< W | |C >< W | |C >−→< W |C >< W |C >

Here is the form of intermediate state expansion.

< B |A >−→< B | |A >−→< B | 1 |A >

−→< B | Σk |Ck >< Ck | |A >−→ Σk < B |Ck >< Ck |A > .

We compare
E = |C >< W |

and
1 = Σk |Ck >< Ck |.

That the unit 1 can be written as a sum over the intermediate states is an
expression of how the environment (in the sense of the space of possibilities)
impinges on the quantum amplitude, just as the expression of the environment
as a soup of bases ready to be paired (a classical space of possibilities) serves
as a description of the biological environment. The symbol E = |C >< W |
indicated the availability of the bases from the environment to form the com-
plementary pairs. The projection operators |Ci >< Ci | are the possibilities
for interlock of initial and final state through an intermediate possibility. In
the quantum mechanics the special pairing is not of bases but of a state and
a possible intermediate from a basis of states. It is through this common
theme of pairing that the conceptual notation of the bras and kets lets us see
a correspondence between such separate domains.

5.2 Quantum Copies are not Possible

Finally, we note that in quantum mechanics it is not possible to copy a quantum
state! This is called the no-cloning theorem of elementary quantum mechanics
[13]. Here is the proof:

Quantum Formalism
and DNA Replication
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Proof of the No Cloning Theorem. In order to have a quantum process
make a copy of a quantum state we need a unitary mapping U : H ⊗ H −→
H ⊗ H where H is a complex vector space such that there is a fixed state
|X >∈ H with the property that

U(|X > |A >) = |A > |A >

for any state |A >∈ H. (|A > |B > denotes the tensor product |A > ⊗|B > .)
Let

T (|A >) = U(|X > |A >) = |A > |A > .

Note that T is a linear function of |A > . Thus we have

T |0 >= |0 > |0 >= |00 >,

T |1 >= |1 > |1 >= |11 >,

T (α|0 > +β|1 >) = (α|0 > +β|1 >)(α|0 > +β|1 >).

But

T (α|0 > +β|1 >) = α|00 > +β|11 > .

Hence

α|00 > +β|11 >= (α|0 > +β|1 >)(α|0 > +β|1 >)

= α2|00 > +β2|11 > +αβ|01 > +βα|10 >

From this it follows that αβ = 0. Since α and β are arbitrary complex numbers,
this is a contradiction. !

The proof of the no-cloning theorem depends crucially on the linear su-
perposition of quantum states and the linearity of quantum process. By the
time we reach the molecular level and attain the possibility of copying DNA
molecules we are copying in a quite different sense than the ideal quantum
copy that does not exist. The DNA and its copy are each quantum states,
but they are different quantum states! That we see the two DNA molecules as
identical is a function of how we filter our observations of complex and entan-
gled quantum states. Nevertheless, the identity of two DNA copies is certainly
at a deeper level than the identity of the two letters “i” in the word identity.
The latter is conventional and symbolic. The former is a matter of physics and
biochemistry.
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the Dirac notation of “bras” and “kets” where Dirac takes an inner product
written in the form < B|A > and breaks it up into < B | and |A > and then
makes projection operators by recombining in the opposite order as |A >< B |.
See the earlier discussion of quantum mechanics in this paper.

Each left or right bracket in itself makes a distinction. The two brackets are
distinct from one another by mirror imaging, which we take to be a notational
reflection of a fundamental process (of distinction) whereby two forms are
identical (indistinguishable) except by comparison in the space of an observer.
The observer is the distinction between the mirror images. Mirrored pairs of
individual brackets interact to form either a container

C = {}

or an extainer
E =}{.

These new forms combine to make:

CC = {}{} = {E}
and

EE =}{}{=}C{.
Two containers interact to form an extainer within container brackets. Two
extainers interact to form a container between extainer brackets. The pattern
of extainer interactions can be regarded as a formal generalization of the bra
and ket patterns of the Dirac notation that we have used in this paper both
for DNA replication and for a discussion of quantum mechanics. In the quan-
tum mechanics application {} corresponds to the inner product < A |B >, a
commuting scalar, while }{ corresponds to |A >< B |, a matrix that does not
necessarily commute with vectors or other matrices. With this application in
mind, it is natural to decide to make the container an analog of a scalar quan-
tity and let it commute with individual brackets. We then have the equation

EE =}{}{=}C{= C}{= CE.

