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We show that the concept of an Abstract Elementary Class (AEC) provides a
unifying notion for several properties of classes of modules and discuss the stability
class of these AEC. An abstract elementary class consists of a class of models K
and a strengthening of the notion of submodel ≺K such that (K,≺K) satisfies
the properties described below. Here we deal with various classes (⊥N,≺N ); the
precise definition of the class of modules ⊥N is given below. A key innovation is
that A≺NB means A ⊆ B and B/A ∈ ⊥N .

We define in the text the main notions used here; important background defini-
tions and proofs from the theory of modules can be found in [EM02] and [GT06];
concepts of AEC are due to Shelah (e.g. [She87]) but collected in [Bal].

The surprising fact is that some of the basic model theoretic properties of the
class (⊥N,≺N ) translate directly to algebraic properties of the class ⊥N and the
module N over the ring R that have previously been studied in quite a different
context (approximation theory of modules, infinite dimensional tilting theory etc.).
Our main results, stated with increasingly strong conditions on the ring R, are:

Theorem 0.1. (1) Let R be any ring and N an R–module. If (⊥N,≺N ) is
an AEC then N is a cotorsion module. Conversely, if N is pure–injective,
then the class (⊥N,≺N ) is an AEC.

(2) Let R be a right noetherian ring and N be an R–module of injective di-
mension ≤ 1. Then the class (⊥N,≺N ) is an AEC if and only if ⊥N is
closed under direct limits (of arbitrary homomorphisms).

(3) Let R be a Dedekind domain and N an R–module. The class (⊥N,≺N )
is an AEC if and only if N is cotorsion.

Since the ring of integers is a Dedekind domain, Theorem 0.1.3 exactly charac-
terizes the abelian groups N such that (⊥N,≺N ) is an AEC. We write “conversely”
in Theorem 0.1 (1), although it is only a partial converse; every pure–injective mod-
ule is cotorsion, but cotorsion modules are not necessarily pure–injective.

Theorem 0.2. (1) For any module N , (⊥N,≺N ) has the amalgamation prop-
erty.
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(2) Let N be a module of injective dimension ≤ 1. Then (⊥N,≺N ) is an
AEC that admits closures iff ⊥N is closed under direct products iff ⊥N is
a cotilting class. In this case ⊥N is first order axiomatizable.

(3) Assume that R is a Dedekind domain. Then each AEC of the form
(⊥N,≺N ) admits closures. Moreover, ⊥N coincides with the (first or-
der aximatizable) class K(P ) for a set P consisting of maximal ideals,
and the closure, clM (X), coincides with the set of all m ∈ M such that
the ideal {r ∈ R : mr ∈ X} is a finite product of elements of P .

Conversely, for any set P of maximal ideals, there is a pure–injective
module N such that (⊥N,≺N ) is an AEC with ⊥N = K(P ).

Here, given a Dedekind domain R and a maximal ideal p, we call a module M
p–torsion–free provided that the module R/p does not embed into M . For a set of
maximal ideals P , K(P ) is defined as the class of all modules that are p–torsion–
free for all p ∈ P .

For example, if P = ∅ then ⊥N = K(P ) is the class of all modules and
≺N =<K(P ) is the submodule relation. If P is the set of all maximal ideals of
R then ⊥N = K(P ) is the class of all torsion–free modules and ≺N =<K(P ) is
the relation of being a pure submodule. It is easy to see that for different choices
of P we get distinct classes K(P ).

In the case of abelian groups (that is, modules over the ring of integers Z), or
more generally, modules over a principal ideal domain (p.i.d.), we can say more.

Theorem 0.3. (1) If P is a non–empty set of prime ideals in Z then
(K(P ), <K(P )) is (ℵ0,∞)-tame, and if λ is an infinite cardinal, then
(K(P ), <K(P )) is stable in λ if and only if λω = λ.

(2) More generally, if R is a principal ideal domain, and P is a non-empty set
of prime ideals in R with |P | = κ then (K(P ), <K(P )) is (LS(K(P)),∞)-
tame, and if λ is an infinite cardinal, then (K(P ), <K(P )) is stable in λ if
and only if λκ+ω = λ.

We discuss Theorem 0.1 in Section 1, Theorem 0.2 in Section 2, and Theo-
rem 0.3 in Section 3.

The notion of an abstract elementary class, AEC, is usually viewed as an abstract
version of ‘complete first order theory’ suitable for studying the class of models of
a sentence in infinitary logic. However, the ‘completeness’ is not at all inherent
in the notion. This work was stimulated by the discussion at the AIM confer-
ence on Abstract Elementary Classes in July 2006 of abelian groups as AEC (see
[BCG+00]). One of the goals of that conference was to identify some naturally
occurring classes of abelian groups that form AEC under an appropriate notion
of strong substructure. This paper provides a collection of such examples. We
show certain variants of ‘cotorsion pairs’ of modules often satisfy the conditions
for an AEC and classify when this happens. These examples provide a new type
of strong extension; most previous examples are ‘elementary submodel’ in various
logics. And as we describe in the last two sections, these examples provide further
insight into the notion of Galois type. In particular, they provide examples when
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the notion of the Galois type of an element is readily translated into a syntactic type
of a sequence.

1. WHEN IS (⊥N,≺N ) AN AEC?

We will begin by describing the main concepts, then prove the theorem. We re-
call the precise definition of an AEC since checking these axioms is the main con-
tent of this section. For background on AEC see e.g. [Gro02, Bal, She87, She99]

Definition 1.1. A class of τ–structures, (K,≺K), is said to be an abstract el-
ementary class (AEC) if both K and the binary relation ≺K on K are closed
under isomorphism and satisfy the following conditions.

• A1. If M ≺K N then M ⊆ N .
• A2. ≺K is a partial order on K.
• A3. If 〈Ai : i < δ〉 is a continuous ≺K–increasing chain:

(1)
⋃

i<δ Ai ∈ K;
(2) for each j < δ, Aj ≺K

⋃
i<δ Ai;

(3) if each Ai ≺K M ∈ K then
⋃

i<δ Ai ≺K M .
• A4. If A,B, C ∈ K, A ≺K C, B ≺K C and A ⊆ B then A ≺K B.
• A5. There is a Löwenheim–Skolem number LS(K) such that if A ⊆ B ∈

K there is a A′ ∈ K with A ⊆ A′ ≺K B and |A′| ≤ |A|+ LS(K).

Here, 〈Ai : i < δ〉 is a continuous ≺K–increasing chain provided that Ai ∈ K
and Ai ≺K Ai+1 for all i < δ, and Ai =

⋃
j<i Aj for all limit ordinals i < δ.

If M ≺K N we say that M is a strong submodel of N . If f : M 7→ N is 1-1
and fM ≺K N , we call f a strong embedding. Note that A3 in toto says that K
is closed under well–ordered direct limits of strong embeddings.

In what follows R denotes a ring (= associative ring with unit) and N a module
(= unitary right R–module). When A and B are modules, A ⊆ B means A is a
submodule of B.

Definition 1.2. The class (⊥N,≺N ) is defined by
⊥N = {A : Exti(A,N) = 0 for all 1 ≤ i < ω},

and
A≺NB if and only if A ⊆ B and A,B/A ∈ ⊥N.

