The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John I. Baldwin University o Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamatior

The Amalgamation Spectrum

JEP and AP

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

> John T. Baldwin University of Illinois at Chicago

> > March 3, 2015

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Characterizing cardinals by $L_{\omega_1,\omega}$

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

> Jonn T. Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

 $L_{\omega_1,\omega}$ satisfies downward Lowenheim Skolem to \aleph_0 for sentences.

It does not satisfy upward Lowenheim Skolem.

Definition

The sentence ϕ of $L_{\omega_1,\omega}$ characterizes κ if ϕ has no model of cardinality $> \kappa$.

Theorem Hjorth

For every countable α , there is a complete (i.e. Scott) $L_{\omega_1,\omega}$ -sentence ϕ_{α} that characterizes \aleph_{α} .

Rephrasing Hjorth

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John T. Baldwin University o Illinois at Chicago

COMPLETE $L_{\omega_1, \omega}$ to 'first order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Souldatos formulation

Theorem 3.6. (Hjorth) If κ is characterizable then at least one of the following holds:

- **1** Some complete sentence $\phi_0 \in L_{\omega_1,\omega}$ homogeneously characterizes κ^+ , or
- 2 there is a countable model *M* in a language that contains a unary predicate *P* and a binary predicate < and whose Scott sentence ϕ_1
 - 1 characterizes κ^+ ,
 - 2 in every model of ϕ , < is a dense linear order without endpoints and
 - in every model N of φ of size κ⁺, every initial segment of (P^N; <^N) has size at most κ.

From COMPLETE $L_{\omega_1,\omega}$ to ATOMIC 'first order'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

Baldwin University o Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamatior

The Amalgamation Spectrum

JEP and AP

From $L_{\omega_1,\omega}$ to 'first order'

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John T. Baldwin University c Illinois at Chicago

 $\begin{array}{l} \text{COMPLETE} \\ \textit{L}_{\omega_1\,,\,\omega} \text{ to `first} \\ \text{order'} \end{array}$

Disjoint Amalgamatior

The Amalgamation Spectrum

JEP and AP

1
$$\phi \in L_{\omega_1,\omega} \to (T, \Gamma)$$

2 complete $\phi \in L_{\omega_1,\omega} \to (T, Atomic)$

イロト 不得 トイヨト イヨト

The translation

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John T. Baldwin University of Illinois at Chicago

 $\begin{array}{l} \text{COMPLETE} \\ \textit{L}_{\omega_1\,,\,\omega} \text{ to 'first} \\ \text{order'} \end{array}$

Disjoint Amalgamatior

The Amalgamation Spectrum

JEP and AP

Theorem

[Chang/Lopez-Escobar] Let ψ be a sentence in $L_{\omega_1,\omega}$ in a countable vocabulary τ . Then there is a countable vocabulary τ' extending τ , a first order τ' -theory T, and a countable collection of τ' -types Γ such that reduct is a 1-1 map from the models of T which omit Γ onto the models of ψ .

The proof is straightforward. E.g., for any formula ψ of the form $\bigwedge_{i < \omega} \phi_i$, add to the language a new predicate symbol $R_{\psi}(\mathbf{x})$. Add to *T* the axioms

$$(\forall \mathbf{x})[R_{\psi}(\mathbf{x}) \rightarrow \phi_i(\mathbf{x})]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

for $i < \omega$ and omit the type $\boldsymbol{\rho} = \{\neg \boldsymbol{R}_{\psi}(\boldsymbol{x})\} \cup \{\phi_i : i < \omega\}.$

Δ -complete

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

> John T. Baldwin University o Illinois at Chicago

Disjoint Amalgamation

```
The
Amalgamation
Spectrum
```

JEP and AP

Let Δ be a fragment of $L_{\omega_1,\omega}$ that contains ϕ . ϕ is Δ -complete if for every $\psi \in \Delta$ $\phi \models \psi$ or $\phi \models \neg \psi$. (If Δ is omitted we mean complete for L_{ω_1,ω_2})

small=complete

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John T. Baldwin University of Illinois at Chicago

 $\begin{array}{l} \text{COMPLETE} \\ \textit{L}_{\omega_1\,,\,\omega} \text{ to 'first} \\ \text{order'} \end{array}$

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Let Δ be a fragment of $L_{\omega_1,\omega}$ that contains ϕ .