By definition there will be no corresponding equation for CC. We adopt the
axiom that containers commute with other elements in this combinatorial alge-
bra. Containers and extainers are distinguished by this property. Containers
appear as autonomous entities and can be moved about. Extainers are open
to interaction from the outside and are sensitive to their surroundings. At this
point, we have described the basis for the formalism used in the earlier parts
of this paper.

{   }
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extainers interact to form a container between extainer brackets. The pattern
of extainer interactions can be regarded as a formal generalization of the bra
and ket patterns of the Dirac notation that we have used in this paper both
for DNA replication and for a discussion of quantum mechanics. In the quan-
tum mechanics application {} corresponds to the inner product < A |B >, a
commuting scalar, while }{ corresponds to |A >< B |, a matrix that does not
necessarily commute with vectors or other matrices. With this application in
mind, it is natural to decide to make the container an analog of a scalar quan-
tity and let it commute with individual brackets. We then have the equation

EE =}{}{=}C{= C}{= CE.

By definition there will be no corresponding equation for CC. We adopt the
axiom that containers commute with other elements in this combinatorial alge-
bra. Containers and extainers are distinguished by this property. Containers
appear as autonomous entities and can be moved about. Extainers are open
to interaction from the outside and are sensitive to their surroundings. At this
point, we have described the basis for the formalism used in the earlier parts
of this paper.
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If we interpret E as the “environment” then the equation }{= E = 1
expresses the availability of complementary forms so that

{} −→ {E} −→ {}{}

becomes the form of DNA reproduction.

We can also regard EE = {}E as symbolic of the emergence of DNA
from the chemical substrate. Just as the formalism for reproduction ignores
the topology, this formalism for emergence ignores the formation of the DNA
backbone along which are strung the complementary base pairs. In the bio-
logical domain we are aware of levels of ignored structure.

In mathematics it is customary to stop the examination of certain issues in
order to create domains with requisite degrees of clarity. We are all aware that
the operation of collection is proscribed beyond a certain point. For example,
in set theory the Russell class R of all sets that are not members of themselves
is not itself a set. It then follows that {R}, the collection whose member is the
Russell class, is not a class (since a member of a class is a set). This means
that the construct {R} is outside of the discourse of standard set theory. This
is the limitation of expression at the “high end” of the formalism. That the
set theory has no language for discussing the structure of its own notation
is the limitation of the language at the “low end”. Mathematical users, in
speaking and analyzing the mathematical structure, and as its designers, can
speak beyond both the high and low ends.

In biology we perceive the pattern of a formal system, a system that is em-
bedded in a structure whose complexity demands the elucidation of just those
aspects of symbols and signs that are commonly ignored in the mathematical
context. Rightly these issues should be followed to their limits. The curious
thing is what peeks through when we just allow a bit of it, then return to
normal mathematical discourse. With this in mind, lets look more closely at
the algebra of containers and extainers.

Taking two basic forms of bracketing, an intricate algebra appears from
their elementary interactions:

E = ><

F = ][

G = > [

H = ] <



Simplest Replication

cut



Topological Replication
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infinitely many deformations of the identity, each giving rise to a factorization
via cutting the deformation in half, and each giving rise to distinct elements P
in the multiplicative Temperley Lieb algebra that have the property PP = P.

P  =  AB

A

B

BA  = B

A

=

== I

BA  = I

Figure 2.3 - P = AB, BA = I.

Why the topological self-rep worked.
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M Cut[M] = BA

A

B

P = AB

Figure 2.4 - Constructing a new P with PP = P.

It is quite fascinating to note that this solution to the nature of elements
P with PP = P depends crucially on a combinatorial and topological view
of the algebra. In Figure 2.5 we have illustrated how to take such an element
and, by pairing maxima and minima, write it as a product in the standard
generators Uk of the Temperley Lieb algebra. Here Uk consists of a paired
maximum and minimum with the minimum connecting upper strands k and
k + 1 (ordered from left to right), and the maximum connecting lower strands
k and k + 1. The remaining strands proceed from top to bottom. While it
is easy to obtain sucn a factorization, it is a difficult problem to characterize
idempotent elements in terms of these generators.
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P = AB

U5 U4 U6 

U3 U5 U7

U2 U4 U6 U8

U5 U7

U1 U6

P = U5 U4 U6 U3 U5 U7 U2 U4 U6 U8 U5 U7 U1 U6

P

Figure 2.5 - Writing P as a product of standard generators.

