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This essay explores constructions of arithmetic as departures from the
Calculus of Indications of Spencer-Brown. In the course of making these
constructions, we discuss their relationship with the idea of contextual
interpretations. In this way, the present paper is an investigation of the role
of the observer in mathematical systems.

The purpose of this essay is to investigate a foundation for the arith-
metic of the natural numbers. The next section contains a review of
ideas related to Laws of Form (Spencer-Brown, 1969), making the
present essay self-contained. In fact, we give a capsule summary of our
reconstruction of arithmetic in the present introduction, followed by a
discussion of ideas, intents, and a description of the contents of the
paper.

We regard a natural number as a row of marks that is surrounded
by a mark. For example 3 = rrr represents the number 3. This
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is not at variance with the Russellian idea of a number as the class of all
classes in one-to-one correspondence with a given class. We are, how-
ever, taking some care in the indication of one particular class that
represents the number. The marks within the mark are distinguished by
their position in the space demarcated by the containing mark, not by
their intrinsic structure. The notation is irreducibly part of the mathe-
matics that it represents.

In this system of numbers we will have a rule about boundaries
(Crossing) that reads A = I—[Z— for any A. This rule allows the removal
of boundaries and gives us the definition of addition in the form
A+B= [|Z [B . Multiplication demands a copying of one number by
the form of the other, and this is done via (for example) 4 X 3 = A4
x T T [ =14 [4[4 . Once again the boundary is removed from
A by putting a mark around it, and 4 X 3 becomes a mark containing
three times as many marks as A. This is a capsule summary of the
formal arithmetic of this paper. ’

This arithmetic is a formalization of actions that are intimate to the
person who performs the mathematics. This investigation places the
mathematics in a boundary world between the general and the particu-
lar, between the notational and the conceptual. In this sense this essay
is an essay on second-order cybernetics./ It is an investigation of the role
of the observer in a mathematical system. It is an investigation of that
observer through an insistence that the observer participate in the
mathematical action and through a quest for ways in which the actions
of the observer can be shifted into inherent actions of the mathematics.
There is much still to be done in this field. The Turing machine (Turing,
1936) is one of the fruits of such an investigation. Another is the
network viewpoint that began with the work of McCulloch and Pitts
(1943). We can no longer look at numbers just as absolutes because
there is such a wealth of information in the ways that we produce them,
and in those ways we can begin to learn about who it is that produces a
number. To paraphrase McCulloch (1960)—what is a number that she
may be known by an observer, and an observer that she may know a
number? This is our enterprise.

To return to the formal arithmetic described so briefly above, we
decide to look more closely. The number 1 = ™ is a container -
containing one mark. But our rule of crossing tells us that these
concatenated marks cancel each other so that 1 is equal to the void!
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From the point of view of multiplication this is hardly a problem, since
the insertion of a void inside the inner marks of a number will not
change it, and 1 is the number that does not change another number
under multiplication. That lack of change is seen to be the consequence
of an absence of action, an absence that is occasioned by the presence
of a void. The number 0 = |  is an empty container, and 4 X 0 =0
for any A exactly because there are no marks in 0 to occasion an
insertion.

Now 0 X 0 = 0 is written as I—— X l— = ’— , and this is perilously
close to the equation [T =T which would seem to topple our
arithmetic by collapsing the contents of all those faithful marks to one
or none. Can we not indicate multiplication by simple juxtaposition
without introducing either new notations or paradox? This is the prob-
lem that we solve in this paper. It is a nontrivial problem for the
following reason. If multiplication can be done without indicating a sign
of multiplication, then multiplication becomes a property of the num-
bers themselves. By this divestment of a sign, we shift into a new
domain where the operations of arithmetic and the arithmetic itself are
inseparable.

With the paradoxes resolved, it becomes possible to-regard the
formal arithmetic as a direct generalization of the (two-valued) primary
arithmetic of Laws of Form.

The key to resolving the paradox that zero zeros has value zero,

[— =1 , and that two is not equal to one, T = |_|—= lies in

the spatial context of these numbers. The two marks inside the bound-
ary of the 2 are in a different space (by one crossing) from the two
marks in zero times zero. Two spatial contexts mean two kinds of void
—the additive void and the multiplicative void. The value of the
additive void is zero. The value of the multiplicative void is one. Add
nothing and you do not change the number. You added zero. Multiply
by nothing and you do not change the number. You multiplied by one.
That is what you did and that is what we shall do. We shall follow the
void and learn arithmetic all over again.

Every time a story of the creation of number is told, the story is told
again but a mite differently from the time before. After a while, the
author began to think that this itself might be a property of number,
and so he has tried to illustrate it, but not completely, because com-
pleteness would entail a paper of infinite length or a Turing machine
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with an infinite tape. In the interests of finitude, then, here is a
description of the contents of the paper.

The next section discusses the nature of mathematics seen as the
articulation of a distinction, the structure of Laws of Form and, in
particular, the way in which it is proved that the marked state and the
void are distinct in the primary arithmetic of Laws of Form. This section
introduces the notations of marks and of brackets that will be used in
the rest of the paper. The third section is an informal introduction to
the arithmetic system that we are investigating. This section and the
next explain most of the properties of this arithmetic, giving a method
for understanding any expression in the mark as an indicator of arith-
metical value. The fourth section ends by giving a two-boundary de-
scription of this arithmetic. In two-boundary notation (compare James,
1993) the indicator of context is the mark itself and so one obtains two
types of mark—the mark surrounding an additive space and the mark
surrounding a multiplicative space. Our proof (which will be given fully)
of the relative consistency of the formal arithmetic is also a proof of the
consistency of this notational device. Exponentiation is treated in the
two-boundary notation. The fifth section starts from the beginning and
develops this arithmetic in a manner analogous to Laws of Form
through to proving that every expression in the mark reduces to one of
the numbers and that the ostensibly different numbers are indeed
distinct in this formal context. The sixth section, entitled Coda, is a
discussion of what we have done coupled with hints about extensions to
transfinite ordinals and to combinatorics. The paper has three appen-
dices. Appendix A is a concise exposition of another arithmetic using
brackets and strings of symbols that is also a generalization of Laws of
Form. This string arithmetic can be used in a digital computer and will
eventually be quite useful in parallel computation. The string arithmetic
naturally brings forth issues about recursion and fixed points that also
apply to the formal arithmetic in the body of the paper. Appendix B is a
very short description of the system of numbers invented by John
Horton Conway. The Conway numbers are constructed by making
distinctions in previously created sets of numbers, and they construct all
reals, ordinals, and a vast array of infinitesimals and infinite numbers as
well. The appendix ends with an exposition of the proof using ordinals
that Goodstein sequences terminate in zero. Appendix C discusses yet
another relationship between number and Boolean algebra. This time
we view Boolean algebra with values zero and infinity. The operation of
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crossing is to take the reciprocal of a number, and so zero and infinity
are the limiting pivot of a structure for all real values between them.

This leads into electrical theory, the structural iconics of tangle cate-

gories, Dirac brackets, and the beginnings of knot theory.

INDICATIONAL SPACE

The foundation of mathematics is a blank sheet of paper! Another way
of putting it: Mathematics studies that universal of which a blank sheet
of paper is but a single instance. The fundamental mathematical do-
main is a space in which distinction can be drawn.

A space in which no distinctions have been drawn is called a void. A
void may be the contents of given distinction, just as a blank sheet of
paper is distinguished from its surroundings. Note that it is by our
definition that we regard a given space as void. The average just-cleaned
backboard is not devoid of marks, but it is devoid of marks considered
significant by the mathematical observer. It is void of mathematics until
drawn upon. To the extent that there is nothing to distinguish, all voids
are identical. In practice, we distinguish multiplicities of voids just as we
use a pad with many sheets of blank paper. As we shall see, it is
precisely in the subject of arithmetic that the multiplicity of voids arises.

The void is a highly flexible and reactive domain (just like our sheet
of paper). One can enfold the void in such a way that a distinction is
formed. (Draw a circle on a sheet of paper. Fold a cloth to form a
crease.) All forms are mutable; the distinction can be erased as well as
formed. Nevertheless, we envision a space of such capacity that it
can act as a memory record for the distinctions that have been drawn
within it.

Each distinction divides the space in which it is written into two
parts. Each distinction is seen as joining its two parts into the one
original space. The concept of distinction is at once the concept of
joining and the concept of separation.

Call the space in which distinctions are drawn the indicational space.
Whenever a distinction is drawn in the indicational space, that space
divides into two new indicational spaces. These spaces will be called the
divisions of the original indicational space. Each division is itself an
indicational space in which the further distinctions can be made. If
desired, this process can be taken to infinity, but we shall at first
concentrate on spaces with a finite number of divisions. For purposes of
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visualization it may be of interest to contemplate the topological charac-
ter of these divisions of space. Imagine that the original space is a
Euclidean space of dimension three and that the distinctions are formed
by describing two-dimensional spherical boundaries in the space. A
single sphere divides the three-dimensional space into two spaces. One
space, the interior of the sphere, is bounded. The other space, the
exterior of the sphere, is unbounded. If we make a further distinction in
the interior space, then the resulting spaces consist of a bounded ball
(the deepest interior space), an annular region, and the unbounded
region. Thus spaces created in the process of distinguishing may have
different topological characteristics. We take these extra characteristics
as artifacts of the specific process of distinguishing and look for what is
universal.

The fact that a distinction in an unbounded Euclidean space creates
one bounded region and one unbounded region is useful as an implicit
index of the distinction itself. This same characteristic is true for
distinctions in the plane and in the line.

If we draw distinctions in the plane by delineating circles, then we
shall say that circle A is inside another circle B if A is inside the
bounded region created by B. Otherwise A is outside B. Then in any
complex pattern of nonintersecting circles (i.e., the boundaries do not
intersect) it is possible to say, of any two circles in the pattern, whether
one circle is inside or outside the other.

