Math 165: Income and Investment Streams

Simple Model

If a present value P is invested at time $t=0$ with continuous compounding (CC) at rate r, the future value at time $t=T$ is

$$
B=B(T)=P e^{r T}=P(0) e^{r T}
$$

If we wish to have future value B at time $t=T$, we should invest a present value P given by

$$
P=P(0)=B e^{-r T}=B(T) e^{-r T}
$$

If we wish to withdraw amounts $B_{1}, B_{2}, \ldots, B_{N}$, at times $T_{1}, T_{2}, \ldots, T_{N}$, we must have present value

$$
P=P_{1}+P_{2}+\ldots+P_{N}=B_{1} e^{-r T_{1}}+B_{2} e^{-r T_{2}}+\ldots+B_{N} e^{-r T_{N}}=\sum B_{i} e^{-r T_{i}} .
$$

Continuous Model - Income Stream

We wish to withdraw a continuous income stream - to withdraw continuously at a rate R [dollars/year] for T [years].

At a typical time t, over a period Δt, we will withdraw $\approx R \Delta t=\Delta B$, a future value at time t. Thus we need a present value (investment) $\Delta P \approx e^{-r t} R \Delta t$. The total present value needed is

$$
P=\sum \Delta P \approx \sum_{t \text { from } 0 \text { to } T} e^{-r t} R \Delta t \approx \int_{0}^{T} R e^{-r t} d t
$$

Figure 1.
Present Value P of an Income Stream $R, 0 \leq t \leq T$

$$
\begin{array}{cc}
\Delta P \approx e^{-r t} R \Delta t & \Delta B \approx R \Delta t \\
0 \bullet & t \Delta t \\
P=\sum \Delta P \rightarrow \int_{0}^{T} R e^{-r t} d t &
\end{array}
$$

Similarly, if we invest continuously at rate R [dollars/year] for T [years], the future value B at time T will be given by

$$
B=\int_{0}^{T} R e^{r(T-t)} d t
$$

Figure 2.
Future Value B of an Investment Stream $R, 0 \leq t \leq T$

Inflation Adjustments

Similar arguments can be made if the rate, $R=R(t)$, depends on t. For example, the rate of contribution (investment) or income (revenue) might be continuously adjusted for inflation. In this case the formulas become:

- If we wish to withdraw a continuous income stream - to withdraw continuously at a rate $R(t)$ [dollars/year] for T [years], we need a present value

$$
P=\int_{0}^{T} R(t) e^{-r t} d t
$$

In particular if we make a cost of living adjustment (COLA), of $r_{1} \%$ annually,

$$
\begin{aligned}
R(t) & =R_{0} e^{r_{1} t}, \\
P & =\int_{0}^{T} R_{0} e^{\left(r_{1}-r\right) t} d t
\end{aligned}
$$

- If we invest continuously at rate $R(t)$ [dollars/year] for T [years], the future value B at time T will be given by

$$
B=\int_{0}^{T} R(t) e^{r(T-t)} d t
$$