To go to the complete solution from the hints given here will be the subject
of another paper, but we should point out that it is possible to generalize the
element I to Ik, a collection of k parallel lines. Cutting a deformation of
Ik to obtain an factorization Ik = BA and an element P = AB gives the
general solution to the problem of finding all multiplicative elements in the
Temperley Lieb algebra with PP = P. A modification of this approach yields
a characterization of all elements Q with QQ = δrQ for some positive integer r.
The basic structure behind this classification is the meander, a simple closed
curve in the plane that has been bisected by a straight line. Here we have
illustrated the concept with an open meander consisting in a cutting of a
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to [15] where this point of view is used to create unitary representations of that
algebra for the context of quantum computation. Here we see the elemental
nature of this algebra, and how it comes about quite naturally once one adopts
a formalism that keeps track of the structure of boundaries that underlie the
mathematics of set theory.

The Temperley Lieb algebra TLn is an algebra over a commutative ring k
with generators {1, U1, U2, ..., Un−1} and relations

U2
i = δUi,

UiUi±1Ui = Ui,

UiUj = UjUi, |i − j| > 1,

where δ is a chosen element of the ring k. These equations give the multiplica-
tive structure of the algebra. The algebra is a free module over the ring k with
basis the equivalence classes of these products modulo the given relations.

To match this pattern with our combinatorial algebra let n = 2 and let
U1 = E =><, U2 = F =][ and assume that 1 =<] = [> while δ =<>= []. The
above equations for our combinatorial algebra then match the multiplicative
equations of the Temperley Lieb algebra.

The next stage for representing the Temperley Lieb algebra is a diagram-
matic representation that uses two different forms of extainer. The two forms
are obtained not by changing the shape of the given extainer, but rather by
shifting it relative to a baseline. Thus we define diagrammatically U = U1 and
V = U2 as shown below:

U =
−−
><

V =
><
−−

UU =
−−−−
><><

=<>
−−
><

=<> U

UV U =
−−−> <−−−
> <−−> < =

−−−−
> < = U.

In this last equation UV U = U we have used the topological deformation of the
connecting line from top to top to obtain the identity. In its typographical form
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2. If X and Y are legal, then XY is legal.

3. If X is legal, then < X > is legal.

These rules define legality of finite parenthetic expresssions. In any legal paren-
thesis structure, one can deduce directly from that structure which brackets
are paired with one another. Simple algorithms suffice for this, but we omit
the details. In any case a legal parenthesis structure has an intrinsic pairing
associated with it, and hence there is an inverse to the mapping P . We define
Q(X) for X a legal parenthesis structure, to be the result of replacing each
pair · · · < · · · > · · · in X by · · · < A| · · · |A > · · · where A denotes a specific
letter chosen for that pair, with different pairs receiving different letters. Thus
Q(<<>>) =< a| < b||b > |a > . Note that in the case above, we have that
Q(P (C)) is isomorphic to C.

a b c c b d d a e e

a

b

c

c

b d
d

a

e

e

Figure 3 - Secondary Structure
< a| < b| < c||c > |b >< d||d > |a >< e||e >

A chain C is said to be a secondary folding structure if P (C) is legal and
Q(P (C)) is isomorphic to C. The reader may enjoy the exercise of seeing that
secondary foldings (when folded) form tree-like structures without any loops

Protein Folding
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or knots. This notion of secondary folding structure corresponds to the usage
in molecular biology, and it is a nice application of the bra ket formalism. This
also shows the very rich combinatorial background in the bras and kets that
occurs before the imposition of any combinatorial algebra.

Here is the simplest non-secondary folding:

L =< a| < b||a > |b > .

Note that P (L) =<<>> is legal, but that Q(P (L)) = Q(<<>>) =< a| <
b||b > |a > is not isomorphic to L. L is sometimes called a “pseudo knot” in
the literature of protein folding. Figure 4 should make clear this nomenclature.
The molecule is folded back on itself in a way that looks a bit knotted.

A A BB

A

B

A

B

Figure 4 - A Tertiary Structure - < a| < b||a > |b >

With these conventions it is convenient to abbreviate a chain by just giving
its letter sequence and removing the (reconstructible) bras and kets. Thus C
above may be abbreviated by abccbddaee.