It should be noted that the notation is not consistent in the literature. What
we call ⊥N here is often (e.g. in [GT06]) denoted by ⊥∞N , while ⊥N refers to
{A : Ext1(A,N) = 0}. But we use ⊥N for the class that is most useful in our
context. (For abelian groups, or more generally, for modules over right hereditary
rings, the two notions coincide.)

Notice that, since Exti(−, N) takes direct sums into direct products, the class
⊥N is closed under arbitrary direct sums. Moreover, it is resolving, that is, it
contains all projective modules, is closed under extensions (i.e. whenever there is
an exact sequence 0 → X → Y → Z → 0 with X, Z ∈ ⊥N then Y ∈ ⊥N ) and
has the property that X ∈ ⊥N whenever there is an exact sequence 0 → X →
Y → Z → 0 with Y, Z ∈ ⊥N (see [GT06, 2.2.9]).



4 JOHN T. BALDWIN, PAUL C. EKLOF, AND JAN TRLIFAJ

The notion of ⊥N generalizes the concept of a Whitehead group: the class of all
Whitehead groups is the special case for R = N = Z. (The class (⊥Z,≺Z) does
not form an AEC; this follows from Theorem 0.1.(3), since Z is not a cotorsion
abelian group; alternately, one can easily construct a counterexample to A.3(3), for
example, one such that M and

⋃
i<δ Ai are free, each Ai is finitely-generated, and

M/
⋃

i<δ Ai
∼= Q.)

The definition of ⊥N can be generalized to that of

⊥C = {A : Exti(A,N) = 0 for all 1 ≤ i < ω and all N ∈ C}

where C is a class of R–modules. This is often studied in the context of cotorsion
pairs, that is, maximal pairs of Ext–orthogonal classes; see [GT06] and [EM02].
We will state at the end of this section a generalization of Theorem 0.1 for classes
of the form ⊥C.

A module N is said to have injective dimension ≤ 1 if Exti(A,N) = 0 for all
i > 1 and all modules A. In this case of course ⊥N = {A : Ext1(A,N) = 0}.

A pair of classes of modules (C,D) is a torsion pair if C = {M : Hom(M,D) =
0 for all D ∈ D} and D = {N : Hom(C,N) = 0 for all C ∈ C}. There is a
torsion pair of the form (C,D) if and only if D is a torsion–free class of modules,
that is, D is closed under direct products, extensions and submodules.

If N has injective dimension≤ 1 and ⊥N = Cog(C) where Cog(C) is the class
of all submodules of direct products of copies of C, then N is called a cotilting
module, and ⊥N the cotilting class induced by N . Each cotilting class is a torsion–
free class of modules, so there is a torsion pair of the form (T ,⊥N), called the
cotilting torsion pair induced by N . (Again, for simplicity of notation, we deviate
here from the terminology of [GT06] where the term ’1–cotilting module/class’ is
used. We refer to [GT06, Chap. 8] for more on cotilting modules and classes.)

If all modules have injective dimension ≤ 1, then R is a right hereditary ring;
hereditary integral domains are called Dedekind domains. Every Dedekind domain
R is (right) noetherian, that is, each (right) ideal of R is finitely generated.

The notion of ≺N that we have chosen for our notion of a strong submodule
arose in the module theory context in the guise of a C–filtration. It was indepen-
dently developed by the ‘Abelian group group’ of the AIM workshop on Abstract
Elementary Classes in July 2006 [BCG+00].

Definition 1.3. Let C be a class of modules. A C–filtration of a module A is a
continuous increasing chain 〈Ai : i ≤ δ〉 of its submodules such that A0 = 0,
A = Aδ, and Ai+1/Ai ∈ C for each i < δ.

We begin the proof of Theorem 0.1 by checking that each axiom is satisfied for
the class (⊥N,≺N ):

A1 is trivial.
A2 requires a small observation. We want to show A≺NB and B≺NC implies

A≺NC; that is, Exti(C/A,N) = 0 for all i > 0. We have an exact sequence:

0 → B/A → C/A → C/B → 0.
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Applying Hom(−, N), we obtain the induced long exact sequence

· · · → Exti(C/B, N) → Exti(C/A,N) → Exti(B/A, N) → . . .

Since the outer terms are 0, so is the middle one, for each i > 0.
A3 is more complicated. First, we will show that A3(1) and A3(2) always hold.

The key point here is ‘Eklof’s Lemma’ saying that each ⊥N–filtered module is
actually in ⊥N :

Lemma 1.4. Let A be a module. Suppose that A =
⋃

α<µ Aα where 〈Aα : α < µ〉
is a continuous chain of modules with A0 ∈ ⊥N and for all α < µ, Aα+1/Aα ∈
⊥N . Then A ∈ ⊥N .

¿From this result, A3(1) is immediate. Lemma 1.4 follows from [EM02,
XII.1.5]; another proof is in [GT06, 3.1.2].

Next, we show that A3(2) follows from A3(1). Suppose 〈Ai : i < δ〉 is a ≺N

continuous increasing chain with union A. We must show each A/Ai ∈ ⊥N . Note
that A/Ai =

⋃
j>i Aj/Ai so by A3(1) it suffices to show each Aj/Ai ∈ ⊥N and

each Aj/Ai≺NAj+1/Ai. The first follows from the definition of the chain and
induction using transitivity and A3(1) for limit stages. The second requires that

(Aj+1/Ai)/(Aj/Ai)

be in N . But this is isomorphic to Aj+1/Aj which is in ⊥N by hypothesis.

Condition A3(3), however, is quite a strong one:

Lemma 1.5. Let R be a ring and N a module. Then A3(3) holds for the class
(⊥N,≺N ) if and only if ⊥N is closed under direct limits.

Remark 1.6. Here, we mean closure under direct limits of homomorphisms, not
just direct limits of strong embeddings which is a well–known consequence of A3
(Chapter 5 of [Bal]). One could rephrase this lemma as: ⊥N is closed under direct
limits of ‘strong embeddings’ (≺N –morphisms) if and only if ⊥N is closed under
direct limits of homomorphisms. We could have stated the condition as A3.3 since,
as we have just seen, in this context A3.1 and A3.2 always hold.

Proof. First, assume that ⊥N is closed under direct limits. To verify A3(3),
suppose 〈Ai : i < α〉 is a ≺N continuous increasing chain with union A and each
Ai≺NB. We must show B/A ∈ ⊥N . But B/A is the direct limit of the family of
surjective homomorphisms fj,i : B/Ai → B/Aj , for i ≤ j.

Conversely, assume A3(3) holds for the class (⊥N,≺N ). By [AR94, Corollary
1.7], it suffices to prove that ⊥N is closed under direct limits of well–ordered
chains of homomorphisms. Let M = (Mα, fβα : α ≤ β < σ) be such a chain
with Mα ∈ ⊥N for all α < σ. (ThoughM is required here to be well–ordered, the
maps fβα are not assumed to be monic. Notice that [AR94] uses category-theoretic
rather than algebraic terminology: in [AR94, Corollary 1.7], ’direct limits’ are
called ’directed colimits’).

