Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'releva stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem

Infinitary Model Theory: Covers of Abelian groups

John T. Baldwin

January 2, 2009

Short Exact Sequences

$$0 \to N \to V \stackrel{\exp}{\to} \mathbb{A} \to 1. \tag{1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Short Exact Sequences

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevan' stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem

$$0 \to N \to V \xrightarrow{\exp} \mathbb{A} \to 1.$$
 (1)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

3 cases

- **1** $^{\perp}N$. (Baldwin-Eklof-Trlifaj: APAL 07)
- 2 Axiomatize in $L_{\omega_1,\omega}$ to guarantee standard kernel: $N = Z^n$.
 - A is ℵ₁-free. Complicated examples. (Baldwin-Shelah: JSL 08)
 - 2 A is a commutative algebraic group. (Zilber et al). This talk.

Acknowledgements

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem This talk reports work of Shelah, Zilber, Gavrilovich, and Bays. Few proofs are new.

Goal:

What is the algebraic content of stability theoretic conditions in infinitary logic?

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

1 algebra \Rightarrow model theory.

2 model theory \Rightarrow algebra.

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem

1 The 'relevant' stability hierarchy

3 Covers

2 Excellence

4 Tameness

5 Mordell-Weil Theorem

The 70's

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant' stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem

Stability theory developed

- 1 abstractly with the stability classification
- concretely by finding the stability class of important mathematical theories and using the techniques of the abstract theory.

What does the fo stability hierarchy mean?

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant' stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem

- **1** (Macintyre) An infinite field is ω -stable if and only if it is algebraically closed.
- 2 (Cherlin) An infinite division ring is superstable if and only if it is algebraically closed.

Thus, an ω -stable field is categorical in all uncountable powers.

Hierarchy for $\overline{L_{\omega_1,\omega_2}}$

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant' stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem

1 complete

2 ω -stable

3 excellent

Superstable means ???

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Completeness???

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant' stability hierarchy

Excellence

Covers

Tameness

Mordell-Weil Theorem

Vaught's test

Let T be a set of first order sentences with no finite models, in a countable first order language.

```
If T is \kappa-categorical for some \kappa \geq \aleph_0, then T is complete.
```

Needs upward and downward Lowenheim-Skolem theorem for theories

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

We search for a substitute in $L_{\omega_1,\omega}$.

Small

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant' stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem Let Δ be a fragment of $L_{\omega_1,\omega}$ that contains ϕ .

Definition

A τ -structure *M* is Δ -small for *L*^{*} if *M* realizes only countably many Δ -types (over the empty set).

Small

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant' stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem Let Δ be a fragment of $L_{\omega_1,\omega}$ that contains ϕ .

Definition

A τ -structure *M* is Δ -small for *L*^{*} if *M* realizes only countably many Δ -types (over the empty set).

Definition

An $L_{\omega_1,\omega}$ -sentence ϕ is Δ -'not so big', if each model of ϕ is small (realizes only countably many complete Δ -types over the empty set).

Small

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant' stability hierarchy

Excellence

Covers

Tameness

Mordell-Weil Theorem Let Δ be a fragment of $L_{\omega_1,\omega}$ that contains ϕ .

Definition

A τ -structure *M* is Δ -small for L^* if *M* realizes only countably many Δ -types (over the empty set).

Definition

An $L_{\omega_1,\omega}$ -sentence ϕ is Δ -'not so big', if each model of ϕ is small (realizes only countably many complete Δ -types over the empty set).

Definition

An $L_{\omega_1,\omega}$ -sentence ϕ is Δ -small if there is a set X countable of complete Δ -types over the empty set and each model realizes some subset of X.

'small' means $\Delta = L_{\omega_1,\omega}$

Small implies complet(<u>able</u>)

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant' stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem

If M is small then M satisfies a complete sentence.

Small implies complet(able)

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant' stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem If M is small then M satisfies a complete sentence.