Ordinary English or mathematical text can be regarded as com-
posed within an indicational space of dimension two, where the amount
of freedom allotted in the vertical dimension is considerably less than
that allotted in the horizontal direction. To compensate for this restric-
tion, the conventions of subscripting and superscripting create addi-
tional (implicit) spaces related to any sign in a given typographical
space. In this form we are accustomed to delineating distinctions via the
use of parentheses and by symbols such as the square root sign v .
Let us consider the square root sign first, as it constitutes a single
connected sign that can indicate a distinction in typographical space. (I
shall refer to the text space as typographical space and call the space of a
given line of writing the line space.) The square root sign is read as
enclosing the part of the line space to the right of the vertical part of
the sign that is underneath the horizontal extension of the sign. Thus
the square root sign makes a distinction in line space by using the
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already prepared distinctions of left-right and up-down that are given in
the typographical space.

Typographical space is not a topological space in the usual mathe-
matical sense of the word. Rather, it is composed of the distinctions of
left and right, up and down combined with the use of characters that
can be individually delineated. This means that the contents of a
typographical space can be systematically encoded as a string of charac-
ters plus instructions for their recombination into the given visual
format. These extra instructions constitute operators that indicate ends
of lines, indentations, super- and subscripting, and, in the case of the
square root sign, the beginning and end of the overline. This is a
description of typographical space as it is understood by a word proces-
sor engaged in recording and displaying the contents of the space. In
this regard, the square root sign is an artifact of display conventions
convenient for visual processing of the contents of the typographical
space. These remarks about the sequential character of the information
in the typographical space apply particularly to the printed word.

For the written word, it has long been possible to regard a symbol
such as the square root sign as a primitive character. As such, the sign is
inherently two-dimensional, and its act of enclosure is given in the
process of writing. In mathematics it has become commonplace to
regard a subject as formalized if it is (or can be) written in a form that is
inherently typographical. This implicit view of formalization has the
base language encoded in sequential character form. From this point of
view the square root sign is informal, and if an author introduces a new
sign that partakes of two-dimensionality then this sign is regarded as
informal until it is explained how to replace it by a satisfactory linear
character format.

Of course, in the case of the square root, this is accomplished by
the notation VA = SQRT(A), where SQRT denotes the square root
operation. Nevertheless, any user of mathematical notation would not
hesitate to regard the square root sign as part of the formalism, and he
or she might even be surprised to hear that it is actually informal!

Why do we act out this contortion into linearity? Some reasons
have been given already—printing presses and word processors need
their characters and codes. Mathematical logic needs its Godel num-
bers. The Godel numbers are integer codes for elements in the formal
system that are essentially derived from the sequential form of the
contents. A deeper reason may be the attitude that all spaces other than
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a discrete linear space are higher-order constructions and not to be
taken as fundamental.

It is a purpose of this discussion to dispel the idea that an indica-
tional space is any less fundamental than a typographical space. The
contents of an indicational space are not inherently linear. Neverthe-
less, they are easily coded in linear fashion, and we shall discuss this
aspect of indicational space now.

Let the symbol be called the (left) mark. The mark is regarded
as a form of parenthesis. Its syntax is identical to that of the square root
sign except that we do not take it to indicate square root; rather it
denotes enclosure only. The mark makes a distinction in the line space.

Concatenated distinctions can occur in two forms:

|—-|__ and F

In the first instance, each mark is outside the other mark. In the second
instance one mark is inside the other mark.

The linear version of the mark can be denoted by a pair of brackets.
Thus [ = (Yand [ [ = ¢ while [~ = (O,

An expression involving the mark is any disjoint collection of marks
in the line space such that each mark is definitely inside or outside any
other mark. Each mark in the expression makes a distinction between
inside and outside. The simplest expressions are a single mark and the
absence of a mark (empty expression). A typical complex expression is

= rr

In brackets this expression becomes

“F“ "I[— [T T = OOOMNMOND

In marks, an expression is well formed if it is drawn so that any mark is
either inside or outside any other mark. Note again that an expression is
inside a given mark if it is to the right of the vertical line in that mark
and underneath the horizontal line.
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It is not hard to see that the following recursive rules describe the
construction of all expressions in the mark:

1. The mark and the absence of the mark are expressions.
2. If A and B are expressions, then so are AB and |4 expressions.

Advantages of using marks rather than brackets, aside from read-
ability, are the following facts:

Factl: If [4 is an expression, then A is an expression.
Fact2: If AB is an expression, then 4 and B are expressions.

Here it is understood that 4 and B are composed only of marks and
that 4 and B occupy disjoint regions in the line space. The two facts
then follow immediately from our definition of an expression as a
disjoint collection of marks such that any given mark is either inside or
outside any other given mark. ,

These facts are false for expressions rendered into brackets. That is,
it does not follow that A is an expression if (A4) is an expression. The
simplest counterexample is ( ){ ). It does not follow that 4 and B are
expressions if 4B is an expression. The simplest counterexample is ().
Both of these examples derive from the fact that a distinction docketed
by brackets requires a pair of brackets. A string of brackets (left and
right) represents an expression if and only if every left bracket is paired
with a right bracket. (The expression must begin with a left bracket.
Move from left to right counting —1 for each left bracket and +1 for
each right bracket. When the sum is zero you have just passed the right
bracket that is paired with the original left bracket) The rules for
pairing brackets are a linearization of the overhang of the mark.

Conceptually, the syntax of the square root sign, or of the mark, is
simpler and prior to the syntax of parentheses and brackets. This is the
most elementary instance of the use of indicational space as a back-
ground for typographical space. Everything that we say from now on in
the paper will be written in indicational space using the mark and
expressions in the mark (plus the usual signs and symbols of English
and standard mathematics). It is to be understood that this is a formal
background with a perfect translation into the fully linearized for-
malisms of bracketing and parentheses.
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Commutativity

A mark makes a distinction in indicational space. The left-to-right
ordering of distinctions is (initially) an artifact of drawing distinctions
along a line. Thus we see a difference in ordering between H= '_ and

[ . As patterns of distinction in the plane these forms represent
identical relations (a distinction within a distinction and a distinction
outside that distinction). In fact, if we were writing in two dimensions,
we could move continuously from one form to the other by shifting one
mark up to the next line, sliding it along the top of the nested marks,
and sliding it down into its own line again on the other side:

o
R e it N

All such movements must respect the distinction drawn by the expres-
sion. In this sense it is not necessary to state explicitly the commutative
law, AB = BA, for formal expressions unless we regard them as con-
fined to the single dimension of a typographical line space. From now
on we take commutativity as implicit in the definition of these forms.

Recalling Laws of Form

The first mathematical system discussed in Laws of Form (Spencer-
_Brown, 1969) is the calculus of indications, here abbreviated CI. For-
mally, CI is the study of the set of finite expressions in the mark [
under the following two transformations:

1. (Caling) [ [ =T
2. (Crossing) =

In calling, two empty marks in the same space are replaced by a single
mark. In crossing, a mark containing a single empty mark is replaced by
void. Both of these operations can occur in either the direction of
simplification (fewer marks) or that of complexity (more marks). In
crossing, a pair of nested marks can be written in a void. In calling, a
copy of an empty mark can be written in the same space as that mark.
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Both calling and crossing can occur in larger expressions that contain
these forms.
For example, we find

The first is accomplished by crossing, then calling, then crossing and
once more crossing, reducing the expression to void.

It is not hard to see that any finite expression can be reduced by
calling and crossing either to the mark or to void. It is a bit more
difficult to prove that there is no sequence of applications of calling and
or crossing (possibly in the direction of complexity) taking the mark to
void. We shall recall the proof of this fact briefly:

Theorem: The mark, |—, cannot be transformed by calling and cross-
ing to the void,

Proof: Let the symbols M and V stand, respectively for marked and
void. Adopt the following rules:

1. If V labels the inside of a mark, then M will be placed just outside
it; if M labels the inside of a mark, then V' will be placed just
outside it. For example,

My, vimlv

2. If a space has many copies of the symbols M and V, it is regarded
as labeled by M if there is an M in the space. Otherwise it is
labeled by V.

In a given expression E, label all the empty spaces (i.e., the insides
of empty marks) by V. Having labeled the empty spaces by V, the above
rules determine labelings of all the remaining spaces in the expression.
In particular, they determine a labeling of the shallowest space in the
expression. Call this label the value of the expression. It is now easy to
see that the value of an expression is unchanged under applications of
the transformations of calling and crossing in the directions of simplicity
and complexity. But the mark has value M and the void has value V.
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Therefore there is no sequence of transformations of the mark to the
void. Q.E.D. '

Example: To underscore the need for this proof, consider the system in
left and right brackets generated by the transformations

]

1. X
2.

N
N

We see that calling is a consequence since ( ){) = ( ) by 1.
Unfortunately, () = ({)){() =) Y= = . Thus in this
system the mark and the void are not distinguished. The theorem
eliminates any worry that such muggery might go on in the calculus of
indications.

This proof is the cornerstone of the calculus of indications. It shows
that the system really indicates two distinct values. This allows the
investigation of the properties of CI and in particular of the algebraic
identities that are satisfied by expressions where equality means that
one expression can be transformed to the other via calling and crossing.
For example, it is not hard to see that the following equations are
always true:

1. P_l? = [— for any expression P.

2. P =P for any expression P.

3. P”—Q— R = "_13@ [PR for any expressions P, Q, R.

Because any expression is equivalent to either the mark or the void,
we check equations by imagining the possible cases. Thus if P is void in
1, it reads}_ = r— If P is marked, then we have |—"= = f— as
desired. The other equations can be checked similarly. Laws of form
then goes on to give a pair of equations from which all other true
equations about CI can be derived. Then there is an excursion to
infinity and self-reference, circuits that count, and a wealth of notes and
commentary. The algebra of laws of form translates to Boolean algebra,
giving a natural foundation for this subject and for the logic of proposi-
tions. The calculus of indications is also called the primary arithmetic. It
is the arithmetic whose algebra gives rise to Boolean algebra.
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In Laws of Form, Spencer-Brown remarked that one could obtain a
model for the ordinary arithmetic of counting, adding, and multiplying
by suitably restricting the law of calling. If we do not allow calling, then
it is possible for l_, [— |——, ,— [_’_5 ,... all to be distinct forms each
representing a successive number. In an unpublished manuscript,
Spencer-Brown (1961) outlined the details of such a construction. The
purpose of the next three sections of this paper is to give an account of
arithmetic that is faithful to this original idea of Spencer-Brown. The
next section explains the idea and shows the logical difficulties that
arise in carrying out the idea directly. The following two sections show
our happy solution to these difficulties.

