The infinite cyclic cover of $S^3-h(K)$ is $p: \mathbb{R}^1 \times \mathbb{R}^2 \longrightarrow S^1 \times \mathbb{R}^2 \cong S^3-h(K).$

is obtained by removing each t^nT and replacing it the the meridian along $t^n\mu'$. Sewing in T kills $t\alpha-3\alpha+t^{-1}\alpha$. $H_1(X_{\infty})=(\alpha|(t-3+t^{-1})\alpha=0)$ as a limit t^{-1} module. $A(t)=t-3+t^{-1}=t^2-3t+1$, the Alexander polynomial of the figure-eight knot.

ALEXANDER'S NETHOD

And particularly the infinite cyclic covering that people fealized that the Alexander polynomial could be extracted from the fundamental group of the knot complement. This eamen about as follows: By construction, $\pi_1(X_\infty) \cong G'$ where G' denotes the commutator subgroup of $G = \pi_1(S^3-K)$. Thus $H_1(X_\infty) \cong G'/G''$, and the action of $Z[t,t^{-1}]$ on

 $H_1(X_\infty)$ corresponds algebraically to $t \cdot g = sgs^{-1}$ where $s \in \pi_1(S^3-K)$ is a chosen element having linking number with K. By definition, $\Lambda_K(t)$ is the balance class (i.e., defined up to $\pm t^n$) of the ideal of elements $\rho \in Z[t,t^{-1}]$ such that $\rho g = 0$ for all $g \in G'/G''$. This can be computed purely group theoretically by using a standard presentation of $\pi_1(S^3-K)$. [One says that $\Lambda_K(t) \stackrel{\circ}{=} \underline{the \ order \ of \ G'/G'' \ over \ Z[t,t^{-1}].$]

There are many algorithms of this sort. Here we will sketch one that yields the computational method given by Alexander in his original paper [A1]: If $K \subset S^3$ is a knot and $G = w_1(S^3-K)$, then $G/G' \cong Z$ and the map $f: G \longrightarrow Z$ is given by $f(\alpha) = \Omega k(\alpha,K)$. [In the case of oriented links, everything works in similar fashion to given a map $G \longrightarrow Z$ even though this is not the abelianization. Thus the action of $R = Z[t,t^{-1}]$ can be obtained by finding $s \in G$ with f(s) = 1.

Choose a presentation for the fundamental group $G = (g_0, \dots, g_n | r_1, \dots, r_n)$ with one more generator than there are relations. (For example, the Dehn presentation—we will use it in the next paragraph.) We can choose g_0 and rewrite generators and relations so that $f(g_1) = \dots = f(g_n) = 0$ (replacing g_k by g_k when necessary). Then $g_1, \dots, g_n \in G'$ and one can show that $G' = (g_1, \dots, g_n | r_i = 1, i = 1, \dots, n)$ is a presentation of G' as an R-module. Now abelianize G', and look for

the relations.

To make this concrete we use the Dehn presentation of $(8^3-K) = G$.

the Dehn presentation, generators of $\pi_1(S^3-K)$ are in incorrespondence with all-but-one of the regions of the the diagram. We let the base-point, *, live in the incorrespondence region. Each of the other regions becomes an imment of $\pi_1(S^3-K)$ by taking a path through it as illustrated above.

Each crossing gives rise to a relation:

fraccise. Draw a picture of this relation.

The linking number of a generator with the knot is sumputed by a method of indexing the regions of the diagram with integers:

- (1) Index (outer unbounded region) = 0.
- (2) Relative indices across an oriented edge form

this pattern.

$$\left\{\begin{array}{c} \mathbf{p} & \uparrow & \mathbf{p+1} \end{array}\right\}$$
$$\left\{\begin{array}{c} \mathbf{p} & \downarrow & \mathbf{p-1} \end{array}\right\}$$

The index of a region is the linking number of the corresponding generator.

Let's use this format to get a presentation of G'/G''. First $G = (s, h_1, \dots, h_n \mid r_1, \dots, r_n)$ where s correspont to a region adjacent to the unbounded region.

But now we want to let $g_k = s^{-i}k(h_k)$ so that $\Omega k(g_k, K) = 0$. Thus $i_k = Index(h_k)$. And we have to rewrite the relations in terms of this new basis:

Here is one case. We leave the other as an exercise

$$\begin{array}{c|c}
p & p+1 \\
\hline
B & C \\
p+1 & p+2
\end{array}$$

th these orientations, the indices are p, p+1, p+2 as . indicated.

$$r = A\overline{B}C\overline{D}$$
 (using bar () for ()⁻¹).

$$a = s^{-p}A$$
 $c = s^{-p-2}C$

$$b = s^{-p-1}B$$
 $d = s^{-p-1}D$.

Then
$$A = s^p a$$
 $C = s^{p+2} c$
 $B = s^{p+1} b$ $D = s^{p+1} d$

$$r = (s^{p}a)(\overline{s^{p+1}b})(s^{p+2}c)(\overline{s^{p+1}d})$$

$$= (s^{p}a)(\overline{b}s^{-p-1})(s^{p+2}c)(\overline{d}s^{-p-1})$$

$$r = (s^{p}as^{-p})(s^{p}\overline{b}s^{-p})(s^{p+1}cs^{-p-1})(s^{p+1}\overline{d}s^{-p-1}).$$

This is now written correctly as an element of G' as an impossible, where $ta = sas^{-1}$. In H = G'/G'' (the abeliani-

$$t^{\mathbf{p}}a-t^{\mathbf{p}}b+t^{\mathbf{p}+1}c-t^{\mathbf{p}+1}d=0$$

equivalently

$$a-b+tc-td = 0$$

Thus, for the trefoil, we get

Thus the relations become tb-ta = 0, -a+tb-tc = 0, -c+tb = 0,

$$\frac{\text{or}}{\begin{cases}
-a+tb-tc = 0 \\
-c+tb = 0
\end{cases}}$$

$$\frac{\text{or}}{\begin{cases}
-a+ta-tc = 0 \\
c = tb = ta
\end{cases}}$$

$$\frac{\text{or}}{\begin{cases}
-a+ta-t^2a = 0 \\
c = ta = 0
\end{cases}}$$

And so $\Delta_{K}(t) = t^{2}-t+1$. Not a surprise by now.

Using Alexander's formalism, you can find $\Delta_K(t)$ directly by taking a determinant of the n×n relation matrix. Thus here we have:

	е	s	a	Ъ	c	1
1st crossing 2nd crossing 3rd crossing	1	-1	-t	t	0	e-s+tb-ta = 0
2nd crossing	1	0	-1	t	-t	e-a+tb-tc = 0
3rd crossing	1	- t	0	t	-1	e-c+tb-ts = 0

e and s). Then M is a relation matrix for G'/G'' as a $Z[t,t^{-1}]$ -module, and $A_K(t) \stackrel{\circ}{=} D(M)$.

Nemark: Alexander begins his paper [A1] by giving this formula as the definition! If you read diligently, there hints about fundamental group and covering spaces in the last two pages of the paper. I had the pleasure of liecovering that there is a whole world of combinatorics foliated to this version of $A_K(t)$. And it yields another model of the Conway axioms. For more, read [K1]. The liecovery of the first generalized polynomial by Jones, leneanu, Lickorish, Millet, Hoste, Freyd, Yetter, Przytycki and Traczyk (!) may be regarded as a remarkable confirmation of Alexander's intuition in formulating a combinatorial approach. (See these notes, Chapter VI, sections 18, 10, 20, and the Appendix for more about generalized polynomials.)