If ϕ is small then there is a complete sentence ψ_{ϕ} such that: $\phi \wedge \psi_{\phi}$ have a countable model.

So ψ_{ϕ} implies ϕ .

But ψ_{ϕ} is not in general unique (real examples).

The $L_{\omega_1,\omega}$ -Vaught test

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant' stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem Shelah If ϕ has an uncountable model M that is Δ -small for every countable Δ and ϕ is κ -categorical then ϕ is implied by a complete sentence ψ with a model of cardinality κ .

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Keisler If ϕ has $< 2^{\aleph_1}$ models of cardinality $\aleph_!$, then for every countable Δ , ϕ is Δ -not so big.

I.e. each model is Δ -small for every countable Δ .

The $L_{\omega_1,\omega}$ -Vaught test

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant' stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem Shelah If ϕ has an uncountable model M that is Δ -small for every countable Δ and ϕ is κ -categorical then ϕ is implied by a complete sentence ψ with a model of cardinality κ .

Keisler If ϕ has $< 2^{\aleph_1}$ models of cardinality \aleph_1 , then for every countable Δ , ϕ is Δ -not so big.

I.e. each model is Δ -small for every countable Δ .

So we effectively have Vaught's test. But only in \aleph_1 ! And only for completability!

Reducing $L_{\omega_1,\omega}$ to 'first order'

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant' stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem The models of a complete sentence in $L_{\omega_1,\omega}$ can be represented as:

K is the class of atomic models (realize only principal types) of a first order theory (in an expanded language).

We study $S_{at}(A)$ where $A \subset M \in \mathbf{K}$ and $p \in S_{at}(A)$ means Aa is atomic if a realizes p.

AMALGAMATION PROPERTY

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant' stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem The class **K** satisfies the *amalgamation property* if for any situation with $A, M, N \in \mathbf{K}$:

there exists an N_1 such that

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

SET AMALGAMATION PROPERTY

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant' stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem The class **K** satisfies the *set amalgamation property* if for any situation with $M, N \in \mathbf{K}$ and $A \subset M, A \subset N$:

there exists an N_1 such that

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Is there a difference?

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant' stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem For a complete first order theory, Morley taught us: There is no difference.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Is there a difference?

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant' stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem For a complete first order theory, Morley taught us: There is no difference.

Tweak the language and we obtain set amalgamation. (Tweak: put predicates for every definable set in the language)

There is a difference!

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant' stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem Zilber's examples of quasiminimal excellent classes have amalgamation over models but the interesting examples do not have set amalgamation.

 ψ is categorical in all infinite cardinalities but no model is $\aleph_1\text{-}homogeneous$ because there is a countably infinite maximal indiscernible set.

Quasiminimality

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevan stability hierarchy

Excellence

Covers

Tameness

Mordell-Weil Theorem A class (\mathbf{K}, cl) is *quasiminimal* if cl is a combinatorial geometry which satisfies on each $M \in \mathbf{K}$:

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

1 there is a unique type of a basis,

- 2 a technical homogeneity condition:
 ℵ₀-homogeneity over Ø and over models.
- 3 Closure of countable sets is countable

Theorem

A quasiminimal class is \aleph_1 -categorical.

$L_{\omega_1,\omega}$: The General Case

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem

Quasiminimality is the 'rank one' case

Any geometry has a notion of independent *n*-system.

In the more general setting

Splitting gives an analogous notion of independent *n*-system. And thus a more general notion of excellence.

$\omega\text{-stability}$

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem

Definition

 ϕ is ω -stable if for every countable model of ϕ , there are only countably many types over M that are realized in models of ϕ (i.e. $|S_{at}(M)| = \aleph_0$).

Essence of Excellence

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem Let **K** be the class of models of a sentence of $L_{\omega_1,\omega}$.

K is excellent

K is ω -stable and any of the following equivalent conditions hold.

For any finite independent system of countable models with union C:

1 $S_{at}(C)$ is countable.

