Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥N

Some problems

Perspectives on AEC's Colombia Model Theory Conference 2007

John T. Baldwin

July 27, 2007

Abstract Elementary Classes

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems

An abstract elementary class is a concrete category.

Grossberg and Shelah noted a category theoretic interpretation in 1983. The formulation that follows is basically due to Kirby.

The Category Str

Objects in str are all structures in a vocabulary τ . str(A, B) is the set of τ -embeddings from A into B. Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems

The category (K, mod)

The objects of ${\bf K}$ are a class of $\tau\text{-structures}$

 $1 \mod(A,B) \subseteq \operatorname{str}(A,B)$

- 2 If $f \in \text{mod}(A, B)$ and $g \in \text{mod}(C, B)$ and $h \in \text{str}(A, C)$ with f = gh then $h \in \text{mod}(A, C)$.
- 3 mod is closed under direct limit and the mod-direct limit is the str-direct limit.
- 4 There is a cardinal LS(**K**) such if $f \in \operatorname{str}(A, B)$ and $B \in \mathbf{K}$, there is a $C \in \mathbf{K}$ with $|C| \leq |A| + \kappa$ and $g \in \operatorname{str}(A, C)$ and $h \in \operatorname{mod}(C, B)$ with f = hg.

Context

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems This reports works by a number of authors. Detailed proofs are in my monograph:

http://www2.math.uic.edu/ jbaldwin/model.html

Examples

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems

- **1** π_2 first order theories and submodel
- 2 first order theories and elementary submodel
- **3** sentences of $L_{\omega_1,\omega}$ and L^* -elementary submodel.

- 4 sentences of $L_{\omega_1,\omega}(Q)$ (see next slide)
- 5 finite diagrams and elementary submodel
- **6** $^{\perp}N$ and \prec_N

$L_{\omega_1,\omega}(Q)$ as an AEC

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems

Fails union of chains under natural elementary submodel

Require that 'small' definable sets do not grow. Gives an AEC with LN $\aleph_1.$

Weak models

 $<^*$

The class of 'weak models' with \leq^* gives an AEC with LN \aleph_0 . But we added models and argument showing the existence of many models don't work (they might be weak models).

Approaches to $L_{\omega_1,\omega}(Q)$

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems **1** ad hoc (there is a model in \aleph_2 .)

- 2 Q-aec (Coppola)
- 3 frames
- 4 deal with sentences that are AEC
 - 1 for semantic reasons (Zilber/Kirby)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

2 for syntactic reasons (Caicedo)

Closure under direct limits of morphisms

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥N

Some problems More concrete version.

A3. If $\langle A_i : i < \delta \rangle$ is a continuous $\prec_{\mathbf{K}}$ -increasing chain:

▲□▼▲□▼▲□▼▲□▼ □ ● ●

- $1 \bigcup_{i<\delta} A_i \in \mathbf{K};$
- 2 for each $j < \delta$, $A_j \prec_{\mathbf{K}} \bigcup_{i < \delta} A_i$;
- **3** if each $A_i \prec_{\mathbf{K}} M \in \mathbf{K}$ then $\bigcup_{i < \delta} A_i \prec_{\mathbf{K}} M$.

THE PRESENTATION THEOREM

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems

Every AEC is a $\mathsf{PC}\Gamma$

More precisely,

Theorem

If K is an AEC with Löwenheim number $LS(\mathbf{K})$ (in a vocabulary τ with $|\tau| \leq LS(\mathbf{K})$), there is a vocabulary τ' , a first order τ' -theory T' and a set of $2^{LS(\mathbf{K})} \tau'$ -types Γ such that:

 $\mathbf{K} = \{ M' \upharpoonright L : M' \models T' \text{ and } M' \text{ omits } \Gamma \}.$

Moreover, if M' is an L'-substructure of N' where M', N' satisfy T' and omit Γ then $M' \upharpoonright L \prec_{\mathbf{K}} N' \upharpoonright L$.

This theorem needs A.3.3.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

What's so great about PCF

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems

PCF gives:

- Ehrehfeucht Mostowski models;
- omitting types (for Galois types);
- can construct non-splitting extensions;
- key to finding showing a sentence of L_{ω1,ω}(Q) that is categorical in ℵ₁ has a model in ℵ₂.