ARITHMETIC

Here is a first pass through the domain of doing natural number
arithmetic with indicational forms.

Let [ denote the number zero ). Let [ denote the number
one (1), [T~ the number two (2), and generally [ [

denotes the number 7 if there are n crosses enclosed by the outer
mark.

il

=
rr

?

We regard a natural number as a row of marks that is surrounded
by a mark. The marks within the mark are distinguished by their
position in the space demarcated by the containing mark, not by their
intrinsic structure.

- In this system of numbers we adopt a rule about boundaries
(crossing) that reads 4 = 4 for any A. This rule allows the removal
of boundaries and it gives us the definition of addition in the form

A+B= “—/T (B . Multiplication demands a copying of one number by
the form of the other, and this is done via (for example) A4*3 =
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A+ T =444 . Once again the boundary is removed
from A by putting a mark around it, and 4 X 3 becomes a mark
containing three times as many marks as A.

These relations are summarized in the following two axioms and
definitions:

L 4B Ic <[isBlasc

n 4 =4
Definition of Multiplication: A+l | [ =04 [4 [ .
Definition of Addition: 4 +B =4 |B .

Equations I and II are to hold even if the expressions A, B, C are
empty. Note that I is a tautology if A is empty as long as it is
understood that multiplication by an empty word leaves an expression
intact. II says that the number one (|_[=) can be replaced by a blank.
This is true for one as a multiplicative unit. It also works in the
definition of addition, for note:

E+1=H+F=W=T

This is the desired result in this notation. The cancellation of the
twice-nested cross is instrumental to the entire structure.

Addition in this system formalizes the simplest concept of the
combination of collections. A number is a container filled with “that
many” objects (marks). To add two numbers, cancel their containers
and put the contents together into a single container. Cancellation is
accomplished (through the second initial) by enclosing the form within a
mark. Hence the definition of addition is precisely a transcription of the
italicized statement into symbols.

The first initial expresses the distributivity of multiplication over
addition: A+(B+C)=4*[B [c =luxBlaxC =a+B+4xcC.
The definition of multiplication is actually equivalent to I in the
presence of II, but we wish to emphasize it directly because it embodies
the idea of multiplication. It is assumed in these axioms that A4, B, and

C are all of the form "— |—— |—— .
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Note that the empty mark, |—_, acts correctly as zero both for
multiplication and for addition.

T =T rr-r—-r
msrFrr = T -FFr

A Hint of Paradox

In formulating this arithmetic, we have used a special symbol (i) for
the operation of multiplication, while there is an intrinsic formulation

of addition in the form A + B = “_A— [B . Can we drop the sign of
multiplication and just denote it by the juxtaposition of forms? Consider
the consequences of writing 4 * B = AB.

The situation is stranger than it seems! For zero *zero = zero, and
hence when the mark is interpreted as zero we shall have the equation
for the law of calling, |—E= l_ But calling is prohibited in the
interior of an expression for a number: '

T =T

There is no paradox when we write f— ® l—— = |——, for this equation is
distinct from the law of calling as long as multiplication is indicated by
an explicit sign.

If we do eliminate the multiplication sign, we must also determine a
way to evaluate any expression in the mark, not just the ones in the
form of a container for a row of marks. There should be an unambigu-
ous way to assign an integer value to any well-formed expression in the
mark that generalizes our rules of calculation and allows the removal of
the multiplication sign. It is the purpose of the rest of this essay to show
that such a theory does indeed exist.

The resulting arithmetical theory of forms is a departure from Laws
of Form but retains its spirit. The departure consists of regarding
arithmetic as a contextual theory in which every division of a space has
either a multiplicative or an additive context. In particular, there are
two contexts for the void. Zero is the value of the additive void. One is
the value of the multiplicative void.
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The next section explains this point of view formally, and the
following section gives an exposition of this theory of arithmetic in the
manner of Laws of Form.

ARITHMETICAL EVALUATION OF FORMS

In the preceding section we took the representation of the numbers so

that 1 = IF‘— , 2= "_ ,_ , and in general the natural number » is
represented by a mark with a row of n marks inside it. We shall refer to
this as a crossed row of marks. It is interesting that in order to construct
this system of arithmetic, we need to have the concept of number, and
certainly we are using an implicit representation of numbers as rows of
strokes as in

1: |
2: 11
3: 1011
4: |11

In fact, we could also have begun with a representation where an
integer is represented by an uncrossed row of marks as in

1=, 2=, 3= T1T,..

We shall discuss this possibility shortly.
In the present system, addition is represented by a + b = “-a_ Ib—

and the rule ";_— = x. The first rule applies whenever a and b are
crossed rows of marks. The second rule applies for any expression x.
Together, the two rules produce the operation of addition by formaliz-
ing the idea that if a number is represented by a “container of marks,”
then the sum of two numbers is represented by removing the containers
for the individual numbers and placing the result in a single container.
The reader should compare this description with the formalism shown
below.

Let a = I—I_Q— and b = I-S_, where R and S are rows of marks. Then

ato=laTo =R ls -ks
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Of course, RS is a row of marks, the number of which is the sum of the
number of marks in R plus the number of marks in S.

As we remarked in the previous section, this representation admits
multiplication as well as addition via the use of the transfer

ab=a[§ =a“——|—'"[_ = "a— E—"'la—
G- <bs~—s.

The result of this calculation is that ab contains a row of marks in the
form SS --- S, where S is a’s row and there are as many copies of § as
there are marks in b’s row.

Thus the rule of cancellation, ﬁ = x, in conjunction with transfer,
x”y_ E'— = “_x; IE , produces a working model of the arithmetic of
the natural numbers. We recognize this arithmetic as a generalization
of Laws of Form, where cancellation, "—__— =, is allowed, but condensa-
tion, T =T , has been allowed only under restricted circum-
stances. For example, we cannot allow condensation to occur in the
expression (N [ and have the number 2 retain its integrity. But
T =1 expresses perfectly the fact that 0 X 0 = 0.

In order to make a consistent theory of arithmetic that embodies
these formalisms, it is necessary to determine how an arbitrary expres-
sion involving the mark can have an arithmetical value in such a way
that the restrictions on condensation are fully articulated. The clue
comes from considering the alternative possibility of representing a
number by an uncrossed row of marks. In this alternative universe,
addition of rows of marks R and S is represented by juxtaposition RS
and mul'lc_ip_lication is represented by RIS . To see how this works, let

S = l_ I—.Then

Rls <RI T T -7 -I&
R Ir =rr - R

Thus, again using transfer, "_E [S reduces to S copies of the row R,
and this is indeed the product. In this alternative arithmetic universe
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the mark |—— denotes 1 rather than 0, and the crossed mark “=
denotes 0 since it is equivalent to the void. A void row has zero marks.

The moral is that the value of the mark depends on its context. This
value depends on what the mark contains or where in an expression it
sits. Let us consider the case of an empty mark. Is it zero or is it one?
This can look like an unsolvable conundrum until the ground shifts
from looking at the marks themselves to looking at the spaces between
them and surrounding them.

The empty mark with value 1 (in the alternative universe) is in an
additive space. Juxtaposition represents addition in this universe. The
value of the void in an additive space is 0. If you juxtapose nothing to a
row of marks their number does not change.

We can now ask: Let a mark stand in an additive space; what is the
character of the space within that mark? The answer: The space within
the mark is a multiplicative space when the space outside it is additive.
Crossing the boundary of the mark does not change the value of the
expression within the mark, but it does change the context from additive
to multiplicative or from multiplicative to additive.

Additive space = [multiplicative space
Multiplicative space = [additive space

| Value = value

These three equations indicate the principles that we finally arrive at.
Note how they work in the interpretation of the equation

-

If the outer space is additive, then the void on the right-hand side has
the value 0. By the principles stated above, this means -that the inner
mark on the left-hand side has value 0 in the multiplicative space that is
enclosed by the outer mark. Indeed, the value of an empty mark in a
multiplicative space is 0.

If the outer space is multiplicative, then the void on the right-hand
side has the value 1. By the principles stated above, this means that the
inner mark on the left-hand side has value 1 in the additive space that is
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enclosed by the outer mark. Indeed, the value of an empty mark in an
additive space is 1.

We see that we can now specify a universe for arithmetic by
specifying the type of the outermost part of the indicational space. Our
standard universe has a multiplicative outer space. The alternative
universe has an additive outer space. In working with expressions we
change universes at each crossing but the arithmetical values that are
transmitted across a crossing remain the same.

These considerations give a method for finding the arithmetical
value of any given expression in a specified universe. To see this, let us
specify that we are working in the standard universe. Then spaces of
even depth are multiplicative and spaces of odd depth are additive. (The
opposite is the case in the alternative universe.) The deepest spaces in
an expression are voids of either additive or multiplicative type, depend-
ing on the parity of their depth. (Recall that the depth of a space in an
expression is the number of inward crossings needed to reach it in the
expression.) Since additive or multiplicative voids have the value 0 or 1,
respectively, each deepest space has a value. This value is then transmit-
ted to the spaces of one less depth, and by combining values according
to the types of the spaces, these values transmit upward in the expres-
sion to give a value for that expression that is a well-defined function of
the structure of the expression.

For example, in the standard (multiplicative) universe, the expres-

sion "_ l_— l—— l_lz- has three multiplicative deepest voids of value 1

and one deepest additive void of value 0 as shown, lﬁ_ |1_ fl_ I—B—: .
These transmit three 1’s and a zero to the additive space underneath
the mark, giving the sum of three 1’s beneath that mark,
1+1+1+0=13 =3. Thus the value of the original expression
is 3. ‘

In this way, any expression in the standard (or alternative) universe
has a well-defined arithmetical value. We can then use this value as the
definition for equivalence in our arithmetic of forms. We shall say that
expressions 4 and B are equal (4 = B) if they express the same value
in their universe (standard or alternative). Note that expressions that
are equal in one universe may be distinct in the other universe.