If σ is a non–limit ordinal, then lim−→Mα = Mσ−1 ∈ ⊥N by assumption.
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Assume σ is a limit ordinal. Consider the canonical presentation of M =
lim−→Mα

0 → K ↪→ A → M → 0

where A =
⊕

α<σ Mα ∈ ⊥N (since ⊥N is closed under direct sums), and K is
the submodule of A generated by all elements of the form xβα = m − fβα(m)
where α ≤ β < σ and m ∈ Mα. Let Kγ denote the submodule of K generated
only by the xβα’s with β < γ. Then (Kγ : 1 ≤ γ ≤ σ) is a continuous chain of
submodules of A, and Kσ = K.

By induction on γ ≤ σ, we prove that Kγ ∈ ⊥N and A/Kγ ∈ ⊥N . This
is clear for K1 = 0. If γ is non–limit, then Kγ + Mγ−1 ⊇

⊕
α<γ Mα, hence

A = Kγ ⊕ Lγ where Lγ denotes the direct summand of A generated by all Mα’s
with γ − 1 ≤ α < σ. Since A/Kγ

∼= Lγ is a direct sum of members of ⊥N ,
A/Kγ ∈ ⊥N ; then Kγ ∈ ⊥N since ⊥N is resolving.

Let γ be a limit ordinal. By the inductive premise, Kδ ∈ ⊥N and A/Kδ ∈ ⊥N
for each δ < γ. Since ⊥N is resolving, we have also Kδ+1/Kδ ∈ ⊥N , so Kγ =⋃

δ<γ Kδ ∈ ⊥N by A3(1), and A/Kγ = A/
⋃

δ<γ Kδ ∈ ⊥N by A3(3).
In particular, for γ = σ, we obtain M ∼= A/Kσ ∈ ⊥N .

At this point, pure–injective and cotorsion modules enter the scene. In Lemma
1.8, we will discuss their role for A3(3) in the general setting, but we will have
a complete characterization only in the particular case of Dedekind domains (see
Lemma 1.9).

The pure–injective modules are the same as the algebraically compact modules;
see [EM02, Sect. V.1] for details. For Z–modules (abelian groups) and, more gen-
erally modules over Dedekind domains, the cotorsion modules can be defined as
the homomorphic images of pure–injective modules. Equivalently, for these rings
they are the modules N satisfying Ext1(J,N) = 0 for every torsion–free module
J , or just Ext1(Q,N) = 0 (where Q denotes the quotient field of the domain).

There is a structure theory for pure–injective modules over a Dedekind domain,
but the class of all cotorsion modules over a Dedekind domain is quite complex.
For example, any torsion module T occurs as the torsion part of a cotorsion mod-
ule (namely, of Ext1(Q/R, T )). However the torsion–free cotorsion modules are
fully understood: they are the pure–injective torsion–free modules, that is, they are
the direct sums of copies of Q plus direct products, over all maximal ideals p, of
completions of free Rp–modules where Rp denotes the localization of R at p.

A module J over a ring R is flat if and only if J is a direct limit of (finitely gen-
erated) projective modules. For modules over a Dedekind domain, the flat modules
are precisely the torsion–free modules, because, in that case, a finitely–generated
module is projective if and only if it is torsion–free.

Definition 1.7. A module N over a ring R is cotorsion if Ext1(J,N) = 0 for every
flat module J .

Lemma 1.8. Let R be a ring and N a module. If A3(3) holds for the class
(⊥N,≺N ) then N is cotorsion.
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Conversely, if N is pure–injective then ⊥N is closed under direct limits, so by
Lemma 1.5, the class (⊥N,≺N ) satisfies A3(3).

Proof. If A3(3) holds for the class (⊥N,≺N ) then ⊥N is closed under direct
limits by Lemma 1.5. Since ⊥N always contains all projective modules, it contains
also all flat modules, so N is cotorsion.

For the second part, note first that it suffices to show ⊥N is closed under homo-
morphic images of pure epimorphisms because the canonical map of a direct sum
onto a direct limit is a pure epimorphism. As in the proof of [ET00, Lemma 9] we
can show that {A : Ext1(A,N) = 0} is closed under homomorphic images of pure
epimorphisms for each pure-injective N . By [GT06, 3.2.10], for each i > 0 there
is a pure–injective module Ni such that Exti(A,N) ∼= Ext1(A,Ni) for all modules
A. Thus also ⊥N is closed under homomorphic images of pure epimorphisms, and
thus under direct limits.

There is still a gap between the two parts of Lemma 1.8; we do not know exactly
the rings for which the hypothesis of N cotorsion is sufficient for A.3(3). It is
sufficient when R is a Dedekind domain:

Lemma 1.9. Let R be a Dedekind domain and N a module. Then the following
are equivalent:

(1) N is cotorsion;
(2) ⊥N = ⊥PE(N) where PE(N) denotes the pure–injective envelope of N ;
(3) ⊥N is closed under direct limits;
(4) A3(3) holds for (⊥N,≺N ).

Proof. (1) implies (2) by [ET00, Theorem 16 (ii)(b)]. (2) implies (3) by the
second part of Lemma 1.8, and (3) is equivalent to (4) by Lemma 1.5. Finally, (4)
implies (1) by the first part of Lemma 1.8.

Now, we return to the open problem of characterizing A3(3) in the general set-
ting. The reader who is interested mainly in the case of abelian groups, or modules
over Dedekind domains, can skip this part and proceed directly to Lemma 1.14.

Lemma 1.10. Assume that R is a right noetherian ring and the module N has
injective dimension ≤ 1. Then the conditions (2), (3) and (4) of Lemma 1.9 are
equivalent.

Proof. First, we claim that for any finitely generated module F , the condition
Ext1(F,X) = 0 is a first order property of X . Indeed, let 0 → G ⊆ Rm → F → 0
be a presentation of F where m is finite. Then Ext1(F,N) = 0 just says that
any R–homomorphism g : G → N can be extended to an R–homomorphism
f : Rm → N .

By the hypothesis on R, G is finitely-generated. Let {g1, . . . , gn} be a finite
R–generating subset of G, gj = (gj1, . . . , gjm) ∈ Rm for each j ≤ n. Let
0 → H ⊆ Rn π→ G → 0 be the presentation of G with π(1j) = gj (j ≤ n).
Let {h1, . . . , hp} be a finite R–generating subset of H , hk = (hk1, . . . , hkn) ∈ Rn

(k ≤ p).
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Then g : G → N is uniquely determined by an n–tuple (x1, . . . , xn) of elements
of N satisfying

∑
j≤n xjhkj = 0 for each k ≤ p. Similarly, f : Rm → N is

uniquely determined by an m–tuple (y1, . . . , ym) of elements of N . Finally, f
extends g if and only if

∑
i≤m yigji = xj for each j ≤ n. This finishes the proof

of our claim.
Notice that for any module N , the modules N and PE(N) are elementarily

equivalent. Since R is right noetherian, syzygies of finitely generated modules can
be taken finitely generated. So our claim and the Baer test of injectivity imply that
the injective dimensions of N and PE(N) coincide, hence they are ≤ 1. So the
classes ⊥N and ⊥PE(N) are closed under submodules, and again by our claim,
they contain the same finitely generated modules.

By Lemmas 1.5 and 1.8, we only have to prove that (3) implies (2). By (3)
and the fact that N has injective dimension ≤ 1, we have M ∈ ⊥N iff all finitely
generated submodules of M are in ⊥N . Similarly, by the second part of Lemma
1.8, we have M ∈ ⊥PE(N) iff all finitely generated submodules of M are in
⊥PE(N). However, we have just seen that a finitely generated module belongs to
⊥N if and only if it belongs to ⊥PE(N).