Definition

A τ -structure *M* is Δ -small if *M* realizes only countably many Δ -types (over the empty set).

'small' means $\Delta = L_{\omega_1,\omega}$

Generalized Scott's theorem

A structure satisfies a complete sentence of $L_{\omega_1,\omega}$ if and only if it is small.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Reducing complete to atomic

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John T. Baldwin University of Illinois at Chicago

 $\begin{array}{l} \text{COMPLETE} \\ \textit{L}_{\omega_1, \omega} \text{ to `first} \\ \text{order'} \end{array}$

Disjoint Amalgamatior

The Amalgamation Spectrum

JEP and AP

The models of a complete sentence in $L_{\omega_1,\omega}$ can be represented as:

K is the class of atomic models (realize only principal types) of a complete first order theory (in an expanded language).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

Baldwin University o Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

The virtues of Disjoint Amalgamation

▲□ > ▲圖 > ▲ 画 > ▲ 画 > → 画 → のへで

Methods

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

> John T. Baldwin University o Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'firs order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

1 extending Fraissé style arguments

- 1 looking for atomic models
- 2 the importance of (strong) disjoint amalgamation

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 2 absolute indiscernibility
- 3 excellence
- 4 combinatorics

Extending Fraïssé

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

> Jonn 1. Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Fix a class K_0 of finite models in a countable vocabulary. K_0 may not be closed under substructure.

Theorem

If K_0 has amalgamation and joint embedding and contains only finitely many members then there is a countable generic atomic model M.

Laskowski-Shelah (1992); Hjorth (2002) \hat{K}_0 denotes the class of structures *B* such that every finite subset $B_0 \subseteq B$ is contained in a $B' \subseteq B$ with $B' \in K_0$. *T* is the theory of the generic; ϕ_M is its Scott sentence.

Disjoint AP

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

B-Friedman-Koerwien-Laskowski

Theorem

If, in addition, K_0 has disjoint amalgamation then T has a model in \aleph_1 .

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Homogeneous Characterization

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Definition

I is a set of *absolute indiscernibles* in *M* if every permutation of *I* extends to an automorphism of *M*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Homogeneous Characterization

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John I. Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'firs order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Definition

I is a set of *absolute indiscernibles* in *M* if every permutation of *I* extends to an automorphism of *M*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The complete sentence ϕ with countable model *M* homogenously characterizes κ if

1 P^M is a set of absolute indiscernibles.

2 ϕ has no model of cardinality greater than κ .

3 There is a model *N* with $|P^N| = \kappa$.

Homogeneous Characterization

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John I. Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'firs order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Definition

I is a set of *absolute indiscernibles* in *M* if every permutation of *I* extends to an automorphism of *M*.

The complete sentence ϕ with countable model *M* homogenously characterizes κ if

- **1** P^M is a set of absolute indiscernibles.
- **2** ϕ has no model of cardinality greater than κ .
- 3 There is a model *N* with $|P^N| = \kappa$.

Theorem (Gao)

If countable structure has a set of absolute indiscernibles, there is an $L_{\omega_1,\omega}$ equivalent model in \aleph_1 .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Mergers

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John I. Baldwin University o Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'firs order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Mergers

1 Let θ be a complete sentence of $L_{\omega_1,\omega}$ and suppose M is the countable model of θ and V(M) is a set of absolute indiscernibles in M such M - V(M) projects onto V(M). We will say θ is a *receptive* sentence.

For any sentence ψ of L_{ω1,ω}, the merger of ψ and θ is the sentence χ = χ_{θ,ψ} obtained by conjoining with θ, ψ ↾ N.

