```
math16501.mw
```

Maple 10 Worksheet for Problems in Math 165 - Calculus for Business.

First load plots and student:

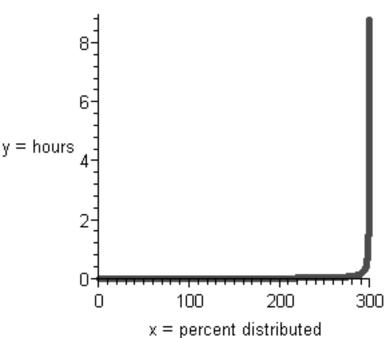
```
> with( student):with (plots):
```

Section 1.1 Problem 58 p.12

58. DISTRIBUTION COST Suppose that the number of worker-hours to distribute new telephone books to x% of the households

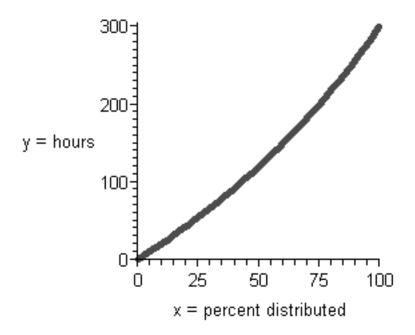
in a certain community is goven by the function

f(x) = (600*x)/(300-x).


>

$$fdisthours := \mathbf{proc}(x) \ 600 * x / (300 - x) \ \mathbf{end} \ \mathbf{proc} \tag{1}$$

Try to plot


> plot(fdisthours(x), x=0..300,thickness=3,labels=[`x = percent
distributed`, `y = hours`]);

Note the size of the units on the y axis. The graph does not tell us much because of the singularity at x = 300. But the "practical interest" is the percentage x between 0 and 100

> plot(fdisthours(x), x=0..100,thickness=3,labels=[`x = percent
distributed`, `y = hours`]);

The domain of the function fdistcost is "all x not equal 300." Practical interpretation is valid for $0 \le x \le 100$. The books are distributed to 50% of the community when x=50 fdisthours (50); and the number of hours is

$$120 (2)$$

The entire community is served when x=100:

$$300 (3)$$

When 150 hours have been completed we have distributed to x % where fdisthour(x) =50: solve (fdisthours (x) =150, x);

$$60 (4)$$

```
Solve the equation (600*x)/(300-x) = 150.

> eqn:= (600*x)/(300-x) = 150;

eqn:= \frac{600 x}{300-x} = 150

> simplify(eqn);

-\frac{600 x}{-300+x} = 150

> solve(600*x = 150*(300 - x),x);

60

(5)
```