With this notion of equality, we can at once prove the rule of
cancellation (IFA: = A for any expression A in either the standard or
the alternative universe), for note that both sides are in the same




20 L. H. KAUFFMAN

universe and have the value A in that universe. This means that
cancellation applies anywhere in any expression. On the other hand,
transfer (Cll4 [B = [[C4[cB) applies exactly when C is in a multi-
plicative space. In this case expressions A and B are also in multiplica-
tive spaces, and transfer is exactly the fact that multiplication distributes
over addition in ordinary arithmetic.

In the next section we give a formal version of this discussion of the
principles of arithmetic, and we prove that two expressions in this
arithmetic have the same value if and only if one can be obtained from
the other by a sequence of applications of

1.d =4 (applicable in all contexts)

2. [ = (applicable in multiplicative contexts)
3.cld B =licdlcs (applicable in multiplicative contexts)
4. AB = BA (implicit in all contexts)

Note that in a given expression all contexts are determined by the
choice of context for the shallowest space. For example, if the shallow-
est space in E is multiplicative, then all spaces of even depth in E are
multiplicative and all spaces of odd depth in E are additive.

This completes the account of the relative consistency with ordinary
arithmetic of this version of formal arithmetic (an extension of Laws of
Form). There remain many interesting questions to pursue. We shall
indicate some of these in the discussion at the end of this section and
the sections to follow.

Remark on Ordinary Arithmetic

To construct this formal arithmetic, which we have come to see as
fundamental to the structure of ordinary arithmetic, we have seen fit to
use the properties and values of ordinary arithmetic as a yardstick with
which to measure the structure and consistency of the formal arith-
metic. This may seem circular (it is not) or externally referential (that it
is). External reference could have been avoided by including a discus-
sion of ordinary arithmetic, taking it to the desired level of our discus-
sion. We can represent the number 3 by three strokes: |||. We can
point out how to add and multiply rows of strokes and how to compare
them by pairing off strokes from one row with strokes from another
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row. We can then show all the needed rules of arithmetic. We can state
our belief that this system of arithmetic is consistent and that all the
numbers |, ||, |ll,... are distinct from one another. Then our
algorithm for the evaluation of an expression can be regarded as a
method for converting a given expression into a row of strokes. This
algorithm requires the ability to search the indicational space and to
assign parity for the determination of context. This is how we could
program a computer to evaluate expressions in this arithmetic.

The whole purpose of this construction of formal arithmetic has
been to show that ordinary arithmetic is really quite extraordinary—that
it grows out of a mixture of our abilities to remember and repeat and
our abilities to form patterns and contexts. The particular value of this
version of formal arithmetic is the exhibition of the direct connection
with Laws of Form. This is a realm where there is a duality between the
operations 4B and 7 [B . In our arithmetic this duality is expressed
in the reversal of operations between the standard and alternative
universes. This duality is best expressed by defining the mapping
L: S — S where S denotes the standard universe.

LX) =[x
(We have shifted X from a multiplicative space to an additive space.)

Proposition: L(X X Y) = L(X) + L(Y). Here the operation X de-
notes multiplication in S, and the operation + denotes addition in S. L
is a formal precursor to the logarithm.

Proof: L(X X Y) = L(XY) = [xy = I—IX——”_Y: =x +lv
= LX) + KY).//

The significance of the formal arithmetic resides in the fact that in
it there is no longer any distinction between the elements of the
arithmetic and the operations of that arithmetic. Everything rests on the
values of the void. ‘

Two-Boundary Notation

It is useful to designate the character of the space inside or outside a
given mark. Let + denote an additive space and * <enote a multiplica-
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tive space. We can adopt a special notation for two types of boundary.
Let (4) =(A+ )% and [A] ={A4*) + . Round brackets denote a
boundary whose inside is additive and square brackets indicate a bound-
ary whose inside is multiplicative. Thus,

() ={+ )% =0 in multiplicative context
[1=<#)+ =1 inadditive context

With this notation we have the rules [(A4)] =4, (AD =A, and
A(BICD = (ABIAC) for arithmetical expressions. An arithmetical
expression is an expression in which there are no contradictory indica-
tions of type in a given space. Thus all marks at a given depth parity
must be of the same type (square or round). Thus [ 1], (OO [ DO]
are arithmetical expressions, and []() is not an arithmetical expression.
Note that when we use this two-boundary notation, an arithmetical
expression declares its allegiance to either the standard or the alterna-
tive universe. Thus [ ] ][]is 3 in the alternative universe and [()()()] is 3
in the standard universe. In order to multiply or add two expressions
they must be in the same universe. Note that [J[] # [, but )() = ().
The quotient map to the calculus of indications is simply the map that
forgets the distinction between round and square brackets.
The rules for using this two-boundary notation all follow from its
- Interpretation in spatial context. In particular, we understand that
[1=1,() = 0 but that this does not imply that [ }() has a value because
this expression is not arithmetical. Conversely, every arithmetical ex-
pression has a unique value by the results of this section and their
formalization in the next section.

Remark: A two-boundary notation for arithmetic similar to the one
given above is used in James (1993). The value of the approach given in
this paper to such notations is that by developing the notation as a
shorthand for the full spatial context of arithmetical forms we prove its
relative consistency with ordinary arithmetic.

Id

Exponentiation

We now define a® for a and b in the formal arithmetic. Here it is most
convenient to use the two-boundary notation. By definition, a® is defined
only if a and b are in opposite universes.
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Then we define U111V = [(a)(a) --- (a)lwhen a = []-+-[]. In other
words, we insert a into a pair of round brackets for every pair of square
brackets in the reduced form of the exponent. Here a is in the additive
universe. By inserting into switched brackets in this manner we obtain
the product of a with itself b times.

It is interesting to note that this definition of exponentiation gives it
the appearance of a transfer of a into b. In Spencer-Brown’s original
manuscript on arithmetic, exponentiation was denoted by such a trans-
fer. By making the definition in this form, we keep the spirit of this idea
without its logical difficulties.

Note also the special case in which there are no square brackets in
b. Then @I 1D = [(a)a)-- (a)] becomes a® =[]. Thus a° =1 for
any a, and this includes the case 0° = 1.

FORMAL ARITHMETIC
Void

The void is unmarked.

Arithmetic

In arithmetic there are two voids: the additive void and the multiplica-
tive void.

Value

The value of the additive void is 0. The value of the multiplicative void
is 1.

Context

All divisions of a space are endowed with a context. A context is either
multiplicative or additive. .

Operation

In an additive space juxtaposition creates addition. In a multiplicative
space juxtaposition creates multiplication.
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Depth

An expression divides the indicational space into separated spaces. A
connected component of this severance is said to be a division of the
expression. The depth of a division is the number of inward crossings
from the unbounded region that are needed to reach the space of the
division.

The unbounded region has depth zero and is referred to as the
shallowest space.

In the case of a single mark, there are two divisions—one of depth
zero and one of depth one: 0{1) (depth is italicized).

Depths are indicated for all divisions in the following example:

bbbk B & - RUICIEIEINENTEIN

Note that this example has one division of depth 0, one division of
depth 1, two divisions of depth 2, two divisions of depth 3, and one
division of depth 4. The number of divisions of a given depth in an
expression is the number of spaces distinguished by the expression at
that depth level.

Parity for the Standard Universe

Let the parity of the depth of a division designate its context. Let a
division of depth zero have multiplicative context. Let a division of
depth one have additive context. Depth of even parity connotes multi-
plicative context. Depth of odd parity connotes additive context.

Expressed Value

Let the value indicated by a token (a token is a cross in the context of
an expression) be equal to the value indicated on the inside of the
token.

Since the additive void has value zero, the value indicated by a
single mark in a multiplicative space, I—— = (), is zero.

Since the multiplicative void has value one, the value indicated by a
crossed mark in a multiplicative space, ™ = (), s one.

Conversely, the value indicated by a single mark in an additive
space is one; the value indicated by a crossed mark in an additive space
is zero.
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Crossing

Crossing a boundary changes the context of the content. Crossing the
boundary does not change the value of the content.

Example: {{){){)) contains three divisions of depth two. These are
each voids in a multiplicative context. Each void has value 1.

1<IX1))

Therefore the value indicated on the inside of the expression

N

is1+ 1+ 1= 3. Therefore the value of the expression is equal to 3 (in
a multiplicative context).

The inside of the expression () is an additive void, hence the
expression has value zero. ({){)){) has value equal to 2 times 0.
Hence (< >{ )< has value zero.

Evaluation

Each deepest space is an additive or multiplicative void. Label each
deepest space according to the value of this void. Use these evaluations
of deepest spaces to obtain, by multiplication or addition, the value of
each next shallowest space.

Continue until an evaluation of the space of depth zero is obtained.
This is the value of the expression.

Value

Each expression indicates a unique arithmetical value. Two expressions
shall be connected with a sign of equality, =, if they express identical
values.

Example: Evaluate {{ ){ ){ )>{< ){)). The deepest spaces are all mul-
tiplicative voids. '

Y)Y
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Depth one is additive.

(3X¢2)
Depth zero is multiplicative.

6

Frr rr =rrrrrnr
OO = COOOOON

Example: ({{OX (X H()). The deepest level is of depth 3, hence
additive. The value of the additive void is zero. The other deepest
spaces are of even parity and hence multiplicative.

SOZENIENIC VWY

Crossing a boundary does not change the value of a content.
O+1+1+1+1)

4)

4

LNOOO) = LOOON

Transfer

{x){y))z = ({xz){yz)) when the space pervading z is multiplicative.

Proof: The shallowest space is multiplicative. Therefore if x, y, z are
the values of the respective parts of the expression, then the expression
reads, upon evaluation,

(x+y)rz=x*xz+yxz

Since this equation is true in ordinary arithmetic, the proposition is
proved. Q.E.D.
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Generalized Transfer

{a){b){c))d = {{ad){bd){cd)) when the space pervading d is mul-
tiplicative.