3 For any model M_1 of θ and N_1 of ψ we write $(M_1, N_1) \models \chi$ if there is a model with such a reduct.

Getting receptive models

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John T. Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Suppose K_0 is a class of finite τ structures with disjoint amalgamation and θ_0 is the Scott sentence of the generic. Hjorth and B-Friedman-Koerwien-Laskowski

Construction

Add to τ unary predicates U, V and binary P. Require that the predicates U and V partition the universe and restrict the relations of τ to hold only within the predicate V. We set K_1 as the set of finite τ_1 -structures (V_0, U_0, P_0) where $V_0 \upharpoonright \tau \in K$ and P_0 is the graph of a partial function from V_0 into U_0 .

To amalgamate, use disjoint amalgamation in the *V*-sort; extend the projection by the union of the projections. If the disjoint amalgamation contains new points, project them arbitrarily to *U*. Let \mathcal{M} be the generic model for K_1 .

A back and forth argument shows $U(\mathcal{M})$ is a set of absolute $\mathbb{C}^{\mathbb{C}}$

Applying merger

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'firs' order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Theorem: (Hjorth, B-Friedman-Koerwien-Laskowski)

There is a receptive sentence that characterizes (has only maximal models) \aleph_1 .

Corollary: (B-Friedman-Koerwien-Laskowski)

If there is a counterexample to Vaught's conjecture there is one that has only maximal models in \aleph_1 .

(ロ) (同) (三) (三) (三) (○) (○)

crux: Disjoint amalgamation

Fraissé style arguments + excellence

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

> John T. Baldwin University o Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamation

```
The
Amalgamatior
Spectrum
```

JEP and AP

Theorem: (B- Koerwien-Laskowski)

There are a family of complete sentences ϕ_r such that ϕ^r :

1 homogeneously characterizes \aleph_r .

 $2 \phi_r$

```
1 has ap up to \aleph_{r-1},
```

```
2 fails ap in \aleph_{r-1},
```

3 trivially has ap in \aleph_r .

crux: *K* satisfies $(< \aleph_0, r + 1)$ disjoint amalgamation – i.e. r + 1-excellence in the finite.

ABSTRACT ELEMENTARY CLASSES

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John I. Baldwin University o Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

A class of *L*-structures, $(\mathbf{K}, \prec_{\mathbf{K}})$, is said to be an *abstract elementary class: AEC* if both \mathbf{K} and the binary relation $\prec_{\mathbf{K}}$ are closed under isomorphism plus:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1 If $A, B, C \in K$, $A \prec_{K} C$, $B \prec_{K} C$ and $A \subseteq B$ then $A \prec_{K} B$;

ABSTRACT ELEMENTARY CLASSES

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John T. Baldwin University o Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

A class of *L*-structures, (K, \prec_K) , is said to be an *abstract elementary class: AEC* if both *K* and the binary relation \prec_K are closed under isomorphism plus:

1 If $A, B, C \in K$, $A \prec_{K} C, B \prec_{K} C$ and $A \subseteq B$ then $A \prec_{K} B$;

2 Closure under direct limits of $\prec_{\mathbf{K}}$ -chains;

Examples

First order and $L_{\omega_1,\omega}$ -classes L(Q) classes have Löwenheim-Skolem number \aleph_1 .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

ABSTRACT ELEMENTARY CLASSES

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John I. Baldwin University o Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'firs order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

A class of *L*-structures, $(\mathbf{K}, \prec_{\mathbf{K}})$, is said to be an *abstract elementary class: AEC* if both \mathbf{K} and the binary relation $\prec_{\mathbf{K}}$ are closed under isomorphism plus:

1 If $A, B, C \in K$, $A \prec_{K} C$, $B \prec_{K} C$ and $A \subseteq B$ then $A \prec_{K} B$;

2 Closure under direct limits of $\prec_{\mathbf{K}}$ -chains;

3 Downward Löwenheim-Skolem.

Examples

First order and $L_{\omega_1,\omega}$ -classes L(Q) classes have Löwenheim-Skolem number \aleph_1 .

