Math 165: Maximizing Revenue

To view animations:

$$
\text { http://www2.math.uic.edu/ } 1 \text { lewis/math165/165maxrev.htm. }
$$

Suppose the quantity (demand) q and the price p are related, e.g., by a relation of the form $p=D(q)$.

The problem is find the quantity q so that the revenue, $R=p q$, is maximized. The revenue R can be expressed as a function of the quantity q by

$$
R(q)=q * D(q) .
$$

A typical demand function looks like this:

Notice that the revenue, $R(q)=p \cdot q=q \cdot D(q)$, is represented by the it area of the rectangle with opposite vertices at $(0,0)$ and $(q, D(q))$.

Notice that when q is very small or near the right side, the area of the rectangle is small.

Now observe how the area (revenue) changes as q moves from 0 to 4 .

It appears that for q small (high price and low demand) the revenue is small. For p small (low price, market is saturated), there is low revenue. For some reasonable price p, the revenue (area) is maximized.

The mathematical assumptions are:

- Increasing p means decreasing demand.
- There is maximum price $D(0)$ the consumer will pay.
- There is maximum consumer demand (In our example, $q=4$).