But $PC\Gamma$ classes may not be closed under unions of chains and there even a PC-class with both the categoricity and non-categoricity spectrum cofinal in the cardinals.

AMALGAMATION PROPERTY

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems The class **K** satisfies the λ -amalgamation property if for any situation with $A, M, N \in \mathbf{K}_{\lambda}$:

there exists an N_1 such that

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

AMALGAMATION PROPERTY - variants

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems **K** has the amalgamation property if each K_{λ} -does. I.e. no cardinality restrictions.

Note that amalgamating over subsets rather than submodels is strictly stronger.

Finite Diagrams and Homogeneous Model Theory

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems

Finite Diagrams

If T is a first order theory **K** is the class of models of T that omit a certain set Γ of finite-types over the empty set then **K** under first order elementary submodel is called a finite diagram.

Atomic Classes

If Γ is all non-principal types, **K** is called an atomic class.

Homogenous Model Theory

is the study of finite diagrams that admit amalgamation over SETS.

Connections to $L_{\omega_1,\omega}$

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems Every sentence of $L_{\omega_1,\omega}$ can be regarded (class of models is isomorphic) as a finite diagram.

Definition

A sentence ψ in $L_{\omega_1,\omega}$ is called *complete* if for every sentence ϕ in $L_{\omega_1,\omega}$, either $\psi \models \phi$ or $\psi \models \neg \phi$.

Every complete-sentence can be regarded as an atomic class.

Non-homogeneous examples I

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems There is a finite diagram with:

joint embedding,

2 in K_{λ} for uncountable λ

3 categorical in all uncountable λ

4 but amalgamation of countable models fails.

Under WGCH there can be no such atomic class.

Non-homogeneous examples II

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems There are $L_{\omega_{1},\omega}$ sentences that are categorical in all powers, and do not satisfy set amalgamation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

1 Marcus

2 Knight

3 Zilber: covers of algebraic groups

4 Zilber: psuedoexponentiation $(L_{\omega_1,\omega}(Q))$

Model Homogeneity

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems

Definition

M is μ -model homogenous if for every $N \prec_{\mathbf{K}} M$ and every $N' \in \mathbf{K}$ with $|N'| < \mu$ and $N \prec_{\mathbf{K}} N'$ there is a **K**-embedding of N' into M over N.

To emphasize, this differs from the homogenous context because the N must be in **K**. It is easy to show:

Monster Model

Perspectives on AEC's Colombia Model Theory Conference 2007

John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems

Lemma

(jep) If M_1 and M_2 are μ -model homogenous of cardinality $\mu > LS(\mathbf{K})$ then $M_1 \approx M_2$.

Theorem

If **K** has the amalgamation property and $\mu^{*<\mu^*} = \mu^*$ and $\mu^* \ge 2^{\text{LS}(\mathbf{K})}$ then there is a model \mathcal{M} of cardinality μ^* which is μ^* -model homogeneous.

GALOIS TYPES: Algebraic Form

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems Suppose ${\bf K}$ has the amalgamation property.

Definition

Let $M \in \mathbf{K}$, $M \prec_{\mathbf{K}} \mathbb{M}$ and $a \in \mathbb{M}$. The Galois type of a over M is the orbit of a under the automorphisms of \mathbb{M} which fix M.

We say a Galois type p over M is realized in N with $M \prec_{\mathbf{K}} N \prec_{\mathbf{K}} \mathbb{M}$ if $p \cap N \neq \emptyset$.

Galois vrs Syntactic Types

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems Syntactic types have certain natural locality properties.

locality Any increasing chain of types has at most one upper bound;

tameness two distinct types differ on a finite set;

compactness an increasing chain of types has a realization.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The translations of these conditions to Galois types do not hold in general.

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥N

Some problems Grossberg and VanDieren focused on the idea of studying 'tame' abstract elementary classes:

Definition

We say **K** is (χ, μ) -tame if for any $N \in \mathbf{K}$ with $|N| = \mu$ if $p, q, \in \mathbb{S}(N)$ and for every $N_0 \leq N$ with $|N_0| \leq \chi$, $p \upharpoonright N_0 = q \upharpoonright N_0$ then q = p.

