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MAIN RESULT

Theorem If a sentence of L, ,(Q) is categor-
ical in Ny then it has a model of cardinality No.

This result was originally proved by Shelah in
Shelah 48: the proof expounded here is from Shelah
88 taking into account some later emendations by

Shelah.



ABSTRACT ELEMENTARY CLASSES

Definition 1 A class of L-structures, (K, <k),
s said to be an abstract elementary class: AEC
if both K and the binary relation <k are closed
under isomorphism and satisfy the following con-
ditions.

e Al. I[f M <k N then M C N.
e A2. <k is a partial order on K.
o A3. If (A; i <) is 2k-increasing chain:
1. Ujcs AZ' € K;
2. for each j <96, Aj 2k Uics A,
3.if each A; 2k M € K then U, A; =k
M.

e A4. IfA,B,C e K, A<k (U, B=xC and
A C B then A <k B.

e A5. There is a Lowenheim-Skolem number
k(K) such that if A C B € K there is a
A e Kwith A C A" <k B and |A’| < k(K).



OVERVIEW

The general setting here will be an AEC. We
show first that if an AEC is categorical in A and
AT and has no ‘maximal triple’ in power A then
it has a model in power A™". Then we show in
Ly, »(Q) there are no maximal triples in Ny.

Model Theoretic Methods

Since we are proving things for all classes of mod-
els (in any vocabulary) satisfying certain condition,
we are able to repeatedly say WLOG and assume
reduce the problem to classes which have a partic-
ularly nice presentation.



COMPLETENESS

Definition 2 A sentence v in Ly, ,(Q) is called
complete if for every sentence ¢ in L, ,(Q), ei-

ther v = ¢ or ¢ = —¢.

Categoricity implies completeness is no longer
trivial.

Fact 3 ¢ is complete implies 1 1s small. That
is, each model of 1 realizes only countably many

Ly, (Q)-types.



SYNTAX AND SEMANTICS I

EASY FACT

Definition 4 A PC(T,T') class is the class of
reducts to = C 7' of models of a first order
theory 7'-theory which omit all types from the
specified collection I' of types in finitely many
vartables over the empty set.

We write PCT to denote such a class without
specifying either T or I,

We write K is PC(\, ) if K can be presented
as PC(T,T") with |T| < X and |T'| < p.

(Chang’s trick)

Lemma 5 Every L, ,(Q)-sentence in a count-

able language 1s w-presented. That s, the class
of models of V¥ is a PC(Xy, Ny)-class.



SYNTAX AND SEMANTICS II

Theorem 6 [Presentation Theorem/ If K is an
AFEC with Lowenheim number LS(K) = X\ (in a
vocabulary T with || < LS(K)), then K is

a PC(\,2")-class

Closely related to Chang’s trick is:

Lemma 7 Every complete (i.e. small) L, ,(Q)-
sentence in a countable language can be pre-
sented as the atomic models of a first order the-
ory.

And there is a harder result (using Lopez-Escobar
for L, ,(Q)):

Theorem 8 If i is an Ni-categorical sentence
in Ly, (@) then 1 is implied by a complete sen-
tence that has a model of cardinality N;.



From L, ,(Q) to AEC

Definition 9 Let ¢ be a small L, .,(Q)-complete
sentence with vocabulary T in the countable frag-
ment L* of L, ,(Q). Form 7" by adding pred-
icates for infinitary formulas and also add for

each formula (Qx)¢(x,7) a predicate R(qu)e(xp)
and add the axiom

(Va)[(Qx) (2, 7) < Riow)o(ap))-

Let o' be the conjunction of the L, ,(Q)-7'-
artoms encoding this expansion. Let Ky be the
class of atomic models of T (), the first order
7’ theory containing all first order consequences

of V.



TWO APPROXIMATIONS

Notation 10 1. Let <* be the relation on Kj:
M <* N if M <. N and for each formula
gb(.fﬁ,g) and M € M, Zf M ): _'R(Qx)gb(a:,m)

then Rgym) has the same solutions in M

and N .

2. Let <** be the relation on Ki: M <* N if
M <p N and for each formula ¢(x,y) and
m e M, if M = ~Ruem if and only if
Ry(xm) has the same solutions in M and N.



ALTERNATIVE NOTION

It is easy to check that (K, <*) is an AEC,
but (K, <**)is not an AEC. It can easily happen
that each of a family of models M; <** M but
U; M; £ M.

An AEC* class is one which satisfies the axioms
of an AEC, but A3.3 is replaced by:

if cach A; <k My =k M € K and M, is
strictly contained in M then U;-5 A; <x M .

This condition is satisfied by (Kj, <**) and suf-
fices for the argument in this talk.
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GOING UP

Definition 11 We say (M, N) is a proper pair
in A, witnessed by a, if we mean M <g N and
ae N—M and |M| = |N| =\

The fixed a is not used in the next Lemma but
plays a central role in the proof of Lemma 14.

Lemma 12 If an AEC K s categorical in A
and has a proper pair (M, N) in X then there is
a model in K with cardinality \™.

Proof. Let My = M. For any «, given M,,
choose M1 so that (M, N) ~ (M., M,,1) and
take unions at limits. The union of M, for a < \™*
is as required. Og1o
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MAXIMAL TRIPLES

Definition 13 A maximal triple is a triple (M, a, N)
such that a witnesses that (M, N) is a proper
pair and if (M', N') satisfies M <x M', M #
M', N <kg N" and M' <k N’ then a € M'.