2 There is a unique primary model over C.

3 The isolated types are dense in $S_{at}(C)$.

Quasiminimal Excellence

Infinitary Model Theory: Covers of Abelian groups	
John T. Baldwin	
	means Quasiminimal and excellent.
Excellence	

QM EXCELLENCE IMPLIES CATEGORICITY EVERYWHERE

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Weil Theorem

QM Excellence implies by a direct limit argument:

Lemma

An isomorphism between independent X and Y extends to an isomorphism of cl(X) and cl(Y).

This gives categoricity in all uncountable powers if the closure of finite sets is countable.

What excellence buys

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem

Theorem: Shelah

If an atomic class ${\bf K}$ is excellent and has an uncountable model then

- **1** K has models of arbitrarily large cardinality;
- 2 Categoricity in one uncountable power implies categoricity in all uncountable powers.

Covers of Algebraic Groups

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem **Definition** A cover of a commutative algebraic group $\mathbb{A}(\mathcal{C})$ is a short exact sequence

$$0 \to Z^N \to V \stackrel{\exp}{\to} \mathbb{A}(\mathcal{C}) \to 1.$$
(2)

where V is a \mathbb{Q} vector space and A is an algebraic group, defined over k_0 with the full structure imposed by $(\mathcal{C}, +, \cdot)$ and so interdefinable with the field.

Axiomatizing Covers: first order

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevan' stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem Let \mathbb{A} be a commutative algebraic group over an algebraically closed field F.

Let T_A be the first order theory asserting:

1 $(V, +, f_q)_{q \in \mathbb{Q}}$ is a \mathbb{Q} -vector space.

2 The complete first order theory of $\mathbb{A}(F)$ in a language with a symbol for each k_0 -definable variety (where k_0 is the field of definition of \mathbb{A}).

3 exp is a group homomorphism from (V, +) to $(\mathbb{A}(F), \cdot)$.

Axiomatizing Covers: L_{ω_1,ω_1}

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevan stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem

Add to
$$T_A$$

 $\Lambda = \mathcal{Z}^N$ asserting the kernel of exp is standard.

$$(\exists \mathbf{x} \in (\exp^{-1}(1))^N)(\forall y)[\exp(y) = 1 \rightarrow \bigvee_{\mathbf{m} \in \mathcal{Z}^N} \Sigma_{i < N} m_i x_i = y]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Finitary AEC

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem

For any \mathbb{A} :

$T_A + \Lambda = \mathcal{Z}^N$

- 1 has arbitrarily large models
- 2 has the amalgamation property

Thus, the rudiments of Geometric stability theory for finitary AEC developed by Hyttinen and Kesala apply.

Descending Chain Condition

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem Let K be a field and $W \subset K^r$ a variety defined over K.

Definition

 $T_A + \Lambda = \mathcal{Z}^N$ has the *dcc over* K if there is no infinite sequence of varieties $W^{1/m}$ such that:

 $(W^{1/mk})^k = W^{1/m}$, each $W^{1/m}$ is a minimal *K*-variety and a $\mathbf{c} \in V$ such that $\exp(\mathbf{c}/m) \in W^{1/m}$ and such that

 $W^{1/m}(\exp(\mathbf{y}/m))$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

is a proper descending chain.

Smallness Implies

Infinitary Model Theory: Covers of Abelian groups

John T. Baldwin

Outline

The 'relevan stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem

If $T_A + \Lambda(V) = \mathcal{Z}^N$ is small,

1 the dcc over K if K is finitely generated over \mathbb{Q} ;

- **2** every model of $T_A + \Lambda(V) = \mathcal{Z}^N$ is atomic in L^* ;
- 3 $T_A + \Lambda(V) = \mathcal{Z}^N$ admits elimination of quantifiers in L^* ;
- 4 every countable model of $T_A + \Lambda(V) = \mathbb{Z}^N + \text{ infinite dimension' is } \omega\text{-homogeneous.}$
- JB $T_A + \Lambda(V) = \mathbb{Z}^N$ has a finite number of completions that have uncountable models.