In general, condition (1) of Lemma 1.9 does not imply A3(3) for (⊥N,≺N ). We
will see this in the next example, which is expounded from here until Lemma 1.14.

Recall that a ring R is right artinian if R has d.c.c. on right ideals. Equivalently,
R is right noetherian and each flat module is projective. In particular, every module
over a right artinian ring is cotorsion, so condition (1) is vacuous (satisfied for each
N ).

Note that right artinian rings and Dedekind domains share the property that each
finitely generated module is a direct sum of a projective module and an artinian
module (i.e., one that satisfies d.c.c. on submodules). This is the property needed
in the next lemma.

Lemma 1.11. Let be R a right noetherian ring such that each finitely generated
module is a direct sum of a projective module and an artinian module. Let N be
a module of injective dimension ≤ 1 such that ⊥N is closed under direct limits.
Then ⊥N is a torsion–free class of modules.

Proof. We modify the proof of Theorem [GT06, 8.2.17(b), p. 291] as follows:
Denote byF the class of all finitely generated modules in ⊥N . By assumption, if

M is an arbitrary finitely generated module, then M = F⊕Q where F is projective
and Q is artinian. Let P = {P ⊆ M : M/P ∈ F}. Then P is closed under finite
intersections because F is closed under submodules and finite direct products. So
P (M) =

⋂
P∈P P ⊆ Q is the smallest submodule of M such that M/P (M) ∈ F

(because F ∈ ⊥N and Q is artinian). As in [GT06, 8.2.17(b)], we see that (T ,F)
is a torsion pair in the category of all finitely generated modules where T denotes
the class of all finitely generated modules T such that HomR(T, F ) = 0 for all
F ∈ F .

By [GT06, 4.5.2(b)], (lim−→T , lim−→F) is a torsion pair in the category of all mod-
ules. By assumption, ⊥N is closed under direct limits, so ⊥N ⊇ lim−→F . Since R
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is right noetherian and ⊥N is closed under submodules, also ⊥N ⊆ lim−→F . This
proves that ⊥N = lim−→F is a torsion–free class of modules.

The following lemma will be helpful in constructing the example:

Lemma 1.12. Let R be as in Lemma 1.11. Let N be a module of injective dimen-
sion ≤ 1 such that Ext1(N,N) = 0 and A3(3) holds for (⊥N,≺N ). Then N is
pure–injective.

In particular, if R is a Dedekind domain and N is a module such that
Ext1(N,N) = 0, then N is cotorsion iff N is pure–injective.

Proof. By Lemmas 1.5 and 1.11, and by [GT06, 8.2.4], ⊥N is a cotilting class
of modules, that is, there is a cotilting module C such that ⊥N = ⊥C. By [GT06,
8.1.7], each cotilting module is pure–injective. Moreover, by [GT06, 8.1.4(c)],
all modules in the subclass S = {B ∈ ⊥C : Exti(A,B) = 0 for all 1 ≤ i <
ω and all A ∈ ⊥C} are direct summands of direct products of copies of C; in
particular, they are also pure–injective. However, our assumption of Ext1(N,N) =
0 implies N ∈ S.

If R is a Dedekind domain and N is cotorsion then A3(3) holds by Lemma 1.9,
so N is pure–injective by the argument above.

Example 1.13. We will show that A.3(3) fails for (⊥N,≺N ) for certain (cotorsion)
modules over rings which are (right) hereditary, artinian and countable. We refer
to [AHT] for more details on this example. Let R be a tame hereditary finite
dimensional algebra over a field k. (Note that R is countable when k is.)

If N is a finite dimensional module, then N is endofinite, hence pure–injective,
so ⊥N is closed under direct limits by Lemma 1.8, and (⊥N,≺N ) satisfies A3(3).

By Lemma 1.12, for the desired example it suffices to take any infinite dimen-
sional tilting module N which is not pure–injective. We claim that the (countable
dimensional) Lukas tilting module N from [GT06, 5.1.5(b)] has this property. In-
deed, ⊥N is the class of all Baer modules, which is not closed under direct limits
(it contains neither the generic module nor the product of all indecomposable pre-
projective modules, see [AHT]), and Lemma 1.8 applies.

A4 is rather straightforward.

Lemma 1.14. If R is any ring and N any module then A4 holds for (⊥N,≺N ).

Proof. Suppose A ⊆ B ⊆ C with A≺NC and B≺NC. To show A≺NB, we
need only show B/A ∈ ⊥N . But this is immediate from the resolving property of
⊥N applied to the exact sequence 0 → B/A → C/A → C/B → 0.

The verification of A5 relies on the following notion; we modify the notation in
[ET00].

Definition 1.15. For any right R–module A and any cardinal κ, a (κ, N)–
refinement of length σ of A is a continuous chain 〈Aα : α < σ〉 of submodules
such that A0 = 0, Aα+1/Aα ∈ ⊥N , and |Aα+1/Aα| ≤ κ for all α < σ.
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We state now a version of Theorem 6 of [ST07] (see also [GT06, 4.2.6]) where
we omit some of the conclusions not needed here.

Lemma 1.16 (Hill’s Lemma). Let κ be a regular infinite cardinal. Suppose M
admits a C–filtration 〈Mα : α ≤ σ〉, where C is a set of < κ–presented modules.
Then there is a family F of submodules of M = Mσ such that:

(1) Mα ∈ F for all α ≤ σ.
(2) F is closed under arbitrary intersections and sums.
(3) Let N ⊆ P both be in F . Then P/N has a C–filtration.
(4) If N ∈ F and X ⊆ M with |X| < κ, then there is a P ∈ F with

N ∪X ⊆ P and P/N < κ presented.

Lemma 1.17. Let κ be a cardinal ≥ |R|+ ℵ0. Let N be a module.
(1) If every module A ∈ ⊥N has a (κ, N)–refinement then (⊥N,≺N ) has

Löwenheim–Skolem number κ.
(2) If (⊥N,≺N ) has Löwenheim–Skolem number κ and satisfies A3(3) then

every module A ∈ ⊥N has a (κ, N)–refinement.

Proof. Since κ ≥ |R| + ℵ0, a (κ, N)–refinement of a module M yields a C–
filtration of M where C is the class of all ≤ κ–presented elements of ⊥N . We use
Lemma 1.16 for κ+. If A ∈ F , then by Eklof’s Lemma and (3) of Lemma 1.16,
A≺NM . Write an arbitrary X ⊆ M as

⋃
i<µ Xi where |Xi| ≤ κ and µ = |X|.

Then inductively, using condition (4), we select from F a continuous chain of
submodules of M , 〈Ni : i ≤ µ〉, so that

(1) N0 = 0;
(2) Ni+1 ⊇ Ni

⋃
Xi;

(3) Ni+1/Ni is ≤ κ–presented.
Then Nµ is as required.

