Show Me the Solution

A manufacturer determines that when x hundred units of a particular commodity are produced, they can all be sold for a unit price given by the demand function $\boldsymbol{p}=\mathbf{8 0 - x}$ dollars. What is the maximum revenue (in dollars)?
The revenue derived from producing x hundred units and selling them all at $80-x$ dollars is $R(x)=x(80-x)$ hundred dollars. Note that $R(x) \geq 0$ only for $0 \leq x \leq 80$. The graph of the revenue function

$$
R(x)=x(80-x)=-x^{2}+80 x
$$

is a parabola that opens downward (since $A=-1<0$) and has its high point (vertex) at

$$
x=\begin{gathered}
-B \\
2 A
\end{gathered}=-\frac{-80}{2(-1)}=40
$$

Thus, the revenue is maximized when $x=40$ hundred units are produced, and the corresponding maximum revenue is

$$
R(40)=40(80-40)=1600
$$

hundred dollars. The manufacturer should produce 4000 units and at that level of production, should expect a maximum revenue of $\$ 160000$.

