The Algebra Symposium: Fuel Efficiency

The Problem

It is asserted that if you drive a car at constant speed; the number of miles per gallon will first increase and then decrease (or a reasonable range say 15 mph to 90 mph). Can someone explain the physics of this? Is there any sense that this function is quadratic?

After I did the note that follows, we realized that I was showing that gallons per mile, gpm (sic), "will first decrease and then increase." Actually we got the idea listening to the (e-mail) discussion of the nonlinear term - showing the value of cooperative work!

Minimization of Total Consumption for Any Convex Nonlinearity

If $v=$ velocity, $M=$ miles, $E(v)=$ time rate of fuel consumption at speed v , then the total time T to travel M miles is M / v, and the total fuel consumed, G, to travel M miles is

$$
G=\frac{M}{v} * E(v) .
$$

Assume that $E(v)=E_{0}+E_{1} v+\phi(v)$, where $\phi(v)$ is the nonlinear part. It is reasonable to assume that $E(v)$ is a convex (nee concave up) function of v. The following observations apply to any $\phi(v)$ which is convex.

As we all know from Math $165, E(v) / v$, is minimized when

$$
E^{\prime}(v)=\frac{E(v)}{v}
$$

by the quotient rule for differentiation.
Geometrically, this is seen drawing the graph of $E(v)$, and then observing that the slope of the line from 0 to $(v, E(v))$ has slope $E(v) / v$; the slope is minimized when this line is tangent to the graph.

The result in Math 165 microeconomics is that the Average Cost of producing the first q units, $C(q) / q$, is minimized when it is the same as the Marginal Cost, $C^{\prime}(q)$, of producing the q th unit:

$$
A(q)=\mathrm{MC}(q)
$$

Units Note

The original problem was about miles-per-gallon which is a constant times $\frac{M}{G}=\frac{v}{E(v)}$. Thus minimizing $E(v) / v$ is the same problem as maximizing miles-per-gallon.