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

> Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'firs' order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

locally finite abstract elementary class

A class K of structures and a substructure relation \prec_K is a *locally finite abstract elementary class* if it satisfies the normal axioms for an AEC except the usual Löwenheim-Skolem condition is replaced by:

If $M \in K$ and $A \subset M$ of M) is finite, there is a finite $N \in K$ with $A \subset N \prec_{\mathbf{K}} M$ (read N is a *strong substructure*).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Excellence

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'firs' order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Definition

A set of *K*-structures $\overline{N} = \langle N_u : u \subsetneq k \rangle$ is a $(\langle \lambda, k \rangle)$ -system if it is a directed system of *K*-structures with cardinality $\langle \lambda \rangle$ indexed by the proper subsets of *k*.

Definition

We say that *K* has disjoint ($< \lambda, k$)-amalgamation (*k*-weak-excellence) if

- **1** k = 0 and there is $M \in K$ with $||M|| = \mu$ for all $\mu < \lambda$.
- **2** k = 1 and for all $\mu < \lambda$, each $M \in \mathbf{K}$ with $||\mathbf{M}|| = \mu$ has a proper extension.
- 3 $k \ge 2$ and for any $(< \lambda, k)$ -system \overline{N} there is a model $M \in K$ such that for every $u \subsetneq k$: N_u is a *substructure* of M.

Larger models from disjoint amalgamation

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

Baldwin University o Illinois at Chicago Claim

COMPLETE $L_{\omega_1,\omega}$ to 'firs order'

Disjoint Amalgamation

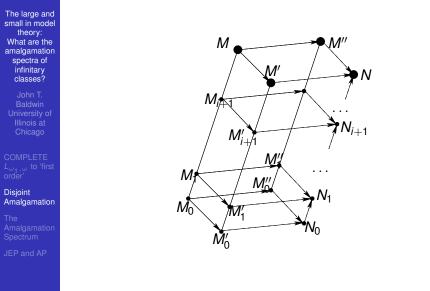
The Amalgamation Spectrum

JEP and AP

For any $s < \omega$, if $(\mathbf{K}, \prec_{\mathbf{K}})$ has the disjoint $(<\lambda, s+1)$ -amalgamation property, then it has the disjoint $(<\lambda^+, s)$ -amalgamation property.

・ロト・西ト・西ト・西・ うろの

$(\lambda, 3)$ -ap implies $(\lambda^2, 2)$ -ap



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John T. Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

The Amalgamation Spectrum B- Koerwien-Laskowski

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Focus today

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John T. Baldwin University o Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'firs order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

We work with three classes of models K_0 , \hat{K} and $At = At(K_0)$.

 K_0 is a collection of finite structures. \hat{K} contains exactly those structures that are locally in K_0 ; this is what is meant by a *locally finite AEC*.

If (K_0, \subseteq) satisfies the amalgamation property then there is countable generic model *M* and **At** is the collection of all structures satisfying the Scott sentence ϕ_M of *M*.

Now our principal results go in two directions: constructing larger models and bounding the possible cardinality.

Bounding the cardinality

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John T. Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Usual algebraic notion of closure:

 $cl_M(A)$ is the smallest substructure of *M* containing *A* and closed under the function symbols in the vocabulary. A set *B* is *independent* if, for every $b \in B$, $b \notin cl(B \setminus \{b\})$.

Lemma

For every $k \in \omega$, if cl is a locally finite closure relation on a set X of size \aleph_k , then there is an independent subset of size k + 1.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

BKL example

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John T. Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'firs order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

For a fixed $r \ge 1$, let τ_r be the (countable) vocabulary consisting of countably many (r + 1)-ary functions f_n and countably many (r + 1)-ary relations R_n .