Tameness-Algebraic form

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementar Classes

Amalgamation

Galois Types

Tameness

⊥N

Some problems Suppose ${\bf K}$ has the amalgamation property.

K is (χ, μ) -tame if for any model *M* of cardinality μ and any $a, b \in \mathcal{M}$:

Tameness-Algebraic form

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥N

Some problems Suppose ${\bf K}$ has the amalgamation property.

K is (χ, μ) -tame if for any model *M* of cardinality μ and any $a, b \in \mathcal{M}$:

If for every $N \prec_{\mathbf{K}} M$ with $|N| \leq \chi$ there exists $\alpha \in \operatorname{aut}_{N}(\mathcal{M})$ with $\alpha(a) = b$,

then there exists $\alpha \in \operatorname{aut}_{\operatorname{M}}(\mathcal{M})$ with $\alpha(a) = b$.

Consequences of Tameness

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥ N

Some problems Suppose ${\bf K}$ has arbitrarily large models and amalgamation.

Theorem (Grossberg-Vandieren)

If $\lambda > LS(\mathbf{K})$, \mathbf{K} is λ^+ -categorical and $(\lambda, < \infty)$ -tame then \mathbf{K} is categorical in all $\theta \ge \lambda^+$.

Theorem (Lessmann)

If K with $LS(K) = \aleph_0$ is \aleph_1 -categorical and (\aleph_0, ∞) -tame then K is categorical in all uncountable cardinals

Two Examples that are not tame

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥N

Some problems 1 'Hiding the zero'

For each $k < \omega$ a class which is (\aleph_0, \aleph_{k-3}) -tame but not $(\aleph_{k-3}, \aleph_{k-2})$ -tame. Baldwin-Kolesnikov (building on Hart-Shelah)

2 Coding EXT

A class that is not (\aleph_0, \aleph_1) -tame.

A class that is not (\aleph_0, \aleph_1) -tame but is $(2^{\aleph_0}, \infty)$ -tame. (Baldwin-Shelah)

Syntactic not Galois

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥ N

Some problems **Theorem.** [Hart-Shelah / Baldwin-Kolesnikov] For each $3 \le k < \omega$ there is an $L_{\omega_1,\omega}$ sentence ϕ_k such that:

- **1** ϕ_k has the disjoint amalgamation property;
- 2 Syntactic types determine Galois types over models of cardinality at most ℵ_{k-3};
- 3 But there are syntactic types over models of size \aleph_{k-3} that split into $2^{\aleph_{k-3}}$ -Galois types.

Syntactic not Galois

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥ N

Some problems **Theorem.** [Hart-Shelah / Baldwin-Kolesnikov] For each $3 \le k < \omega$ there is an $L_{\omega_1,\omega}$ sentence ϕ_k such that:

- **1** ϕ_k has the disjoint amalgamation property;
- 2 Syntactic types determine Galois types over models of cardinality at most ℵ_{k-3};
- **3** But there are syntactic types over models of size \aleph_{k-3} that split into $2^{\aleph_{k-3}}$ -Galois types.
- 4 ϕ_k is categorical in μ if $\mu \leq \aleph_{k-2}$;
- 5 ϕ_k is not \aleph_{k-2} -Galois stable;
- 6 But for $m \leq k 3$, ϕ_k is \aleph_m -Galois stable;
- 7 ϕ_k is not categorical in any μ with $\mu > \aleph_{k-2}$.

Fundamental Construction I

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems

(Baldwin, Lachlan, Marker)

Let G be an expansion of a group and let π map X onto G. Add to the language a binary function $t : G \times X \to X$ for the fixed-point free action of G on $\pi^{-1}(g)$ for each $g \in G$.

That is, we represent $\pi^{-1}(g)$ as $\{ga : g \in G\}$ for some *a* with $\pi(a) = g$. This action of *G* is strictly 1-transitive. This guarantees that each fiber has the same cardinality as *G*.

 π guarantees the number of fibers is the same as |G|.

Since there is no interaction among the fibers, categoricity in all uncountable powers follows if G is categorical.