One may wonder whether at least theoretically there are foldings that would
necessarily be knotted when embedded in three dimensional space. With open
ends, this means that the structure folds into a graph such that there is a
knotted arc in the graph for some traverse from one end to the other. Such
a traverse can go along the chain or skip across the bonds joining the paired
sites. The answer to this question is yes, there are folding patterns that can
force knottedness. Here is an example of such an intrinsically knotted folding.
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Figure 5 - Proto-Cells of Maturana, Uribe and Varela

In the course of time the catalysts (basically separate from one another due
to lack of bonding) become surrounded by circular forms of bonded or partially
bonded substrate. A distinction (in the eyes of the observer) between inside
(near the catalyst) and outside (far from a given catalyst) has spontaneously
arisen through the “chemical rules”. Each catalyst has become surrounded by
a proto-cell. No higher organism has formed here, but there is a hint of the
possibility of higher levels of organization arising from a simple set of rules of
interaction. The system is not programmed to make the proto-cells. They arise
spontaneously in the evolution of the structure over time.

One might imagine that in this way, organisms could be induced to arise
as the evolutionary behavior of formal systems. There are difficulties, not the
least of which is that there are nearly always structures in such systems whose
probability of spontaneous emergence is vanishingly small. A good example is
given by another automaton – John H. Conway’s “Game of Life”. In “Life”
the cells appear and disappear as marked squares in a rectangular planar grid.
A newly marked cell is said to be “born”. An unmarked cell is “dead”. A
cell dies when it goes from the marked to the unmarked state. A marked cell
survives if it does not become unmarked in a given time step. According to
the rules of Life, an unmarked cell is born if and only if it has three neighbors.
A marked cell survives if it has either two or three neighbors. All cells in the
lattice are updated in a single time step. The Life automaton is one of many
automata of this type and indeed it is a fascinating exercise to vary the rules
and watch a panoply of different behaviors. For this discussion we concentrate

Arising From a Substrate of
Rules and Interactions

Cell Self-Assembly
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on some particular features. There is a configuration in Life called a “glider”.
See Figure 6. This illustrates a “glider gun” (discussed below) that produces
a series of gliders going diagonally from left to right down the Life lattice.
The glider consists in five cells in one of two basic configurations. Each of
these configurations produces the other (with a change in orientation). After
four steps the glider reproduces itself in form, but shifted in space. Gliders
appear as moving entities in the temporality of the Life board. The glider is a
complex entity that arises naturally from a small random selection of marked
cells on the Life board. Thus the glider is a “naturally occurring entity” just
like the proto-cell in the Maturana-Uribe-Varela automaton. But Life contains
potentially much more complex phenomena. For example, there is the “glider
gun” (See Figure 6) which perpetually creates new gliders. The “gun” was
invented by a group of researchers at MIT in the 1970’s (The Gosper Group).
It is highly unlikely that a gun would appear spontaneously in the Life board.
Of course there is a tiny probability of this, but we would guess that the
chances of the appearance of the glider gun by random selection or evolution
from a random state is similar to the probability of all the air in the room
collecting in one corner. Nervertheless, the gun is a natural design based on
forms and patterns that do appear spontaneously on small Life boards. The
glider gun emerged through the coupling of the power of human cognition
and the automatic behavior of a mechanized formal system. Cognition is in
fact an attribute of our biological system at an appropriately high level of
organization. But cognition itself looks as improbable as the glider gun! Do
patterns as complex as cognition or the glider gun arise spontaneously in an
appropriate biological context?

Figure 6 - Glider Gun and Gliders

Could the Glider Gun
Arise Spontaneously?
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Tangle Model: Ernst & Sumners, 1989

DNA Recombination

Topological Processes
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Figure 28 - Processive Recombination with S = [−1/3].

Lets see what the form of the processive recombination is for an arbitrary
sequence of recombinations. We start with

O = [a1, a2, · · · , ar−1, ar]

I = [b1, b2, · · · , bs−1, bs].

Then

K[n] = N(O + (I + [n])) = N([a1, a2, · · · , ar−1, ar] + [n + b1, b2, · · · , bs−1, bs])
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and semantics. Cognition gives rise to the possibility of design, measurement,
communication, language, physics and technology.

In this paper we have covered a wide ground of ideas related to the founda-
tions of mathematics and its relationship with biology and with physics. There
is much more to explore in these domains. The result of our exploration has
been the articulation of a mathematical region that lies in the crack between
set theory and its notational foundations. We have articulated the concepts of
container <> and extainer >< and shown how the formal algebras generated
by these forms encompass significant parts of the logic of DNA replication, the
Dirac formalism for quantum mechanics, formalism for protein folding and the
Temperley Lieb algebra at the foundations of topological invariants of knots
and links. It is the mathematician’s duty to point out formal domains that
apply to a multiplicity of contexts. In this case we suggest that it is just possi-
ble that there are deeper connections among these apparently diverse contexts
that are only hinted at in the steps taken so far. The common formalism can
act as compass and guide for further exploration.
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