Conversely, assume (⊥N,≺N ) has Löwenheim–Skolem number κ. Let A ∈
⊥N and let X be a set of R–generators of A. A (κ, N)–refinement 〈Aα : α < σ〉
of A consisting of strong submodules of A is constructed by induction as follows:

A0 = 0, and if Aα is defined and there is x ∈ A\Aα then applying A5 to A/Aα

yields a submodule Aα+1 containing Aα + xR and such that Aα+1/Aα ∈ ⊥N ,
A/Aα+1 ∈ ⊥N and |Aα+1/Aα| ≤ |(Aα +xR)/Aα|+κ. Since (Aα +xR)/Aα

∼=
xR/(Aα ∩xR), also |(Aα +xR)/Aα| ≤ κ, hence |Aα+1/Aα| ≤ κ. The resolving
property of ⊥N gives Aα+1 ∈ ⊥N .

For a limit ordinal α we define Aα =
⋃

β<α Aβ , so Aα ∈ ⊥N by A3(1), and
A/Aα ∈ ⊥N by A3(3).

Remark 1.18 (Summary). We have shown that (⊥N,≺N ) is an AEC if and only if
⊥N has (κ, N)-refinements for some κ and is closed under direct limits of homor-
phisms.

But the question of when refinements exist is rather complicated.

Lemma 1.19. Each member of ⊥N admits a (κ, N)–refinement under any of the
following conditions.
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(1) N is pure–injective and R is arbitrary; κ = |R|+ ℵ0.
(2) N is cotorsion and R is a Dedekind domain; κ = |R|+ ℵ0.
(3) (V=L) N is arbitrary and R is hereditary; κ = max{|R|, |N |}+ ℵ0.

Proof. These results are in [ET00]. (1) follows by Theorem 8; (3) is Theorem
14. (2) follows from (1) by Lemma 1.9.

Now, we just combine the results obtained above for a Proof of Theorem 0.1:
Part (1) follows by Lemmas 1.8, 1.14, 1.17(1), and 1.19(1).
Part (2) is by Lemmas 1.5, 1.10, and Part (1).
Part (3) follows by Part (2) and Lemma 1.9.

Theorem 0.1 can be generalized as follows; the proof is a straightforward gen-
eralization, where A≺CB means that B/A ∈ ⊥C:

Theorem 1.20. (1) Let R be a ring and C a class of R–modules. If every mod-
ule in C is pure–injective, then the class (⊥C,≺C) is an AEC. Conversely,
if (⊥C,≺C) is an AEC then every module in C is a cotorsion module.

(2) Let R be a right noetherian ring and C be a class of R–modules of injective
dimension ≤ 1. Then the class (⊥C,≺C) is an AEC if and only if ⊥C is
closed under direct limits.

(3) If R is a Dedekind domain and C is a class of R–modules, the class
(⊥C,≺C) is an AEC if and only if every member of C is cotorsion.

Here are some open questions:

Question 1.21. (1) Can the question of whether a class is an AEC (e.g.
(⊥N,≺N ) for R hereditary) be independent of ZFC?

(2) Can the question of whether a class (e.g. Whitehead groups) is a PCΓ–
class (defined as the reducts of models of say a countable theory omitting a
family of types) be independent of ZFC? (Note that under V = L, ‘White-
head=free’ and the class is easily PCΓ.)

(3) Characterize the cotorsion modules N over a ring R such that (⊥N,≺N )
is an AEC.

2. AMALGAMATION, CLOSURES, AND STABILITY

Recent studies in AEC ([She99, GV06, GV, Bal, BS] have focused on those
AEC having additional properties such as amalgamation, tameness, and admitting
closures. Having established that (⊥N,≺N ) is an AEC for a number of N , we turn
to establishing such model theoretic properties of the AEC.

In this section we show that for any N , (⊥N,≺N ) has the amalgamation prop-
erty, and if N has injective dimension ≤ 1 then (⊥N,≺N ) admits closures iff ⊥N
is a cotilting class. We will also show that the latter always holds when R is a
Dedekind domain, and describe the closures explicitly in this case.

Note that for any N , all projective and in particular all free R–modules are in
⊥N so (⊥N,≺N ) always has arbitrarily large models.

Now we show the first part of Theorem 0.2:
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Lemma 2.1. (⊥N,≺N ) has the amalgamation property.

Proof. We just check if C≺NB and C≺NA then the pushout D of A and B
over C is in ⊥N and B≺NC, A≺ND. Consider the short exact sequence:

0 → C → B → B/C → 0.

By the universal mapping property of pushouts we get the diagram:

0 → A → D → B/C → 0
↑ ↑ ‖

0 → C → B → B/C → 0

Then from the long exact sequence of Ext, we obtain the exact sequence

Exti(B/C, N) → Exti(D,N) → Exti(A,N).

But the first and last entries are 0, so D ∈ ⊥N . Now the commutative diagram
shows D/A ∼= B/C so A≺ND. Performing the same construction starting with
0 → C → A → A/C → 0, shows B≺ND and we finish.

Remark 2.2. It is easy to see that in the preceding construction, there is a copy of
D over A in which A intersects the image of B in C. Thus our classes have the
’disjoint amalgamation property’.

Note that the argument for amalgamation also yields that each (⊥N,≺N ) has the
‘joint embedding property’ (any two members can be strongly embedded into some
model). As with any AEC with the amalgamation property and joint embedding,
we can now see:

Remark 2.3 (Conclusions). If (⊥N,≺N ) is an AEC, then
(1) (⊥N,≺N ) has a monster model M in the usual sense of AEC, (see [Bal])

(i.e. homogeneous over strong submodels).
(2) (⊥N,≺N ) has EM–models and models generated by indiscernibles.

To study stability, we must define it. And for this we must introduce the notion
of type that is appropriate here. We will use the monster model in our discussion
of Galois types.

Definition 2.4. Let (K,≺K) be an AEC with the amalgamation property and
joint embedding.

(1) For triples (M,a,N) with M ≺K N ∈ K and a ∈ N −M , define

(M,a,N) ∼= (M,a′, N ′)

if there exists N ′′ and strong embeddings f, f ′ taking N,N ′ into N ′′ which
agree on M and with

f(a) = f ′(a′).

(2) ‘The Galois type of a over M in N ’ is the same as ‘the Galois type of a′

over M in N ′’ if (M,a,N) and (M,a′, N ′) are in the same class of the
equivalence relation generated by ∼=.
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(3) We write tp(a/M) for the Galois type of a over M . This can be thought of
as either:
(a) the equivalence class of (M,a, M);
(b) the orbit of a under autM(M).

(4) Let M ⊆ N ⊂ M and a ∈ M. The restriction of tp(a/N) to M , denoted
tp(a/N) � M is the orbit of a under autM(M).

(5) ga− S(M) denotes the collection of Galois–types over M .
(6) (K,≺K) is λ–stable if for every M with |M | = λ, |ga− S(M)| = λ.

The definition of restriction makes sense since our classes have a monster model.
Note that the definition of Galois type in 1) and 2) makes sense without an amal-
gamation assumption (but ‘generation’ in 2) means transitive closure of the given
relation). With amalgamation we get the simpler relation of 3).

The analysis of Galois types in our situation relies on a definition from [BS].

Definition 2.5. We say the AEC (K,≺K) admits closures if for every X ⊆ M ∈
K, there is a minimal closure of X in M . That is, the structure with universe⋂
{N : X ⊆ N ≺K M} is a strong submodel of M . If so, we denote it: clM (X).

In our particular setting, the existence of closures translates into ⊥N being a
cotilting class. To see this, we first show that the existence of closures for modules
in ⊥N implies the existence of closures for arbitrary modules. We start by allowing
the relation≺N to hold between arbitrary modules instead of just members of ⊥N .