Proof:

Ka){b){c))d
= ((Ka)X{b))){c))d
= ((a){b))){c))d
= ({Ka)b))d){cd))
= {({KKad)<bd))){cd))
=( (adXbd) {cd))
= ({ad){bd){cd)) Q.E.D.

Example. The Transfer of Zero:

O N = LMD = LON = >=0O.

Thus n X 0 = 0 for any n.

The Algebraic Expression of Value

Theorem: Two expressions in the formal arithmetic express the same
value if and only if one expression can be obtained from the other by a
sequence of replacements as indicated by the initials given below:

() ({A4)) = A (applicable in all contexts)
(i) (>{) = () (applicable in multiplicative space)
(iii) ((A){B))C = ({AC){BC)) (applicable only when the space
containing C is multiplicative)

Proof: The theorem will be proved by showing that any expression may

be reduced to one of the forms (), ({}), {{){()), LY XM,....
These forms all have distinct arithmetical values (0, 1, 2, 3,...). Fur-
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thermore, we have shown that the replacements given above do not
change the value of an expression. Thus it suffices to prove that any
expression can be reduced to one of the standard forms. Let E be an
expression, and consider a deepest space in E. This space is empty and
is surrounded by a mark ¢ ). This mark is either adjacent to another
mark as in { ) ), or it is enclosed in a mark as in {{)), or the mark
stands alone in a shallowest space. In the last case the expression is
already reduced. In the next to last case, the expression can be simpli-
fied by one application of (i) above. In the first case the two adjacent
marks ( ){ ) may stand in a division of even depth, in which case the
simplification { ){ ) — () is available by (ii). Finally, if the two adjacent
marks stand in a division of odd depth, then they stand in a form
{{Y(YBYA) where A is in a multiplicative space (even depth) and A4
is either empty or A has the form 4 = ({(){) -+ ()) and B has the
form B = { () --- {) (including the empty expression). (These remarks
foliow from the assumption that the two adjacent marks have maximal
depth.) Under these circumstances a simplification (in the sense of
depth reduction) is obtained after an application of (iii) followed by ()
as in (OO = DI ONIOM) =
DCOHOOOOON = DO, This completes the proof
of the theorem.//

Comment

The system that we have elucidated is based on a contextual interpreta-
tion of evaluation. With the convention that the shallowest space is
multiplicative, we have

0=C(), 1=, 2=, 3=L)X)), andsoon

Since context is determined by the parity of depth, it is automatically
true that ({(A)) = A for any A.
Multiplication goes via transfer:

3xa = (XM *(a) = (Ka)){{a)){{a))) = aaa)

To define addition in this context we must shift the space. This is
accomplished by the strategem a + b = {{a){b)). By our conventions
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(a) and {b) are sharing an additive space. Therefore they must be
added together. The resulting value is their sum.

Nota bene

(OO + OO
= (OO
= (OO O
= (OOOOY

With this proof that 2 + 2 = 4 we conclude our presentation of formal
arithmetic.

CODA

We have written natural number arithmetic in the context of an
indicational calculus. The benefits of such an endeavor are not yet fully
apparent. This is partially because we are so familiar with arithmetic
that foundational investigations of this sort take a while to sink in. The
important conceptual turn that made our construction possible was the
realization that the numbers one and zero held equal standing as the
values of a void (an empty space) in multiplicative and additive contexts.
From this vantage, and through an interpretation of the multiplicative
and additive contexts at different levels of parity in the form, we obtain
an infinity of values for these expressions that are in one-to-one
correspondence with the well-known arithmetic of the natural numbers.

Since the original context of Laws of Form (Spencer-Brown, 1969)
led directly to Boolean algebra, our study shows that ordinary arith-
metic can be regarded as a direct relative of Boolean algebra in which
the structure is more complex due to extra distinctions. Our arithmetic
has the two-valued calculus of indications as a natural quotient struc-
ture. In this sense ordinary arithmetic deserves to be seen as a
multiple-valued logic or as a form of reason in which each integer is an
imaginary value! (Compare Kauffman, 1987.)

In fact, the relationship of arithmetic to recursion and imaginary
value (in the sense of Kauffman, 1987) is highlighted here by the
theorem of the preceding section. This theorem states that the arith-
metic of forms is generated by the rules {{ )) =“nothing” (in any depth
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parity), (){() =) (in even depth parity), and {((A){(B))C =
({AC){BC)) (in even depth parity). Taken abstractly, it is not obvious
at first that these rules will generate ordinary arithmetic. In this order
of presentation, the first rule is the law of crossing, the second is a
restricted form of the law of calling, and the third rule can be viewed as
the essence of multiplication. It makes each expression at even depth
into an operator ready to accept a multiple copy of another expression
into itself.

Addition and multiplication are inherent in the structure that
generates the natural numbers from expressions in indicational space.
Numbers are not collections that can be combined via the properties of
addition and multiplication. Rather, numbers are the residues of the
equivalences of forms under the processes of crossing, calling, juxtaposi-
tion, and recursion, the true precursors to addition and multiplication.
The numbers occur inextricably mixed with their own operative powers.
All these remarks are at once obvious to anyone with experience in the
theory of numbers, where the most basic theorems involve the relations
between additivity and multiplicativity. Here, we have taken a step back
into the foundations and have seen that numbers and their operations
are inseparable at the most fundamental level. The next stage involves
going forward into the basics of number theory, using these forms as a
guide.

It may be helpful, in this coda, to take a peek into this forward
direction. Consider the

Puzzle: How many ways are there to distribute N identical balls in M
bins?

Consider the case where N = 7 and M = 3: seven balls in three bins.
One such arrangement could be [{ ){ >{ YI{ >{)N{ >{ )] where the bins
are the outer paired brackets and the balls are the inner paired
brackets, { ). Another look at this pattern reveals that by transmuting
each pair of opposing brackets into a pair of matched brackets, we
transmute the seven balls in three bins to nine balls in one bin, with two
specially selected balls (the transmuted bracket pairs).

[OOOULOOIOO]
OO OO OO
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The walls between the bins can be transmuted into balls! The distribu-
tion of seven balls in three bins is equivalent to the number of ways to
choose two distinct balls from nine distinct balls, hence 36 ways in all.

The same reasoning applies to the puzzle of N balls in M bins.
Transmute to M — 1 balls chosen from N + M — 1 balls, and hence
the answer to the puzzle is (N + M — 1)! /(M — 1)! N!

The next stage in formal arithmetic is its interpenetration with the
combinatorics of number theory. Another direction is the care and
description of transfinite forms and numbers. We have 0 = (), 1 =
N 2=L{{X)),... and so the first transfinite ordinal is certainly
0 =<LOOO0 .

Recursively, o = {a) where a = ()a (at depth 1). That is, if
a = ()X ) (ad infinitum), then (da = (Y W W) =
O+ =a, but al) = () )() () is not equal to a. This is a
primary instance of noncommutativity in the form.

Then we can define w + 1 =<{a{)), 0 + 2 ={a{){D),... 0+ o
= (aa),...,..., w*={aaa...) = {b) where b = ab.,..., ...

It is useful to have a concrete picture of the (countable) transfinite
ordinals as they provide a mirror of processes in the finite arithmetic
(see Appendix 2) and they themselves are a significant arithmetical
domain. The countable ordinals are so constructed so that there are no
infinite descending sequences of ordinals (they are well ordered). Here
we see the ordinals as an extension of formal arithmetic to expressions
with infinitely many marks.

Sets, Ordinals, and the Vanishing of the Comma

It is interesting to note that we could have begun our reconstruction of
number by following the formalism of ordinary set theory in the context
of using the mark '(I__). Then the mark has the syntax of the set
theoretic brackets: {} = [ In this setting 4 = {{4}} is distinct from
4, so the law of crossing is not allowed. However, with an appropriate
choice of notation, we do get the law of calling. This choice is as follows:
Let it be understood that a finite ser S is an expression in the mark in
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the form S = [E where E is any finite expression in the mark. Since E
is equal to a juxtaposition of expressions contained in individual marks,
E=I[EE, -~ [E, = 5,5, - S,, we have that E is itself a juxtaposi.
tion of the sets Sy, S,,..., S,. We shall call these sets the members of S.
Thus we can write sets without putting commas between their members.

For example, (), (W = 1| .

Note that the empty set, |_—, is distinct from the void. The empty
set is a container for the void.

To obtain sets, rather than multisets (a multiset can have many
duplicate members as in {{}, {}}), we adopt the rule

Condensation: ST =S whenever S and T are sets with the same
members.

Note that condensation implies that [EF = [FE for any expressions FE

and F, and that [—l_- = |— Condensation implies the commutativity
of forms that we need for sets. We say that sets S and T are equal,
§ =T, if they have the same members. This specifies the construction
of finite set theory as a version of the indicational calculus of Laws of
Form with a restriction on crossing and a special condensation rule that
generalizes calling,

In this language, the natural numbers appear as a sequence of sets
with distinct members (the von Neumann construction in set theory):

[ =0
—
T -

rcrr =3

In general, if N = Ec’— then N +1 = IE Ds_ . This gives an inductive
construction of distinct sets such that N + 1 always has one more
member than N. The limit of this construction is the first countable
ordinal . It is interesting to generalize these notations for sets to

1
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infinite expressions in-the mark that indicate infinite ordinals. For
example, let

o=l o e e e ek & .

where « is any ordinal or « is void. If « is void, then w, = w. In
general, w, = w - so that © = w; = w, = ---. However, o # o,.

. It is interesting to examine the form that results from taking the
reverse limit in this process. By the reverse limit I mean the limit
process indicated below:

I
| [

| [ | -

— T - TrrTr
Il lrrr il rrr

In this view, the limit takes the form Q = ,_ where a = alz- . This
expresses the limit form as a fixed point, and the recursion associated
with this fixed point reconstitutes the individual stages of the counting
process.

ﬂ=g=m=|a|:m=|a!a—m—lagm = .

