Math 165 Parabolas

A typical problem about maximizing revenue

A manufacturer determines that when x hundred units of a particular commodity are produced, they can all be sold for a unit price given by the demand function $p=80-x$ dollars. What is the maximum revenue (in dollars)?

The demand function is linear - the quantity (demand) x and the price p are related by a linear relation. The problem is to set the price p (or demand x) so that the revenue R,

$$
R=p \cdot x \text { hundred dollars. }
$$

is maximized.
Notice that

$$
R=(80-x) x
$$

is a quadratic function of x; moreover, the coefficient of x^{2} is negative, so the graph of $R(x)$ is a parabola opening downward. We even have that the parabola is presented in a factored form with roots at $x=0$ and $x=80$.

If we graph the parabola, it appears that R is maximized at the vertex of the parabola which occurs when $x=40$, halfway between the roots!

We are already familiar with the quadratic formula for the roots of the equation

$$
A x^{2}+B x+C=0
$$

occur at

$$
x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}
$$

with the usual remarks about the case $B^{2}-4 A C \leq 0$.
The quadratic formula is very much related to the process called completing the square write

$$
\begin{aligned}
A x^{2}+B x+C & =A\left(x^{2}+(B / A) x+(C / A)\right) \\
& =A\left(\left(x+\frac{B}{2 A}\right)^{2}+\left(\frac{C}{A}-\frac{B^{2}}{4 A^{2}}\right)\right)
\end{aligned}
$$

It is apparent that the vertex of the parabola is located at

$$
\begin{aligned}
x & =-\frac{B}{2 A}, \\
y & =A\left(\frac{C}{A}-\frac{B^{2}}{4 A^{2}}\right) \\
& =\frac{4 A C-B^{2}}{4 A} .
\end{aligned}
$$

If $A>0$, the graph opens upward and the quadratic function has a minimum value at the vertex.

If $A<0$, the graph opens downward and the quadratic function has a maximum value at the vertex.

In our example $A=-1, B=80, C=0$. The revenue is maximized when

$$
\begin{aligned}
x & =-B / 2 A=40(\text { hundred units }) \\
p & =(80-40) \text { dollars } \\
R & =-\frac{80^{2}}{-4}=1600(\text { hundred dollars })=\$ 160,000
\end{aligned}
$$