Definition 2.6. If A and B are arbitrary modules, we will say that A≺N
′B iff

B/A ∈ ⊥N .

Notice that if A≺N
′B then A ∈ ⊥N iff B ∈ ⊥N since ⊥N is resolving.

Lemma 2.7. Assume that (⊥N,≺N ) is an AEC that admits closures. Let X be a
subset of a module M and let Q′ =

⋂
{Q : X ⊆ Q≺N

′M}. Then Q′≺N
′M .

Proof. Fix an epimorphism π : F → M where F is a free module. For each
submodule Q of M , denote by µQ : Q → M the inclusion, and consider the
pullback of π and µQ:

0 −−−−→ PQ
νQ−−−−→ F −−−−→ M/Q −−−−→ 0y π

y ∥∥∥
0 −−−−→ Q

µQ−−−−→ M −−−−→ M/Q −−−−→ 0
Notice that PQ is just the set of all pairs (m, f) ∈ M ⊕ F where m ∈ Q, π(f) =
m, and νQ is the (injective) restriction to PQ of the projection M ⊕ F → F .
Moreover, if Q≺N

′M then F,M/Q ∈ ⊥N , so PQ ∈ ⊥N since ⊥N is resolving,
and νQ(PQ)≺NF .

Let Q = {Q : X ⊆ Q≺N
′M}. Notice that νQ′(PQ′) =

⋂
{νQ(PQ) : Q ∈ Q}:

the inclusion ⊆ is obvious, and if f ∈
⋂
{νQ(PQ) : Q ∈ Q} then π(f) ∈ Q′ so

f ∈ νQ′(PQ′). Since (⊥N,≺N ) admits closures, νQ′(PQ′) is a strong submodule
of F . But, by the last paragraph, this implies M/Q′ ∈ ⊥N , that is, Q′≺N

′M .



14 JOHN T. BALDWIN, PAUL C. EKLOF, AND JAN TRLIFAJ

Lemma 2.8. Let R be a ring, and N be a module of injective dimension≤ 1. Then
the following conditions are equivalent:

(1) (⊥N,≺N ) is an AEC that admits closures;
(2) ⊥N is closed under direct products;
(3) ⊥N is a cotilting class.

These conditions imply that ⊥N is first order axiomatizable and moreover, the
closure, clM (X), is determined by clM (X)/X being the T –torsion part of M/X
where (T ,⊥N) is the induced cotilting torsion pair.

Proof. The implication (1) → (2) holds for any module N :
Assume that (1) holds and there are a cardinal κ and modules Mα ∈ ⊥N (α < κ)

such that P =
∏

α<κ Mα /∈ ⊥N . We take κ the smallest possible; notice that κ

is infinite since ⊥N is closed under direct sums. For each α < κ, let Pα = {p ∈
P : pβ = 0 for all β < α}. Then P/Pα

∼=
∏

β<α Mβ ∈ ⊥N by the minimality
of κ, so Pα≺NP . Lemma 2.7 implies that

⋂
α<κ Pα≺N

′P . But
⋂

α<κ Pα = 0, so
P/(

⋂
α<κ Pα) ∼= P ∈ ⊥N , a contradiction.

(2) implies (3) by [GT06, 8.1.10].
Assume (3). Since any cotilting class is of the form ⊥N for a cotilting module

N , and N is pure–injective by [GT06, 8.1.7], (⊥N,≺N ) is an AEC by Theorem
0.1(1).

Let X ⊆ M ∈ ⊥N . Let Q′ =
⋂
{Q : X ⊆ Q≺NM}. Then the

map ϕ : M/Q′ →
∏

X⊆Q≺NM M/Q assigning to each m + Q′ the sequence
(m + Q)X⊆Q≺NM is monic. Since ⊥N is a cotilting class, it is closed under direct
products and submodules, so

∏
X⊆Q≺NM M/Q ∈ ⊥N , and M/Q′ ∈ ⊥N . As

⊥N is resolving, we conclude that Q′ is a strong submodule of M , so (⊥N,≺N )
admits closures.

Finally, any cotilting class is ’definable’ (that is, closed under direct products,
direct limits and pure submodules), so it is axiomatizable (by axioms saying that
certain of the Baur-Garavaglia-Monk invariants are equal to 1), cf. [CB98, 2.3] and
[Pr88, p.34].

Moreover, since (T ,⊥N) is a torsion pair, we have M/Y ∼= (M/X)/(Y/X) ∈
⊥N where Y/X is the T –torsion part of M/X , and if X ⊆ P≺NM then Y ⊆ P
since otherwise (Y/X)/(P/X ∩ Y/X) ∼= (P/X + Y/X)/(P/X) ∼= (P + Y )/P
is isomorphic to a non-zero T –torsion submodule of M/P ∈ ⊥N . This proves
that clM (X)/X = Y/X .

Our main applications are to abelian groups, or, more generally, modules over
Dedekind domains, so we note that in that case the AEC (⊥N,≺N ) always ad-
mits closures, that is, ⊥N is a cotilting class. Moreover, we provide an explicit
construction of the closures.

Recall that for a set of maximal ideals P , K(P ) is defined as the class of all
modules that are p–torsion–free for all p ∈ P .

Lemma 2.9. Let R be a Dedekind domain. If (⊥N,≺N ) is an AEC, then ⊥N
coincides with the (first order aximatizable) class K(P ) for a set P of maximal
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ideals of R and (⊥N,≺N ) admits closures. The closure clM (X) coincides with the
submodule of M consisting of all m ∈ M such that the ideal {r ∈ R : mr ∈ X}
is a finite product of elements of P .

Conversely, for any set of maximal ideals P , there is a pure–injective module N
such that (⊥N,≺N ) is an AEC such that ⊥N = K(P ).

Proof. For the first claim, let P be the set of all maximal ideals p of R such that
R/p /∈ ⊥N . Then ⊥N = K(P ) by [ET00, Theorem 16(i)]. For the second claim,
it suffices, by Lemma 2.8, to show that K(P ) is closed under direct products; but
this is obvious from the definition of K(P ).

By Lemma 2.8, clM (X)/X coincides with the T –torsion part of M/X where
(T ,⊥N) is the cotilting torsion pair. By [GT06, 8.2.11], this torsion pair is hered-
itary in the sense of [St75, VI.§3], that is, there is a Gabriel topology (filter) F of
ideals of R such that for each module N , N ∈ T iff each element from N is an-
nihilated by an element of F. Since each non–zero ideal of R is uniquely a finite
product of prime ideals (see [Ma94, Theorem 11.6]), and ⊥N = K(P ), we infer
that F coincides with the set of all ideals of R which are finite products of elements
of P (here we include R as the ’empty’ case of such product). In particular, the T –
torsion part of M/X consists of all elements m ∈ M such that {r ∈ R : mr ∈ X}
is a finite product of prime ideals from P .

Conversely, for any set of maximal ideals P , K(P ) = ⊥∏
p∈P R̂p where R̂p de-

notes the completion of Rp, and Rp is the localization of R at p (see [ET00, Theo-
rem 16(ii)(a)]); R̂p is a complete torsion–free module, hence R̂p and

∏
p∈P R̂p are

pure injective.
Finally, we prove that K(P ) is first order axiomatizable for any set of maximal

ideals P . For each p ∈ P , let {ap,1, . . . , ap,kp} be a finite R–generating subset of p.
The first–order theory TP which asserts that for all p ∈ P the simple module R/p
does not embed into N just consists of the implications (x.ap,1 = · · · = x.ap,kp =
0) → x = 0 where p runs over all ideals in P .