We leave further investigation of these sets and ordinals to the reader.

Imaginary Value ,

The ordinals are just a small part of the recursive possibilities inherent
in infinite forms. Other directions include

T =) = LM

(See Kauffman and Varela, 1980 and Varela an& Gogueu, 1978.) In the
Boolean arena this represents the first imaginary value. It is invariant
under crossing (which represents negation). In formal arithmetic we do
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not have JJ =J and so J represents a number whose powers are
inscrutable. J is the simplest infinite form with no deepest space. In the
set theory discussed above, J is a member of itself. These explorations
of the foundations of arithmetic can be extended in these and other
directions. We will continue this story in a sequel to this paper.

REFERENCES

Barendregt, H. F. 1984. The lambda calculus—its syntax and semantics. Amster-
dam: North Holland.

Bricken, W. A simple space.

Conway, J. H. 1976. On numbers and games. New York: Academic Press.

Dirac, P. A. M. 1958. Quantum mechanics, 4th ed. London: Oxford University
Press.

Godel, K. 1962. On formally undecidable propositions in “ Principia Mathematica”
and related systems, transl. B. Meltzer, ed. R. B. Braithwaite. New York:
Basic Books.

Goldman, J., and L. H. Kauffman. 1993. Knots, tangles and electrical networks.
Adv. Appl. Math. 14:267-306.

James, J. M. 1993. A calculus for number based on spatial forms. Master’s
thesis, University of Washington.

Kauffman, L. H., and F. Varela. 1980. Form dynamics. J. Soc. and Bio. Strs.,
Vol. 3, pp. 171-206.

Kauffman, L. H. 1987. Imaginary values in mathematical logic. The Seventeenth
International Symposium on Multiple Valued Logic. Boston: IEEE Com-
puter Society Press, pp. 282-289. '

Kauffman, L. H. 1991. Knots and physics. Singapore: World Scientific.

Kauffman, L. H. 1994. Knot logic. In Knots and applications, ed. L. H. Kauff-
man. Singapore: World Scientific.

Loebl, M., and J. Nesetril. 1990. Fast and slow growing (a combinatorial study of
unprovability). London Math. Soc. Lecture Notes Ser. 166.

McCulloch, W. S. 1960. What is a number that a man may know it, and a man
that he may know a number? General Semantics Bull., Nos. 26, 27. Lakeville,

CT: Institute of General Semantics, and Collected Works of Warren S.°

McCulloch, ed. R. McCulloch, Vol. 4, pp. 1225-1242. Intersystems, 1989.

McCulloch, W. S., and W. Pitts. 1943. A logical calculus of the ideas immanent
in nervous activity. Bull. Math. Biophys., Vol. 5, and Collected Works of
Warren S. McCulloch, ed. R. McCulloch, Vol. 1, pp. 343-361. Intersystems,
-1989.

Rothstein, J. 1977. Toward an arithmetic for parallel computation. Proceedings,
International Conference on Parallel Processing, IEE and Wayne State Uni-
versity, Bellaire, MI, pp. 224-233.




ARITHMETIC IN THE FORM 35

Shannon, C. 1938. A symbolic analysis of relay and switching circuits. Proceed-
ings of AIEEE Summer Convention, Paper 38-80. Vol. 57, pp. 713-723.
Spencer-Brown, G. 1961. An algebra for the natural numbers. (unpublished
notes).

Spencer-Brown, G. 1969. Laws of Form. London: George Allen & Unwin.

Turing, A. M. 1936.-On computable numbers, with an application to the
Entscheidungsproblem. Proc. London Math. Soc. Ser. 2 42(3, 4):230-265.
(Correction in ibid. 43(7):544-546, 1937.)

Varela, F. J,, and J. A. Goguen. 1978. The arithmetic of closure. J. Cybernet.
8:291-324.

APPENDIX A: STRING ARITHMETIC

The purpose of this appendix is to introduce a method of integer
arithmetic via string manipulations. The significance of this symbolic
arithmetic is its simplicity and the ease with which it can be imple-
mented on a computer. Since most small computers have string-han-
dling capacity, this provides a method for doing arithmetic (and experi-
mental number theory) with integers far beyond the usual range of such
a machine.

The equivalence relation on the strings uses local modifications. We
expect that this feature will be of use in parallel processing systems
(compare Rothstein, 1977).

The arithmetic described in this appendix is distinct from the
formal arithmetic given in the body of the paper. It constitutes a
separate way to use the parenthetical boundaries to create numbers.
Nevertheless the construction given herein is a close relative of Laws of
Form and of the primary arithmetic. We include it both for its useful-
ness and for ease of comparison with the main constructions of the
paper. '

We consider strings involving three symbols: #, ¢, and ). With an
appropriate equivalence relation, each (admissible) string reduces to a
normal form. The juxtaposition of two strings corresponds to addition.
Multiplication involves a reentry process.

The most primitive representation of a natural number will be a
row of adjacent stars (*). Zero is the empty row, and *, # %, * * *,
*x %%, ... represent 1, 2, 3, 4,..., respectively.

This discussion will be restricted to a notation that corresponds to
the base 2. We adopt the convention (interpretation) that

{x) stands for twice x.
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Thus
*x = (%)
ok x = (%)%

The reduced expressions on the right-hand side correspond directly to
the binary form of the number. For example,

*))* - 101
() *))*) = 11010

with the 1’s matching the stars and the 0’s matching blank spaces
between brackets to the right of center.

Note that
1=* o1
2=(x) > 10

4 = ((*)) — 100
8 = ({{*))) = 1000
16 = {{{(*)))> - 10000

32 = {{{{{*2?7)> — 100000
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Addition is represented by juxtaposition of strings. X + Y is the
string XY. For example,

24+ 3= %% + kkk = kxkkkx =5,

The distributive law for multiplication, 2 X A + 2 X B
= 2 X (A + B), becomes (in string language)

(XNY) =<XY)

Thus the underlying instruction for performing the distributive law is
the cancellation of opposing brackets. '

Y (=
Thus
242=C(x) +(x) =) () =) =((*)) =4

We adopt the following rules:

Rules for String Arithmetic

1. Y{~>(blank)
2. #x<>(%)
3. *W<=W= (W is any string representing a natural number)

Successive application of 1 and 2 is sufficient to bring any string of stars
into normal form. For example

()45 4 %
()(x ) w w
(e 3y
(5 2)(x)s

(% %)s

((x)*)=
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Rule 3 is necessary when juxtaposing two strings as in

(Crydadn)
{((*)#)(*)* (applying 3)
{xy% %)%

oI

(Cxxyys

RONY.

It is easy to see that successive application of 1, 2, and 3 is sufficient to
perform addition via juxtaposition:

X+Y=XY
T+1=(#)*)* + *
= ({x))(x)
= (X))
= (N
= () =8

The brackets take the roles of place markers and “carry operators.” '

Carrying happens automatically when place-marker boundaries collapse
through the rule ){ = (void).

Comment on Rule 3: Any string made up of stars (*) and well-formed
parentheses (each left bracket, ¢, appropriately paired with a right
bracket, ), in the usual nested sense) actually represents a unique
number. Thus rule 3 can be replaced by an instruction to count left
parentheses until a right parenthesis is reached and then to count an
equal number of right parentheses. Stars can be passed across such
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sequences. This counting can be accomplished in the string space by
adding the following local rules: '

#(=<{a, a{=<{ab, b{=<(b, bb) =b)b, ab) =)a, a) =)+
For example,

#({(0) = (al(D)) = ((ab())) = (alb))) = {({abb)))
= (Kab)b)) = (rab)) = ({(Da) = KON *.

With these rules in place, the string arithmetic can be handled entirely
by local decisions in string handling and hence is susceptible to parallel
processing.

Arbitrary Base

It is easy to generalize these ideas to represent numbers to any base.
For example, base 3 will have #, # %, and * * * = (). The bracket is a
direct analog of positional notation, but it also plays an active role via
the reduction ){ = . This. obviates the need for extra carry rules and
makes the arithmetic self-contained.

Multiplication and the Cybernetics of Arithmetic

Multiplication of strings X and Y, denoted X # Y, is accomplished by
substituting Y for every occurrence of * in X. For example, (*)* #Y =
(Y)Y is the form of multiplication by 3.

We now describe the program for multiplication. This is a descrip-
tion of an actual computer algorithm. The reader may also enjoy
thinking of this program as a specific instruction whereby the observer
of this system of arithmetic is drawn into the system so that her actions
become part of the system itself.

The program performs multiplication X #Y by first placing a
dummy symbol, @, for every appearance of * in X and then substitut-
ing Y for the leftmost @, reducing the new string as much as possible,
then repeating the process. The result 5 X 2 = 10 becomes:

SENER ZCY




40 ' L. H. KAUFFMAN
MULTIPLICATION BY REENTRY

K@) *

K@yne

(M@

CEONEY

SCEMLY

finis!

Paradox

This mode of multiplication leads into a recursive paradox. For exam-
ple, if we try * # =@ then the program substitutes @ for * on the left
of #, and then it substitutes *@ for this dummy. Then the program
looks at the result, sees another dummy @, and again substitutes * @,
forming * * @ = (*)@. This continues until the machine breaks down
or the string space gives out.

Note that in writing 4 # B we give the computer two instructions.
The first instruction is to replace all occurrences of * in A by the sign
@. The second instruction is the substitutional definition @ = B. It is
no surprise that we shall get an infinite recursion if B contains an
instance of @. Indeed, the definition @ = *@ is a simple and charm-
ing example of this phenomenon. The machine has learned to count!

*# %@

MULTIPLICATION BY REENTRY
*@

* % @

()@

(*)*@

(#)*+@




ARITHMETIC IN THE FORM : 41
(x )} 0)@

(x )@
(=N@
() *@
() **@
()@
(=)@
(*)*)*@
()s)s*@
RODIENC
()% )@
REENEINC
(*=N@
K@
(M@

It is remarkable that adding multiplication to additive arithmetic
brings the computer so close to the edge of paradox. This is a reflection
of the deeper results about incompleteness of formal systems that
attempt to describe arithmetic fully and consistently (Godel, 1962).

