8. A manufacturer has determined that that at a price p, q units are sold where $p=100-2 q$. The marginal revenue $\frac{d R}{d q}$
A) is POSitive for $q=20$ and is POSitive for $q=40$
B) is NEGative for $q=20$ and is NEGative for $q=40$
C) is NEGative for $q=20$ and is POSitive for $q=40$
D) * is POSitive for $q=20$ and is NEGative for $q=40$
9. (8 pts) An appliance manufacturer can sell refrigerators for $\$ 600$ apiece. The manufacturer's total cost consists of a fixed overhead of $\$ 12,000$ plus production cost of $\$ 400$ per refrigerator. How many refrigerators must be sold for the manufacturer to break even?

* 60

10. (8 pts) At a certain factory, the total cost of manufacturing q units during the daily production run is $C(q)=0.3 q^{2}+0.8 q+800$ dollars. It has been determined that approximately $t^{2}+80 t$ units are manufactured during the first t hours of a production run. Compute the rate at which the total manufacturing cost is changing with respect to time 2 hours after production begins.

* $d C / d t=d C / d q \cdot d q / d t=(0.6 q+0.8)(2 t+80)$. Evaluate at $t=2, q=164$. It is increasing at $\$ 8,332.80 /$ hour.

Name (Last, First): UIN:

TA: \qquad * 4/4
11. (20 pts) A manufacturer of self-baiting mousetraps is currently selling 1,500 traps a month to retailers at a price of $\$ 1$ per trap. She estimates that for each 5 cent increase in price, she will sell 25 fewer traps per month. Her costs consist of a fixed overhead of 180 dollars a month and 30 cents per trap for labor and materials.
(i) Express the demand q as a function of the price p.

* Since q changes by -25 for every .05 change in price, the slope (rate of change) is $-25 / .05, q=1500-(25 / .05)(p-1)=2000-500 p$
(ii) Express the price p as a function of the demand q.
* Using (i), $p=1+(.05 / 20)(1500-q)=(2000-q) / 500$
(iii) Express the monthly total revenue, Revenue $=($ price $p) \times($ demand $q)$, as a function of the demand q.
* Revenue $(q)=q(2000-q) / 500$
(iv) The cost of producing q units per month is $180+0.30 q$ dollars. Find the monthly dollar profit, $\operatorname{Profit}(q)$, as a function of the demand q. Estimate the value of q where the maximum occurs from the graph.
*

$$
\begin{aligned}
\operatorname{Profit}(q) & =\operatorname{Revenue}(q)-\operatorname{Cost}(q) \\
& =q(2000-q) / 500-(180+0.30 q) \\
& =q(4-.002 q-0.30)-180 \\
& =q(3.70-.002 q)-180
\end{aligned}
$$

The maximum profit (5 Points extra credit) occurs at about $q=925$ and $p=\$ 2.15$.