Consider the class K^r of finite τ_r -structures (including the empty structure) that satisfy the following three sentences of $L_{\omega_1,\omega}$:

- The relations $\{R_n : n \in \omega\}$ partition the (r + 1)-tuples;
- For every (r + 1)-tuple $\boldsymbol{a} = (a_0, \dots, a_r)$, if $R_n(\boldsymbol{a})$ holds, then $f_m(\boldsymbol{a}) = a_0$ for every $m \ge n$;

(ロ) (同) (三) (三) (三) (○) (○)

There is no independent subset of size r + 2.

The construction in the finite

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John I. Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

We will verify here a slightly stronger notion: *strong disjoint amalgamation*: replace in Definition 19.3 ' N_u is a *substructure* of M', by 'the universe of M is $\bigcup_{u \in k} |N_u|$ '.

Theorem

For each $r \ge 1$, \mathbf{K}^r has strong disjoint $(<\aleph_0, r+1)$ -amalgamation. Further, \mathbf{K}^r does not have disjoint $(<\aleph_0, r+2)$ -amalgamation.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Consequences

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John T. Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'firs order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Theorem: (B- Koerwien-Laskowski)

There are a family of complete sentences ϕ_r such that ϕ^r :

homogeneously characterizes \aleph_r .

 $2 \phi_r$

```
1 has ap up to \aleph_{r-1},
```

```
2 fails ap in \aleph_{r-1},
```

3 trivially has ap in \aleph_r .

Why characterize?

Suppose each model of \hat{K} admits a locally finite closure relation cl such that there is no cl-independent subset of size r + 2. Then \hat{K} has only maximal models in \aleph_r and so (disjoint) 2-amalgamation is trivially true in \aleph_r ;

Contrasts

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John I. Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Excellence is sufficient

If *K* is excellent then it has arbitrarily large models and the amalgamation property.

Excellence is not necessary

(B-Kolesnikov) Non-excellent classes with arbitrarily large models, ap (and much more).

B-Laskowski-Koerwien measures the strength of excellence as a sufficent condition for model existence (and ap).

Question

Is there an AEC that is categorical up to \aleph_n and has no larger models?

・ロン ・聞と ・ ヨン・

3

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamatior

The Amalgamation Spectrum

JEP and AP

Joint embedding and Amalgamation B-Koerwien-Souldatos

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Joint embedding vrs amalgamation

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

Baldwin University o Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'firs' order'

Disjoint Amalgamatior

The Amalgamation Spectrum

JEP and AP

A Contrast

- **1** (Shelah) If an AEC has AP(κ) for every κ , then it has the (full-) Amalgamation Property.
- 2 The full-Joint Embedding Property is *not* equivalent to the conjunction of $JEP(\kappa)$, for all infinite κ .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Spectrum of disjoint amalgamation in AEC

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John T. Baldwin University o Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Kolesnikov and Lambie-Hanson have given a family of AEC's (of coloring classes) in a countable vocabulary which satisfy the amalgamation property but have no models above \beth_{ω_1} .

Specific classes fail dap for the first time arbitrarily close to \beth_{ω_1} .

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Bipartite graphs

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John T. Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'firs' order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Let $\tau_0 = \{A, B, C, E\}$ where A, B, C are unary predicates and E is a ternary relation. Let σ_0 be the conjunction of the following statements:

- *A*, *B*, *C* are non-empty and partition the universe.
- E(a, b, c) means there is an edge colored c between a and b.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let σ_1 be the conjunction of σ_0 and There are no monochromatic $K_{2,2}$ subgraphs.

Key Combinatorial fact

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

Baldwin University o Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

In any model of σ_1 , if $|A| > |C|^+$ then $|B| \le |C|$.

By symmetry, the same is true if we switch the roles of *A* and *B*.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Constructing a (κ^+, κ^+)-model

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John T. Baldwin University o Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'firs order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Lemma: For any κ , there is a (κ^+, κ^+) model $\mathcal{M} \models \sigma_1$ such that $C^{\mathcal{M}} = \kappa$.