Recursive Structure

It is worth noting the form of our definition of multiplication of strings.
We regard each string as a function by replacing the * by a variable.
Then F(x)# G(*) = F(@) where @ = G(*). Normally, this process
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stops with F(x)# G(*) = F(G(«)). However, if G(*) contains an @
sign, the process will continue indefinitely.

In the case of * # *@, we have @ = *@, giving rise to the
recursion @ = *@ = * *@ = * * *@ and so on, with reductions tak-
ing place in the strings so produced. This follows the paradigm that sees
a recursive program as a fixed point in an appropriate formalism. It is of
interest to see how this issue arises naturally in the string arithmetic.

Relation with the Lambda Calculus

It is interesting to note that this definition of multiplication as insertion
can be formalized in terms of the Church-Curry lambda calculus
(Barendreght, 1984). That is, we regard an expression in brackets and
stars as a function with variables in the place of the stars. For a function
of one variable, one writes Ax.f(x) to denote the function and composi-
tion is indicated by the equation

Ax.f(x) Ay.g(y) = Ay.f(g(y)).

The lambda part of the expression keeps track of the variables and their
precedence order in the case of many variables.

The unstoppable recursion resulting from @ = *@ then corre-
sponds to the basic fixed-point construction of the lambda calculus:

If G = Ax.F(xx) so that Gx = F(xx), then GG = F(GG).

In string arithmetic we can define Gx = * xx. Then GG = * GG so that
GG = @. In fact, any recursive program can be reformulated as a fixed
point in analogy to the above formalism.

It is the recursive context of arithmetic that gives rise to so many
fascinating problems. Here we see that this context is fundamental and
that it is a direct consequence of considering the interface between the
operator of the arithmetic and the arithmetic itself. The operator of the
arithmetic is herself a mark (a boundary or interface) in a calculus of
indications that is broad enough to encompass all of these operations.
In a formal sense this larger operational calculus is best modeled by a
structure like the lambda calculus. Nevertheless, with an appropriate
understanding of context we see that the original arena of indicational
space is sufficient to support all these complexities both inside and
outside arithmetic.
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An Example — The Collatz Problem

The Collatz problem is a well-known unsolved question in iterative
arithmetic.

The Collatz lteration:

1. Choose an odd number N.

2. If N is odd, replace N by 3N + 1.

3. If N is even, replace N by N/2.

4. If N =1 then stop, otherwise return to 2.

For every odd integer N that anyone has ever tried, this process has
terminated at 1. It has yet to be proved that this is always the case.
In terms of string arithmetic, 3N + 1 is accomplished as follows:

N = (W )+ (an odd number)
3N+ 1=(N)N=x
= (W) * W) * =
= (W=)W)
Thus after division by 2 (once) the recursion becomes
(Wys = (WeW

The program for the Collatz problem, using string arithmetic, performs
this transformation and then removes outer brackets to divide by 2.
Such a program can significantly extend the capacity of a small com-
puter, and it will be useful on larger systems with parallel architecture
for investigating the upper reaches of the Collatz problem.

Ad Astra per Mysterium

A more mystical reason for writing the Collatz in string arithmetic is the
hope that there is a subtle pattern right in the notation of string
arithmetic that will show the secrets of the iteration. With this aim in
mind, it is quite compelling to watch the symbols streaming past on the
computer screen, knowing that every single step of the process is being
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performed before one’s eyes. String arithmetic is written on top of the
highest language available on a given computer. It has the effect of
turning the computer inside out, so that the full workings of arithmetic
are there for all to see, a formal system propelled electronically into
time as well as space.

APPENDIX B: ORDINALS, CONWAY NUMBERS
AND THE GOODSTEIN SEQUENCE

The purpose of this appendix is to say a few words about a very general
construction of numbers due to Conway (1976), to discuss ordinals in
this context, and to show how ordinals can be used as ‘“imaginary
values” to prove very real properties of recursions on natural numbers.

In the body of the paper we have restricted ourselves to finite
ordinals except for an indication in the coda that our constructions can
be extended to infinite ordinals.

Conway builds all numbers from void by a process of creation. Each
number is uniquely determined by two sets of previously created num-
bers, called the left set and the right set. No member of the left set is
greater than or equal to any member of the right set. If L and R denote
a given pair of left and right sets, then the new number generated by
them is denoted by the brackets {L | R}. If L and R are both empty,
then it is true that every member of L is less than every member of R.
Thus { | } is a number. It is zero; 0 = { | }.

Order

(L | R) = {L' | R") exactly when no member of R is < (L' | R")
and (L | R)is < nomemberof L'. X =Y means X <Y andY < X.

Operation
X+Y={xL+Y, X+yL | xR +Y, X+ yR}.

Here x* denotes any element of the left set of X, and xR denotes any
element of the right set of X. The left and right sets of X + Y consist
of all the sums indicated within the brackets.

XY = (xLY + Xy — xLyL, xRy + XpR — xRyR |

xLY + XyR — xLyR, xRy + Xyt — xRyR)
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These definitions, handled inductively, are sufficient to create the
ordered field of Conway numbers. These include all real numbers, all
ordinals, and an extension of the real numbers that includes infinitesi-
mals of all orders and infinite numbers of all orders.

Here are the first few numbers. { | } = 0. Having created 0, we see
that it is true that every member of the empty set is less than every
member of the set consisting of zero. Thus { | 0} is a number, as is {0 |
}. By the definition above, {10t<{1 0} In fact, —1 ={ | 0} and
+1={01},2=011}3=021}.,0={0,12...31) o+l
=(wl| )...,20={o, 0 +1, 0= 2,..}1,... while —=2={1
-1}, -3={1-2,... —o={1 -1, —2, —3,...} and so on. Con-
way numbers continue on out into ordinals of all sizes, but that is not
all! :
Fractions occur early on. Consider {0 | 1}. We have 0 = {1y<{01l

J<{01}=1 In fact, {01 =1/2 {011/2)=1/4....{0 |
12 =10 1 1/27%Y,..,{0 | 1,1/2, 1/4,...,1/2%,...} = 1/w. The

number 1/ is the first infinitesimal in the system. This system of

numbers bootstraps itself into existence. Read Conway (1976) for a full
accounting of this.

Goodstein Sequence

A natural number M is said to be written in base N (N a natural
number greater than 1) when it is presented in the form M = a, + aN
+a,N? + a;N* + - +a,N* where 0 <a; <N - 1. M is said to be
in complete base N if it is presented in base N and all the exponents of
powers of N are also presented in base N, and their exponents as well,
as far as this process can go. We say this inductively by saying that all
the exponents of the powers of N are in complete base N and that any
nonnegative integer less than N is in complete base N. For example,

,@lt242)

M=1+ 2+ 21+%

is in complete base 2.

Given M written in complete base N, we can form {RY(M), a new
number in complete base R, by replacing all occurrences of Nin M
with R. For example, with M above we have -

461343

BM=1+3+ Ju+3+31e3en
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A Goodstein sequence [ N] is obtained by starting with a number M
in complete base N. Let G = M(N) where the N denotes that M is
written in complete base N. Let G' = ({N + 1}M) — 1 written in
complete base N + 1. In other words, G' is obtained from G by shifting
G to complete base N + 1, subtracting 1, and rewriting the result in
complete base N + 1. The Goodstein sequence obtained from a given
G is the sequence G, G', G", G",.... At each state the next number is
obtained by shifting the value of the base upward by one, subtracting
one, and rewriting in the new base completely.

Often the values of the numbers in a Goodstein sequence go up
very rapidly. For example, if we start with G = 2 + 22*%° then G’ = 1
+ 33+33’ G" = 44+44,

Gm=55+55__1=1+4)(5+4)<52+"'+4X54+55

Sometimes a Goodstein sequence is decreasing. For example, suppose
that G = 4 in base 5. Then G’ = 3 in base 6, G” = 2inbase 7, G" = 1
in base 8, and G™ = 0 in base 9. Remarkably, the following theorem is
true (see Loebl & Nesetril, 1990).

Theorem: Every Goodstein sequence terminates in O after a finite
number of steps.

Proof: Given M in complete base N, let {w}M denote the ordinal
obtained by replacing every occurrence of N in M by the ordinal w.

For example, if G =1+ 5 + 5'*% in complete base 5, then {w}G
=1+ w+ ot :

Let G, G', G", ... be a Goodstein sequence. Each term is written
in a complete base and so we can form {w}G® for each term G* in
the sequence. It is easy to see that the sequence of ordinals {w}G,
{w}G', {w}G", ... is strictly decreasing. Since there are no infinitely
descending sequences of countable ordinals, this sequence must termi-
nate. It follows at once that the original Goodstein sequence hits zero
after a finite number of iterations.//

It has been shown that there is no proof of this theorem if the
methods of reasoning are restricted to Peano arithmetic (Loebl &
Nesetril, 1990). The ordinals form a metalanguage in which a beautifully
simple proof can be cradled. From the point of view of this essay and
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from the point of view of the Conway numbers, the ordinals are part of
the whole expression of the concept of a number. They are part and
parcel of the context of the construction of number. By including the
ordinals in the system, we can avail ourselves of powerful modes of
reasoning about the recursive properties of ordinary finite integers.
These are reasons for rethinking the construction of numbers and the
form of arithmetic. By making the metalanguage part of the language
itself, we begin a path to knowing the nature of number.

McCulloch (1960) wrote a remarkable essay entitled “What is a
number that a man may know it, and a man that he may know a
number?” His answer to the first part was the Bertrand Russell defini-
tion of number: “A number is the class of all classes that are in one-
to-one correspondence with a particular class.” Thus the number seven
is the class of all classes in one-to-one correspondence with the days of
the week. This definition is knowable even though we do not apprehend
the infinity of all classes that it refers to. The knowledge is a knowledge
of actions to find correspondences and relationships. The definition of
number is both a concept and a program for action.