Aside: Characteristic p

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Weil Theorem

[Bays, Zilber] Consider

$$0 \rightarrow Z[1/p] \rightarrow V \rightarrow F_p^* \rightarrow 0.$$

where Z[1/p] is the localization at p and F_p^* is an infinite dimensional algebraically closed field of characteristic p.

 $T_A + \Lambda(V) = \mathcal{Z}^N$ is not small. There are 2^{\aleph_0} completions - distinct minimal models.

The theories must be analyzed separately; each is quasiminimal excellent.

ω -stable Implies

If $T_A + \Lambda(V) = \mathcal{Z}^N$ is ω -stable

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevan stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem

- 1 $T_A + \Lambda(V) = \mathcal{Z}^N$ admits elimination of quantifiers in L^* .
- Every countable model of T_A + Λ(V) = Z^N + 'infinite dimension' is ω-homogeneous over elementary submodels
 the dcc over K if K is a countable acf.

ω -stability: Kummer theory

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Weil Theorem *F* is a countable algebraically closed field and b_1, \ldots, b_k are multiplicatively independent over *F*. For any *m*, let $F_m = F(b_1^{\frac{1}{m}}, \ldots, b_k^{\frac{1}{m}})$. For fixed ℓ , let $G_m = \text{Gal}(F_{m \cdot \ell}/F_{\ell})$.

If $T_A + \Lambda(V) = \mathcal{Z}^N$ is ω -stable.

$$G_m \approx \mathbb{A}_m(F)^k \approx (\mathcal{Z}/m\mathcal{Z})^{Nk}$$

Group automorphisms are field automorphisms

Algebraic Formulations of Excellence

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem Let $S = \{F_s : s \subset n\}$ be an independent *n*-system of algebraically closed fields contained in a suitable monster \mathcal{M} . Denote the subfield of \mathcal{M} generated by $(\bigcup_{s \subset n} F_s)$ as *k*.

Canonical completions

$$\mathcal{A}(k) = \mathcal{A}^n \oplus \prod_{s \subset n} \mathcal{A}(F_s)$$

where A^n is a free Abelian group.

Almost Quasiminimal Excellence

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem Let **K** be a class of *L*-structures which admit a function cl_M mapping $X \subseteq M$ to $\operatorname{cl}_M(X) \subseteq M$ with a distinguished sort *U*. **K** is quasiminimal if:

- 1 cl_M satisfies is a monotone idempotent closure operator with $\operatorname{cl}_M(X) \in \mathbf{K}$
- **2** For $X, Y \subset U$, $cl(X) \cap cl(Y) = cl(X \cap Y)$.
- **3** cl_M satisfies exchange on U.
- $M = \operatorname{cl}_{M}(U).$
- **5** The usual homogeneity conditions are satisfied.

If in addition, the excellence condition holds for special subsets of U, the class is almost quasiminimal excellent.

ω -stable

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem

```
Every \omega-stable cover is \aleph_1-categorical.
But, unlike the first order case,
this doesn't automatically imply categoricity in all cardinals
-not even the continuum.
```

Excellence

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevan stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem The following are equivalent under VWGCH $(2^{\aleph_n} < 2^{\aleph_{n+1}})$

1 The cover of A is categorical in all uncountable κ .

- **2** The cover of \mathbb{A} is categorical in all \aleph_n for $n < \omega$.
- 3 The cover of \mathbb{A} is almost quasiminimal excellent.
- 4 The cover of A is almost quasiminimal excellent and A satisfies the algebraic conditions for excellence: has canonical completions.

Where did the set theory come from?

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevan stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem

VWGCH: $2^{\aleph_n} < 2^{\aleph_{n+1}}$ for $n < \omega$.

Where did the set theory come from?

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem

VWGCH: $2^{\aleph_n} < 2^{\aleph_{n+1}}$ for $n < \omega$.

VWGCH: Shelah 1983

An atomic class **K** that has at least one uncountable model and is categorical in \aleph_n for each $n < \omega$ is excellent.