Parts (2) and (3) of Theorem 0.2 now follow immediately from Lemmas 2.8 and
2.9, respectively.

Remark 2.10. (i) The class ⊥N = K(P ) above is elementary, but the unusual
definition of ≺N yields some new phenomena: we require that A≺NB iff B/A |=
TP . This distinction was reflected for example in Lemma 2.7. While, by definition
of cotilting, if N is cotilting any submodule A of a member B of ⊥N is in ⊥N ,
A≺NB may fail. In [BS] an AEC K is called model complete if A ⊂ B and
A,B ∈ K implies A ≺K B. Here we have natural examples where this condition
fails: just consider a non–pure subgroup A of a torsion–free group B.

(ii) The equivalence (2) ↔ (3) in Lemma 2.8 extends to any module N of injec-
tive dimension n < ω if we replace ’cotilting class’ by ’n–cotilting class’ in the
sense of [GT06, Chap. 8].

(iii) That (⊥N,≺N ) admits closures whenever (⊥N,≺N ) is an AEC holds for
any right noetherian ring whose finitely generated modules decompose into direct
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sums of projective and artinian modules, and any module N of injective dimension
≤ 1.

Notice that there exist rings R and AEC’s of the form (⊥N,≺N ) that do not
admit closures:

Example 2.11. Consider any ring R which is right perfect (that is, all flat modules
are projective), but not left perfect (see [AF92, p.322]). Then R is not left coherent
(that is, there exists a finitely generated left ideal which is not finitely presented,
see e.g. [Pr88, 14.23]). Let N be the direct sum of a representative set of all simple
modules. By [GT06, 4.1.8], ⊥N is the class of all projective modules (and ≺N

is the relation of being a direct summand). Since ⊥N = ⊥C where C is the class
of all pure–injective modules (see [GT06, 2.2.3]), Theorem 1.20(1) implies that
(⊥N,≺N ) is an AEC.

But R is not left coherent, so the class of all flat (= projective) modules is not
closed under direct products by a classical result of Chase [AF92, 19.20]. Hence
(⊥N,≺N ) does not admit closures by (the implication (1) → (2) of) Lemma 2.8.

We conclude this section by describing some general properties of Galois types.
In Section 3, we will use these concepts to study the stability of (⊥N,≺N ) for
abelian groups N .

If (K,≺K) admits closures then we have the following check (from [BS])
for equality of Galois types. The relevance of the second clause is that even
in the absence of amalgamation it shows that equality of Galois types is deter-
mined by the basic relation of Definition 2.4, rather than its transitive closure. By
M1 � clM1(M0a1) we simply mean the structure M1 induces on the minimal K
substructure containing M0a1.

Lemma 2.12. Let (K,≺K) admit closures.
(1) Suppose M0 ≺K M1,M2 with ai ∈ Mi for i = 1, 2. Then

tp(a1/M0,M1) = tp(a2/M0,M2) if and only if there is an isomorphism
over M0 from M1 � clM1(M0a1) onto M2 � clM2(M0a2) which maps a1

to a2.
(2) (M1, a1, N1) and (M2, a2, N2) represent the same Galois type over M1 iff

M1 = M2 and there is an amalgam of N1 and N2 over M1 where a1 and
a2 have the same image.

The syntactic type of an element a over a set A is the set of formulas φ(x) in
some logic with parameters from A that are satisfied by a. Such a type describes
the relation of a to A in the sense of the logic under consideration. In saturated
models of a first order theory the type of a over A determines the orbit of a under
automorphisms of the monster model fixing A. The Galois type of a over A is only
defined when A is a model M . But then, it corresponds precisely to the orbit of a
under automorphisms of the monster model fixing M . Syntactic types have certain
natural locality properties.

locality: Any increasing chain of types has at most one upper bound;
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tameness: two distinct types differ on a finite set;
compactness: an increasing chain of types has a realization.

The translations of these conditions to Galois types do not hold in general. We
will show that when N is an abelian group, Galois types of elements correspond
to syntactic types of countable sequence. This means that these locality properties
do hold. Since the translation rather than the specific property is the crucial issue
here, we give the technical definition of only one of the properties.

Definition 2.13. (1) We say K is (χ, µ)–tame if for any N ∈ K with |N | = µ
if p, q,∈ ga−S(N) and for every N0 ≤ N with |N0| ≤ χ, p � N0 = q � N0

then q = p.
(2) K is (χ,∞)–tame if it is K is (χ, µ)–tame for all µ.

3. THE CASE OF ABELIAN GROUPS

The main goal of this section is the proof of Theorem 0.3. First we note that
closures in the sense of Definition 2.5 take a simpler form for abelian groups:

By Lemma 2.9, clB(X) is just the closure of X with respect to divisibility by
p for each p ∈ P , that is, clB(X) is the set of all y ∈ B such that for some
m which is a product of powers of primes in P , my ∈ X . Note that for any
A <K(P ) B ∈ K(P ) and b ∈ B, clB(A, b) is countably generated over A.

This has corollaries concerning tameness and stability.

Corollary 3.1. If N is an abelian group, the Galois type of a over M ∈ ⊥N is
determined by the quantifier-free type of a countable sequence associated with a.
This implies (⊥N,≺N ) is (ℵ0,∞)–tame and stable in λ if λω = λ.

Proof. Let A≺NB and a ∈ B. Then clB(Aa) is generated by some count-
able set c. So by Lemma 2.12, the Galois type of a over B is determined by the
quantifier-free first order type of c over B. This means that if a and a′ have different
Galois types over B, the associated sequences c, c′ have different quantifier-free
types over B and thus over a countable submodel B0 of B; this is tameness. And
the number of Galois types over a model of cardinality λ is at most the number
of quantifier-free types of ω–sequences. Since over any module of cardinality λ
there are only λ quantifier free types of finite sequences, there are λω types of
ω–sequences.

The translation to quantifier-free types also gives full compactness and locality
for Galois types in this context; see the chapter, Locality and Tameness, in [Bal]
for precise definitions.

Now we can prove Theorem 0.3(1), that is, if P is a non–empty set of primes
of Z and λ is an infinite cardinal, then (K(P ), <K(P )) is stable in λ if and only if
λω = λ. We just proved that λω = λ is a sufficient condition for stability. Fix a
prime p in P . For a given infinite cardinal λ, fix an enumeration {fi : i ∈ λω} of
λω different one-one functions from ω to λ. Let S′ = ω × λ, and let A be the free
abelian group with basis S = {es : s ∈ S′}. For each i ∈ λω, let Bi be Fi/Ki
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where Fi is the free group on S ∪ {bi} ∪ {zn,i : n ∈ ω} and Ki is the subgroup
generated by

wn,i = pn+1zn,i − bi −
n∑

`=0

p`e`,fi(`).