Consequence

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥N

Some problems This gives us groups which are categorical but not almost strongly minimal or even almost quasi-excellent.

If G is the collection of maps from I into Z_2 with finite support, the structure (I, G, Z_2) is quasiminimal excellent and not first order.

Fundamental Construction II

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥N

Some problems

(Hart-Shelah, Baldwin-Kolesnikov)

vocabulary *L*': unary predicates *I*, *K*, *G*, *G*^{*}, *H*, *H*^{*}; a binary function e_G taking $G \times K$ to *H*; a function π_G mapping G^* to *K*, a function π_H mapping H^* to *K*, a 4-ary relation t_G on $K \times G \times G^* \times G^*$, a 4-ary relation t_H on $K \times H \times H^* \times H^*$.

vocabulary L: Add a (k + 1)-ary relation Q on $(G^*)^k \times H^*$.

Key points

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems

$$K = [I]^{k};$$

G is finite support functions from K to G.

 t_G and t_H are the actions on G^* and H^* as before.

The Crux

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems Q is a (k+1)-ary relation on $(G^*)^k imes H^*.$ For all $\gamma_1,\ldots,\gamma_k\in G$ and all $\delta\in H$ we have

$$Q((u_1, x_1), \dots, (u_k, x_k), (u_{k+1}, x_{k+1})) \Leftrightarrow Q((u_1, x_1 + \gamma_1), \dots, (u_k, x_k + \gamma_k), (u_{k+1}, x_{k+1} + \delta))$$

if and only if
$$\gamma_1(u_{k+1}) + \cdots + \gamma_k(u_{k+1}) + \delta = 0 \mod 2$$
.

Tameness gained

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥ N

Some problems

Baldwin-Shelah (Goodrick)

Theorem

There is an AEC with the amalgamation property in a countable language with Löwenheim-Skolem number \aleph_0 which is not (\aleph_0, \aleph_1) -tame but is $(2^{\aleph_0}, \infty)$ -tame.

Whitehead Groups

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥N

Some problems

Definition

We say A is a Whitehead group if Ext(A, Z) = 0. That is, every short exact sequence

$$0 \to \mathcal{Z} \to H \to A \to 0,$$

splits or in still another formulation, H is the direct sum of A and \mathcal{Z} .

Side question: Under V=L, Whitehead groups are free; hence PCF. What about in ZFC?

$^{\perp}N$

Definition

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥N

Some problems

$$\square \ ^{\perp} N = \{A : Ext^{i}(A, N) = 0 : i < \omega\}$$

2 For $A \subseteq B$ both in $^{\perp}N$, $A \prec_N B$ if $B/A \in ^{\perp}N$.

Generalizes the class of Whitehead groups: Ext(G, Z) = 0.

Synergy

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥N

Some problems

Baldwin, Eklof, Trlifaj :

Theorem

- **1** For any module N, if the class $({}^{\perp}N, \prec_N)$ is an abstract elementary class then N is a cotorsion module.
- 2 For any R-module N, over a ring R, if N is a pure-injective module then the class ([⊥]N, ≺_N) is an abstract elementary class.
- Solution For an abelian group N, (module over a Dedekind domain R), the class ([⊥]N, ≺_N) is an abstract elementary class if and only if N is a cotorsion module.

An Interesting detail

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥N

Some problems We do not know exactly the rings for which the hypothesis of N cotorsion is sufficient for **A.3**(3). It is sufficient when R is a Dedekind domain:

Lemma

Let R be a Dedekind domain and N a module. Then the following are equivalent:

- 1 N is cotorsion;
- 2 $^{\perp}N = ^{\perp}PE(N)$ where PE(N) denotes the pure-injective envelope of N;

- 3 $^{\perp}N$ is closed under direct limits;
- **4 A3**(3) holds for $(^{\perp}N, \prec_N)$.

3) concludes closure under limits of all homomorphisms.

What causes tameness?

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementar Classes

Amalgamation

Galois Types

Tameness

⊥N

Some problems 1 ga – tp(a/M) = tp(a/M) for a 'countable' **a**. ($^{\perp}N$, Abelian groups under pure substructure)

 excellence (more precisely, the existence of a 'nonforking notion with stationary types and extension (Grossberg-Kolesnikov))

3 ????