What is true?

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevan stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem From the algebraic side, If ${\mathbb A}$ is

1 (\mathcal{C}, \cdot) : quasiminimal excellent (Zilber)

2 (\tilde{F}_p, \cdot) : not small. (Bays-Zilber)

3 elliptic curve w/o cm: ω -stable (Gavrilovich/Bays)

elliptic curve w cm: open (ω-stable as an End(E)-module
 (G))

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

5 higher dimensional: open

Relies on number theoretic results of Serre, Bashmakov

GALOIS TYPES: Algebraic Form

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem Suppose ${\bf K}$ has the amalgamation property. Then there is a monster model ${\cal M}.$

Definition

Let $M \in \mathbf{K}$, $M \prec_{\mathbf{K}} \mathbb{M}$ and $a \in \mathbb{M}$. The Galois type of a over M is the orbit of a under the automorphisms of \mathbb{M} which fix M.

We say a Galois type p over M is realized in N with $M \prec_{\mathbf{K}} N \prec_{\mathbf{K}} \mathbb{M}$ if $p \cap N \neq \emptyset$.

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem tame is short for (\aleph_0,∞) tame:

Distinct Galois types differ on a countable submodel.

Grossberg and VanDieren focused on the idea of studying 'tame' abstract elementary classes.

Tameness-Algebraic form

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevan stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem Suppose ${\bf K}$ has the amalgamation property.

K is (χ, μ) -tame if for any model *M* of cardinality μ and any $a, b \in \mathcal{M}$:

Tameness-Algebraic form

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevan stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem Suppose ${\bf K}$ has the amalgamation property.

K is (χ, μ) -tame if for any model *M* of cardinality μ and any $a, b \in \mathcal{M}$:

If for every $N \prec_{\mathbf{K}} M$ with $|N| \leq \chi$ there exists $\alpha \in \operatorname{aut}_{N}(\mathcal{M})$ with $\alpha(a) = b$,

then there exists $\alpha \in \operatorname{aut}_{\operatorname{M}}(\mathcal{M})$ with $\alpha(a) = b$.

Consequences of Tameness

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Weil Theorem Suppose ${\bf K}$ has arbitrarily large models and amalgamation.

Theorem (Grossberg-Vandieren)

If $\lambda > LS(\mathbf{K})$, \mathbf{K} is λ^+ -categorical and $(\lambda, < \infty)$ -tame then \mathbf{K} is categorical in all $\theta \ge \lambda^+$.

Theorem (Lessmann)

If K with $LS(K) = \aleph_0$ is \aleph_1 -categorical and (\aleph_0, ∞) -tame then K is categorical in all uncountable cardinals

AQE and covers

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevan stability hierarchy

Excellence

Covers

Tameness

Mordell-Wei Theorem

Assume: $T_A + \Lambda = \mathcal{Z}^N$ is ω -stable (VWGCH)

The following are equivalent

- 1 $T_A + \Lambda = \mathcal{Z}^N$ is (\aleph_0, ∞) -tame.
- **2** $T_A + \Lambda = \mathcal{Z}^N$ is almost quasiminimal excellent.
- 3 $T_A + \Lambda = \mathcal{Z}^N$ is categorical in all uncountable cardinalities.

Are there \mathbb{A} whose covers are ω -stable but not excellent? There are ϕ that are \aleph_1 -categorical but not tame (Baldwin-Kolesnikov).

Mordell-Weil Theorem

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Weil Theorem For \mathbb{A} a smooth elliptic curve, If k is a finitely generated extension of \mathbb{Q} , $\mathbb{A}(k)$ is a finitely generated abelian group.

Smallness and Mordell-Weil

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Weil Theorem $\mathbb{A}_{\ell}(k)$ is the *k*-rational points of order ℓ . $\mathbb{A}_{tor}(k)$ is the *k*-rational points of any finite order.

For *any* commutative algebraic group \mathbb{A} :

If $T_A + \Lambda(V) = \mathcal{Z}^N$ is small.