Let $A^{\mathcal{M}}$ and $B^{\mathcal{M}}$ be two copies of κ^+ . Fix a function *F* from $\kappa^+ \times \kappa^+$ to κ such that:

1 for all α , $F(\alpha, \alpha) = 0$ and

2 for all $\alpha \in A$, $F(\alpha, \cdot)$

is a one-to-one function when restricted to the set $\{\beta \in \mathbf{B} | \beta \leq \alpha\}.$

Symmetrically, demand that for all $\beta \in B$, $F(\cdot, \beta)$ is a one-to-one function when restricted to $\{\alpha \in A | \alpha \leq \beta\}$. Both conditions are possible because all initial segments have size $\kappa = |C^{\mathcal{M}}|$.

Now link $\alpha \in A$ to $\beta \in B$ by the color $F(\alpha, \beta)$.

The Construction works!

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John T. Baldwin University o Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Towards contradiction, assume that there are distinct α_1, α_2 in *A* and β_1, β_2 in *B* with all four values $F(\alpha_i, \beta_j)$ $(i, j \in \{1, 2\})$ identical. Without loss of generality assume that $\max{\{\alpha_1, \alpha_2, \beta_1, \beta_2\}} = \alpha_1$. By the choice of *F*, $F(\alpha_1, \beta_1)$ must be different than $F(\alpha_1, \beta_2)$. Contradiction.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

From Combinatorics to model theory

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John T. Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'firs' order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Given a class K_0 of finite structures and associated \hat{K} that homogenously characterizes κ , merge this sentence with σ_1 -taking the set of absolute indiscernibles as the colors. Call this sentence σ_{κ} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem

 σ_{κ} has

- **1** 2^{κ} maximal models in κ^+ .
- 2 arbitrarily large models.

Spectrum of disjoint amalgamation in AEC

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John T. Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

B-Koerwien-Souldatos

For any countable family of characterizable cardinals λ_i , there is an AEC that has $2^{\lambda_i^+}$ maximal models in λ_i , fails AP everywhere and has arbitrarily large models.

So maximal models can be arbitrarily close to \beth_{ω_1} and then no more maximal models.

Open Questions

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

> Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamation

The Amalgamation Spectrum

JEP and AP

Open Question

Is there an $L_{\omega_1,\omega}$ -sentence that has maximal models in uncountably many cardinals but arbitrarily large models?

Open Question

Is there a complete- $L_{\omega_1,\omega}$ -sentence that has maximal models in two (consecutive) cardinals (but arbitrarily large models?)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Hanf Numbers for JEP, AP etc

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

John I. Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'first order'

Disjoint Amalgamatior

The Amalgamation Spectrum

JEP and AP

Lower bounds

The previous results show the Hanf number for JEP and DAP is at least \beth_{ω_1} .

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Hanf Numbers for JEP, AP etc

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

Jonn I. Baldwin University of Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'firs' order'

Disjoint Amalgamatior

The Amalgamation Spectrum

JEP and AP

Lower bounds

The previous results show the Hanf number for JEP and DAP is at least \beth_{ω_1} .

Upper bounds: B-Boney

Let κ be strongly compact and \boldsymbol{K} be an AEC with Löwenheim-Skolem number less than κ .

- If **K** satisfies $JEP(<\kappa)$ then $K_{\geq\kappa}$ satisfies JEP.
- If *K* satisfies $AP(<\kappa)$ then *K* satisfies AP.

crux: strongly compact cardinals. Direct proof is by ultraproducts. Proof using modification of first order arguments and compactness of $L_{\kappa,\kappa}$ leads to interesting issues about the presentation theorem.

The big gap

The large and small in model theory: What are the amalgamation spectra of infinitary classes?

> Baldwin University o Illinois at Chicago

COMPLETE $L_{\omega_1,\omega}$ to 'firs' order'

Disjoint Amalgamatior

The Amalgamation Spectrum

JEP and AP

Let κ be a strongly compact cardinal Some Hanf numbers are at most κ : jep, dap, ap

In ZFC, those Hanf numbers are at least \beth_{\aleph_1} .

▲□▶▲□▶▲□▶▲□▶ □ のQ@