Here we have given a different approach to number, and it is to be
hoped that this too will shed light on both sides of McCulloch’s
question. All these systems of number have arisen from different ways
of construing the form—different ways of finding how an observer (a
mark in the form) can appear in relation to his or her context. Context
and the observer of that context arise concurrently. Insight forms in the
shifting boundary that we take to be a distinction.

APPENDIX C: DUALITY, ELECTRICITY, AND TANGLES

In formal arithmetic, as described in the body of this paper, addition
and multiplication are dual to one another through two spatial contexts.
In the multiplicative context multiplication is given by juxtaposition of
forms while addition has the formula 4 + B = {({A4){B)). Dually, in
additive space, addition is given by juxtaposition of forms, while multi-
plication is given by the formula 4 * B = {({A4){B)).

This duality is a reflection of the well-known symmetry of the
operations of or (U) and and (N) in Boolean algebra. That is, we have
in Boolean algebra that a N b = {{a) U (b)) where {x) denotes not
x. This is DeMorgan’s law. Our construction of formal arithmetic has
followed this pattern, but operations are interpreted quite differently.
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In fact, in formal arithmetic the equation A + B = {{A){B)) in
multiplicative space is a referral to addition as juxtaposition in additive
space. That is ((A){(B)) = {{A) + (B)) in the context of formal
arithmetic. When we take the quotient to get the primary arithmetic
(calculus of indications) from formal arithmetic we do so by forgetting
the difference between multiplicative and additive spaces. The opera-
tions * and + are no longer distinguished, but the operations of
juxtaposition, 4B, and crossed juxtaposition {{A){B)) remain and
become the patterns of the Boolean algebra. The Boolean marked, < ),
and unmarked, {{ )), values correspond to the elementary arithmetical
values of 0 and 1, but which is which depends upon the choice of
context in the arithmetic.

Switching Circuits and Electrical Circuits

There is another way in which Boolean algebra extends to ordinary
arithmetic. In order to describe this correspondence it is convenient to
use the symbol + for Boolean or (U) and * for Boolean and (N). We
shall adopt this convention for the rest of the appendix.

Recall (Shannon, 1938) that switching circuits can be described by
Boolean algebra. See Figure 1. An open switch corresponds, let us say,
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— AN AN———

A B

W(HA) + (1/B)) = <<A>+<B>> = <«<A><B>»

A+B = AB

Figure 2.

to the unmarked state and a closed switch corresponds to the marked
state. Parallel and series connections of switches then produce the
analogs of the operations of + and *. However, an open switch and a
closed switch are the extremes of possibility for the conductance of an
electrical circuit with one input and one output. Conductance (equal to
the inverse of resistance) can take any value from o (closed switch with
perfect conductance) to 0 (an open circuit). Two elements with conduc-
tances A and B have conductance A + B when connected in parallel.
The conductance of a series connection of 4 and B is equal to
A*B=1/((1/4) + (1/B)) = A X B/(A + B) where A X B denotes
the multiplication of real numbers and A4 * B is defined by this equa-
tion. If we let (A) = 1/A4, then A* B = ({A) + (B)), giving a for-
mula in parallel with the DeMorgan law. See Figure 2.

Let us therefore regard the Boolean values for switching circuits as
0 and «. We have

0)=1/0=c
0 + 0 = o

w4+ ()=0=0w0+0
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By definition, a * b = ({a) + (b)) so that

0%0 = (o0 + ) = (o) =0

0%c0 = ({0) + {®)) = (= + 0) = (=) =0

oo = ((w) + (0)) = (0 + 0) =<0) ==

We match this Boolean formalism for circuits with laws of form by
taking zero as the unmarked state, 0 = (), and infinity as the unmarked
state, o = ({)), with 4 * B designated by the juxtaposition of forms.
This makes zero the dominant value.

a*b =ab (juxtaposition of forms)
a+b={{a)b)).

The calculus embeds in a real number calculus via (@) = 1/a. Then
axb=1/(1/a) + (1/b)) =a X b/(a + b).

In this way the (positive) real numbers are a natural extension of
the Boolean algebra of zero and infinity. The Boolean + extends
directly to the addition of reals. The Boolean * becomes the reciprocal
of the product of reciprocals. The system extends directly to negative
reals in the same way, and consistently so long as one takes —o = o (so
that —0 = 0).

Brackets, and the Principle of ldemposition

Remarkably, there is another route to this “electrical” extension of
"Boolean algebra. This route is based in fundamental considerations
about the boundaries of forms. The basic principle is the

Principle of Idemposition (M. Aintree, private communication, 1979).
Common boundaries cancel. A distinction is undone when the boundary
is seen to join the two sides. A distinction is undone when the boundary
is seen as an interface for communication between the two sides. A
distinction is undone when edges fuse.

To illustrate this principle, let us consider curves in the plane. Let
two curves that share a bit of boundary cancel along the boundary as
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shown in Figure 3. Two closed curves situated next to one another and
sharing a bit of boundary amalgamate to a single curve (Figure 4). Two
nested curves sharing all their boundary cancel completely (Figure 5).
Thus we see the forms of calling and crossing as special cases of
idemposition.

The second illustration of the principle of idemposition shows how
separate forms with matched boundaries amalgamate to create a single
form. For example, see Figure 6. In these illustrations we see arcs with
points for boundary joining to form simple closed curves. A typographi-
cal instance of this is the understanding that we bring to paired
brackets:

O

In the eye of the reader, paired brackets are not separate. They are not
separate exactly because the boundaries of the individual kets in the
pair have been matched so that the bracket is really a simple closed
curve in the plane.

With this in mind, let us write § = {) for a simple pair of paired
brackets. We now consider the form M = ){ of a pair of antibrackets.
These brackets are not paired, but note the following calculation:

M=)Y.
MM = ()< =)
MMM = YO = »88¢
MMMM = YO = )888¢

and so on.

Although left and right kets do not commute ({) # ){), it is
convenient to allow, in this context 8{ = (& and §) = »8. Then MM
= )Y6( = 8){ = 6M. This is an abstraction of the quantum mechanical
formalism of Dirac (1958). Thus we are led to a new generalization of
the mark where I_[_ = 6r—

In the case & = 0, we have MM = OM and this can be identified
with the value 0. In fact, it is exactly at this point that a significant
contact occurs between circuit arithmetic and the “deformation” of
logic suggested by MM = M or l——|—- = 8[_ i1 the following, we
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|
Figure 3. '
Figure 4.
(vVOID)
|
!
Figure 6. ‘
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shall make a direct identification of M as the Boolean zero. It is,
however, important to distinguish M from zero in this context. Here
M = ){ is a “square root of zero” when () is equal to zero. The
following formalism gives a hint of what transpires in this domain.

Let X=aM + b and Y = cM + d where a, b, ¢, d are numbers
commuting with the forms. Multiply and add formally and assume that
MM =0M. Then X #*Y = (ad + bc)M + bd. Thus if we define the
fraction of X to be FRAC(aM + b) = a/b, then FRAC(X *Y) =
FRACQ(X) + FRAC(Y). This is another formal logarithm. The result is
that 1/FRAQ(X) = COND(X) (the conductance of X) is the evalua-
tion so that COND(X + Y) = COND(X) + COND(Y) and
COND(X #Y) is given as the reciprocal of the sum of the reciprocals of
conductances of X and Y. This places the pattern of electrical evalua-
tions right at the source of this deformation of logic.

With 8 = 1 we recover the formalism of calling, but if & is not one,
then it is clear that a form of counting has ensued. In fact, this leads
directly to an iconic generalization of Boolean algebra. We take “2-
strand boxes” as the basic elements. These boxes have two input strands
and two output strands just as the form M = ){ has two left legs and
two right legs. We take the strands of the boxes up to topological
deformation. Given a box, A, there is a notion of 4~! as shown in
Figure 7.

Note that (4~")~" = rot(4) where rot(A) is the result of turning
A upside down (Figure 8).

For the simplest boxes 0 and « we have 0! = © and o1 =(,
rot(0) = 0, and rot(») = o, so this inverse is of order two in the

beginning (Figure 9).
] l
A A
| I L
A1

Figure 7.
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A v = rot{a)

Figure 8.

We define the product of boxes AB by attaching the input strands
of B to the output strands of A. We define the sum of boxes, 4 + B,
by the analog of parallel circuit connection as shown in Figure 10. Note
that we take a simple closed curve in the plane to represent the
commuting value 8.

In fact, rot(A4 + B) = ((A~)(B~1!))~?, as shown in Figure 11. This
shows that sum and product are categorically dual in exactly the fashion
of Boolean algebra.

The boxes generated by our icons for 0 and « yield a generalization
of Boolean algebra. The widest generalization occurs when we place
topological weaving patterns inside these boxes. These weaving boxes
are called tangles. The simplest instances of tangles are the left- and
right-handed crossings shown in Figure 12. Let these be denoted by /
and J. We see that I+J = and that I +J=0. This is exactly
consistent with I= +1 and J= -1 (I+«J=1/(1/D + (1/1))).

o 1[0




ARITHMETIC IN THE FORM 55 :
| |
A | | |
A B
AB
[ 7
B a
|| A+B |
| i
M = : = , =38
B ]
l
M _ —
M — —
N
MM=6 M :
Figure 10. '

Counting begins with the introduction of the weave, a kind of abstract
form of Quipu!

There is not room here for a full exposition of how the weaves are
interrelated with arithmetic, but it should be clear to the reader that the
two-stranded braid I+ I+ --- +] represents the integer n in this
system, that J +J + -+ +J represents —n, and that fractions occur
naturally through the use of tangle products as well as tangle sums. The f
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(At @)1 = rot(a +B)

L. H. KAUFFMAN

Figure 11.

SN
1

v

X

s

I+J=10

Figure 12.

L >




ARITHMETIC IN. THE FORM 57

reader can consult Goldman and Kauffman (1993) and Kauffman (1991,
1994) for more of the story. The main point of this section is that there
is a multiplicity of surprising associations of arithmetic and topology
with the Boolean realm and that an iconic method that is motivated by
topological considerations strikes at the roots of a pattern connecting
arithmetic and Boolean algebra.