Lemma 14 If there are no maximal triples of
cardinality \ and there is a proper pair of cardi-
nality A then there is a proper pair of cardinality

AT

Proof. Let a witness that (M, Vy) is a proper
pair in A. Since there are no maximal triples, we
can construct proper pairs (M;, N;) such that M4
is a proper =<k extension of M; and N, is a =g
extension of N; but no M; contains a; that is, the
properness of each (M;, N;) is witnessed by the
same a. S0 (Ujoy+ My, Uioy+ N;) is the required
proper pair. Oy
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PROOF SKETCH

We have shown that if there are no maximal
triples in A and K is AT-categorical then there is a
model in AT, We will show there are no maximal
triples in Ny if K is Nj-categorical and has few
models in N;. For this, we need another definition.

Definition 15 M <k N s a cut-pair if there
exist models N; for i < w such that M =g
Nit1 2x N; 2x N and Nj<y N; = M.

Let (K, <k) be the collection of dense linear

orders with elementary submodel and let (Q, <)
be the rational order. Then ((—o00,+/2), (1/2,00))
Is a cut-pair.

] Need an example of a maximal triple
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CUT PAIR + MAXIMAL TRIPLE
IMPLIES MANY MODELS

Lemma 16 Suppose K is A-categorical. If K
has a cut-pair in cardinality A and it has a maz-
imal triple in X, then I(A\T,K) = 2% . More-
over, each of these models is a union of a <k-
increasing chain of length \™.

Proof. Let (M, N) be a cut-pair. For S a sta-
tionary subset of A", define M for i < A\ so
that

(M;, M;1) is isomorphic to (M, N) if 7is 0 or a
successor ordinal.

But if 7 is a limit ordinal.

Let (M;, M;,1) be a cut-pair if i & S;

and for some a, let (M;, a, M;.1) be a maximal
triple if 7 € S.
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Then, let M® = U;_y+ M?.

Now, if S — Sy is stationary, M>t & M>2,

If f is an isomorphism between them, we find
a contradiction by intersecting S; — Sy with the
cub E consisting of those § < A* such that M
and M;? both have domain § and i < & implies
f(i) <.

If 9 is in the intersection, as § € Sj, a?l S
Myt = MY f(ash) € M — M;*.

But, M;? = M., M5*" for appropriate M;2>",
since (M52, M3?2)) is a cut pair. So f(a3!) ¢
MP*" for some n. Let N denote f—1(M7>™).
Then for somey € EN(S1—95:), N <k Mfl. But
then (N, a3, Mfl) properly extends (M;!, a3, 5111)
and this contradiction yields the theorem. Oy
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CUT PAIRS EXIST

Lemma 17 Suppose (K, <k) is an AEC* that
is No-categorical and is a PCT(Rg, Ny) class. If
K has a model of power Ny, then there is a cut
pair in Ny.

Proof. Recall that K is the class of 7-reducts
of models of a first order theory T', which omit a
countable set I' of types. Let M € K be a model
with universe Ny; write M as Ujx, M;. For sim-
plicity, assume the universe of M is Ny. Expand
M to a 7*-structure M™ by adding the order <
on Wy and a binary function g such that ¢(i, z)
is a 7-isomorphism from M, to M;. Note that a
unary predicate P naming M, and a binary rela-
tion R(x,y) such that R(a,1) if and only a € M;
are easily definable from g. Moreover, for each 1,
{z : R(x,7)} is closed under the functions of 7*.
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Let ¢ be a sentence in Ly, ,(7*) describing this
situation; the existence of 1 follows since K is a
PCT (N, W) class. By Lopez-Escobar, there is a
model N* of 1 with cardinality Ny in which < is
not well-founded. For any b € N*, let

Ny={z € N*": R(z,b)}.

Let a; for © < w be a properly descending chain.
Then if N; = N,,, which has universe {z € N*
R(CE, CLZ')},

Nitt 2k N*171
and because of g, each N; is T-isomorphic to P(N™*).
Let I be the set of b € N* such that for every 1,
b < a;.

For any b € [ and any ¢ < w we have N, <k
N;i1 =k N, so by the revised axiom A3.3, N; <k
N;, which is exactly what we need.

Our required cut-pair is (N7, Ny). Oy7
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CONCLUSION FOR AEC

Theorem 18 IfK is a Wy-categorical PCT (R, Ny)
class that is also an AEC* and has a unique
model of power Ny, then there is a model of
power No.

Proof. By Lemma 17, there is a cut-pair in ;.
Since 1) is Ny-categorical, Lemma 16 implies there
is no maximal triple in Ny. So by Lemma 14 there
is a proper pair in N; and then by Lemma 12, there
is a model of power Ns. Oig

Corollary 19 An N;-categorical sentence ¢ in
Ly, »(Q) has a model of power R.
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Liy (@)

What are the difficulties for L, ,(Q)?

We don’t have A3.37. The weaker version suf-
fices to find a cut pair, Lemma 17.

But, the application of Lemma 16, no maximal
triples, is subtle. It could very well happen that
a sentence in L, (@) has few models in Nj, but
there are many models of the associated class Ky of
‘weak models’. But Lemma 16, yielded 2%t models
which were unions of Ny chains. Therefore, they
are standard models of ¢ and we finish.

Finally, how do we translate to a PC(RXg, V)
class?
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CONTEXT

Shelah’s original proof:

1. Assumed o,

2. Used much more stability theoretic machinery.

Morley’s theorem for Ly, .

1. Assume weak gch - exp is increasing.
2. Assume categoricity up to N, (essential)

3. Use much stability theoretic machinery.

Morley’s theorem for Ly, ,(Q):
Still open

20