It is easy to check that this generating set is a basis. We show that the map
taking a ∈ A to a + Ki embeds A as a subgroup of Bi; indeed, suppose that
a =

∑
s∈S′ cses and a + Ki = 0, that is,∑

s∈S′

cses =
∑
n∈ω

dnwn,i

or ∑
s∈S′

cses =
∑
n∈ω

dn(pn+1zn,i − bi −
n∑

`=0

p`e`,fi(`))

where cs, dn ∈ Z. This is an equation in Fi, and since S∪{bi}∪{zn,i : n ∈ ω} is a
basis of Fi, we can equate coefficients of basis elements on each side. In particular,
the coefficient of zn,i on the right is dnpn+1 and on the left is 0; thus dn = 0. But
then the right–hand side is zero, i.e. a = 0.

We also prove that A embeds as a pure subgroup of Bi, which implies that it
embeds as a K(P )-submodel, since Bi is torsion-free. Aiming at a contradiction,
suppose that q is a prime and for some a ∈ A, a + Ki is divisible by q in Bi but
not in A. Say a =

∑
s∈S′ cses and

∑
s∈S′

cses = qy +
∑
n∈ω

dn(pn+1zn,i − bi −
n∑

`=0

p`e`,fi(`))

where y ∈ Fi and some cs is not divisible by q. Comparing the coefficient of bi on
both sides, we conclude that

∑
n∈ω dn ≡ 0 (mod q); but then the coefficient of es

on the right is also congruent to 0 mod q, a contradiction.
Also, in Bi/ 〈A, bi〉 the coset of zn,i has order pn+1, so zn,i belongs to

clBi(A, bi) for all n ∈ ω.
We claim that for all i 6= j, there is no isomorphism ϕ : clBi(A, bi) →

clBj (A, bj) which is the identity on A and takes bi to bj . This will suffice to prove
Theorem 0.3(1) in view of Lemma 2.12(1). Suppose, to the contrary that φ is such
an isomorphism. Let n be minimal such that fi(n) 6= fj(n). By construction, in
clBi(A, bi) ⊆ Bi we have

pn+1zn,i = bi +
n∑

`=0

p`e`,fi(`)

so applying ϕ we get

pn+1ϕ(zn,i) = bj +
n∑

`=0

p`e`,fi(`)
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in Bj . But by construction, in Bj we have

pn+1zn,j = bj +
n∑

`=0

p`e`,fj(`).

Subtracting the last two equations, and taking into account the minimality of n, we
get that pn+1 divides

pn(en,fi(n) − en,fj(n))

in Bj . But this contradicts the purity of A + Kj in Bj , so the proof of 0.3(1) is
complete.

Now we take up the proof of 0.3(2). Suppose that R is a p.i.d. and P is a
non-empty set of primes of cardinality κ (finite or infinite). Let κ′ = κ + ω =
max{κ, ω}. Fix an infinite cardinal λ. The argument in 3.1 generalizes to show that
in K(P ), the Galois type of an element is determined by the quantifier-free type of
a sequence of length κ′, and hence, as in 0.3(1), λκ′ = λ is a sufficient condition
for stability at λ. If two Galois types are different, the associated quantifier free
types must disagree (actually on finite set) and therefore the Galois types have
different restrictions to an M ∈ K(P ) with |M | = LS(K(P)), so (K(P ),≺K(P ))
is (LS(K(P)),∞)-tame If κ′ = ω (i.e., κ is at most countable), the argument in
part (1) shows that λω = λ is also necessary for stability. So we consider the
case when κ = κ′ is an infinite (even uncountable) cardinal. Fix an enumeration
{pν : ν < κ} of the elements of P , and fix an enumeration {fi : i ∈ λκ} of λκ

different one-one functions from κ to λ. Let A be the free abelian group with basis
S = {eα : α ∈ λ}. For each i ∈ λκ, let Bi be Fi/Ki where Fi is the free group on
S ∪ {bi} ∪ {zν,i} and Ki is the subgroup generated by

(1) {pνzν,i − bi − efi(ν) : ν ∈ κ}.

Once again, it is easy to check that this generating set is a basis and that the map
taking a ∈ A to a + Ki embeds A as a pure subgroup of Bi. Also, in Bi/ 〈A, bi〉
the coset of zν,i has order pν , so zν,i belongs to clBi(A, bi) for all ν ∈ κ.

Aiming at a contradiction, suppose that for some i 6= j, there is an isomorphism
ϕ : clBi(A, bi) → clBj(A, bj) which is the identity on A and takes bi to bj . Fix
ν ∈ κ such that fi(ν) 6= fj(ν). By construction, in clBi(A, bi) ⊆ Bi we have

pνzν,i = bi + efi(ν)

so applying ϕ we get
pνϕ(zν,i) = bj + efi(ν)

in Bj . But by construction, in Bj we have

pνzν,j = bj + efj(ν).

Subtracting the last two equations, we get that pν divides

efi(ν) − efj(ν)

in Bj . But this contradicts the fact that A is a pure subgroup of Bj and completes
the proof of 0.3(2).
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We finish with a more specific comment about abelian groups, recall that if P 6=
∅, then (K(P ), <K(P )) is stable only in λ with λω = λ. In contrast [BCG+00]
shows that the class of all abelian groups under subgroups is stable in all infinite
cardinalities. And this is exactly the case (K(P ), <K(P )) when P is empty. So in
this one case, (K(P ), <K(P )) is stable in all cardinalities.

One is naturally led to ask whether analogs to properties of the first order sta-
bility classification hold in this situation. Recall that a countable first order theory
that is not superstable has 2λ models in every uncountable power. The analogous
question for AECs is open; indeed, the choice of the appropriate version of super-
stable in this context is open. But it is easy to see for an abelian group N that
each ⊥N has 2λ models in each cardinal as each class contains a non–superstable
group whose theory thus has 2λ models of cardinality λ and ⊥N is closed under
elementary equivalence since it is first order axiomatizable.

Remark 3.2. The stability spectrum problem for arbitrary AECs has not been
solved. There are explicit results for tame AECs in [GV06] and [BKV00]. See
also for example [She99].

Question 3.3. (1) For which rings R does each AEC of the form (⊥N,≺N )
admit closures? (This holds for all Dedekind domains and all right artinian
right hereditary rings, but not for all rings by Lemma 2.9, Remark 2.10(iii)
and Example 2.11.)

(2) What is the stability spectrum of (⊥N,≺N ) for other rings R and modules
N? Does the condition that (⊥N,≺N ) is stable in all cardinals (or all
cardinals beyond the continuum) provide any further algebraic conditions
on N?

4. FURTHER DIRECTIONS

These examples have provided illustrations for a number of notions of notions
of AEC; in particular, the notion of closure is clarified by providing classes where
it does and does not hold. This family of examples also provides one explanation of
how tameness can be obtained: the Galois type of an element is determined by the
syntactic type of an associated short sequence. But tameness can hold for deeper
reasons [BS, BK]; it would be interesting to explore when this simple explanation
works. Here are some more specific questions.

Question 4.1. (1) For modules over rings other than Z, what are the tameness
properties of (⊥N,≺N )?

(2) Does (⊥N,≺N ) have finite character in the sense of Hyttinnen-Kesala
[HK]?

(3) For which R and N is (⊥N,≺N ) axiomatizable (in infinitary logic)? One
might expect to use Lκ,ω if the ring had cardinality κ.

(4) What can we say about the number of models in various cardinalities of
(⊥N,≺N ) (for general N and R)?
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