If k is finitely generated over \mathbb{Q} , $\mathbb{A}_{tor}(k)$ is finite.

Pseudo-generating sequences

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevan stability hierarchy

Excellence

Covers

Tameness

Mordell-Weil Theorem Let $\mathbb{V} = (V, A) \models T_A$. $\langle \tau_1, \ldots, \tau_N \rangle \in V$ is a *pseudogenerating* tuple of $\Lambda(V)$ if for each $m \in \mathbb{Z}$:

 $n_1\tau_1+\ldots,+n_N\tau_N\in m\Lambda \text{ iff } gcd(n_1,\ldots,n_N)\in m\mathcal{Z}.$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

We write $PG^N(\tau_1, \ldots, \tau_N)$.

smallness implies finite torsion: boundedness

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Weil Theorem

Definition

The algebraic group \mathbb{A} is bounded if for every finitely generated extension k of the field of definition k_0 of \mathbb{A} , there is a d such that for every ℓ the Galois group of $\operatorname{Gal}(\tilde{k}, k)$ has only d-orbits on the set

$$X_{\ell} = \{ \langle a_1, \ldots, a_N \rangle \in \mathbb{A}_{\ell}^N(\tilde{k}) : (\exists \mathbf{b}) [\mathbf{a} = \exp(\mathbf{b}/\ell) \land \operatorname{PG}^N(\mathbf{b})] \}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

smallness implies bounded

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevant stability hierarchy

Excellence

Covers

Tameness

Mordell-Weil Theorem

Lemma

If $T_A + \Lambda(V)$ is small, then \mathbb{A} is bounded.

Proof. Every sequence over k associated with the type $p = PG^{N}(\mathbf{x})$ stabilizes.

Thus, there are only finitely many extensions of p to complete types over (V(K), A(K)) and by the homogeneity over the empty set we have a bound d on the number of orbits of pseudogenerating sets.

But since each automorphism of \mathbb{V} induces an automorphism of $\mathbb{A}_{\ell}(\tilde{k})$ for each ℓ , we have the same bound in X_{ℓ} .

smallness implies finite torsion

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevan' stability hierarchy

Excellence

Covers

Tameness

Mordell-Weil Theorem

Lemma

a contradiction.

If \mathbb{A} is bounded, then for every finitely generated extension k of the field of definition k_0 , $\mathbb{A}_{tors}(k)$ is finite.

Proof. We show that if $\phi(\ell) > d$, no element of $\mathbb{A}(k)$ has order ℓ .

Suppose $a \in \mathbb{A}(k)$ is a counterexample. Then a can be taken as the first element in an N-tuple \mathbf{a} from $\mathbb{A}_{\ell}(\tilde{k})$ with $\mathbf{a} = \exp(\mathbf{b}/\ell)$ and $\mathrm{PG}^{N}(\mathbf{b})$ For any m that is coprime to ℓ , a^{m} also has order ℓ and can be extended to a sequence \mathbf{a}_{m} , so that $\mathbf{a}_{m} = \exp(\mathbf{b}_{m}/\ell)$ with $\mathrm{PG}^{N}(\mathbf{b}_{m})$. Thus the sequences \mathbf{a}_{m} for $m < \ell$ and $(m, \ell) = 1$ represent distinct orbits in X_{ℓ} under $\mathrm{Gal}(\tilde{k}, k)$ (the first elements of the sequences are distinct elements of k). So if $\phi(\ell) > d$, we have

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへ⊙

Infinitary logic

Infinitary Model Theory: Covers of Abelian groups

> John T. Baldwin

Outline

The 'relevan' stability hierarchy

Excellence

Covers

Tameness

Mordell-Weil Theorem

1 Difficulties

- 1 No upward LS; downward LS restricted
- 2 Model homogeneity not set homogeneity
- **3** Galois types not types
- 4 some weak set theory used
- 2 Advantages
 - 1 Ability to fix countable obstructions
 - 2 A further tool to understand the relation between model theoretic and number theoretic notions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@