Geometric Model Theory in $L_{\omega_1,\omega}$

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems

Zilber showed:

Theorem

If in an \aleph_1 -categorical theory T some (every) strongly minimal set has trivial geometry then T is almost strongly minimal?

Is the analog true in $L_{\omega_1,\omega}$ with almost quasiminimal excellence replacing almost strongly minimal ?

Problems on the 'Lower Infinite'

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥N

Some problems $\mathsf{lower infinite} = \mathsf{below} \ \beth_{\omega_1}$

1 Around Vaught's conjecture

- 2 Bounds on existence
- **3** Bounds on categoricity

Around Vaught's conjecture

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems

The number of models in \aleph_1 : $L_{\omega,\omega}$

Theorem

If a first order theory is a counterexample to the Vaught conjecture then it has 2^{\aleph_1} models of cardinality \aleph_1 .

Proof outline

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems This is easy from two difficult theorems:

Theorem (Shelah)

If a first order T is not ω -stable T has 2^{\aleph_1} models of cardinality \aleph_1 .

This argument uses many descriptive set theoretic techniques. See Shelah's book [?] or Baldwin's paper [?].

Theorem (Shelah)

An w-stable first order theory satisfies Vaught's conjecture.

Does the previous theorem extend to $L_{\omega_1,\omega}$?

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems

Keisler showed:

Theorem

For any $L_{\omega_1,\omega}$ -sentence ψ and any fragment L^* containing ψ , if ψ has fewer than 2^{\aleph_1} models of cardinality \aleph_1 then for any $M \models \psi$ of cardinality \aleph_1 , M realizes only countably many L^* -types over the empty set

Shelah observed that Theorem ?? implies:

Fact

 $(2^{\aleph_0} < 2^{\aleph_1})$ If a complete sentence $\psi \in L_{\omega_1,\omega}$ is not ω -stable it has 2^{\aleph_1} models of cardinality \aleph_1 .

Develop ω -stability for finite diagrams

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥N

Some problems Even assuming $(2^{\aleph_0} < 2^{\aleph_1})$:

Few models in \aleph_1 does not imply amalgamation in \aleph_0 .

Does few models in \aleph_1 imply ω -stability in any reasonable sense.

Does VC hold for ω -stable sentences in $L_{\omega_1,\omega}$? For excellent classes?

This is meaningless for complete sentences. But it fits the context of Hytinnen-Kesala.

Characterizing \aleph_1

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems

Theorem (Hjorth)

For every $\alpha < \omega_1$ there is a sentence in $L_{\omega_1,\omega}$ whose maximal model has cardinality \aleph_{α} .

Proof outline for \aleph_1

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems vocabulary: S_n binary; R_k is k + 2-ary. A set of universal sentences guarantee that every model M satisfies:

1 The S_n are symmetric and partition $M^{[2]}$.

```
2 For all a, b for some n, S_n(a, b).
```

3

 $igwedge [R_k(a,b,c_1,\ldots c_k)
ightarrow \ [S_m(d,a_0)\wedge S_m(d,a_1)
ightarrow d\in \{c_1,\ldots c_k\})]$

f(a, b) = n if $S_n(a, b)$ maps M^2 into ω . In the generic model for each a, b there is finite C: f(c, a) = f(c, b) iff $c \in C$.

Consequences

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥N

Some problems

No model in \aleph_2

If $|N| = \aleph_2$ and $M \prec N$, $|M| = \aleph_1$:

For each $a, b \in M$ there is finite $C \subset M$: f(c, a) = f(c, b) iff $c \in C$ (for all $c \in N$!).

So if $e \in N - M$, for every $a, b \in M$, $f(e, a) \neq f(e, b)$. That is f(e, -) is a 1-1 map from N into ω .

Fraïssé construction and $L_{\omega_1,\omega}$

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems

A model in \aleph_1

The basic Fraïssé construction yields an atomic model; so the atomic models of its first order theory are axiomatized in $L_{\omega_1,\omega}$. Marker (mainly) and I observed:

For any Fraïssé construction with disjoint amalgamation: The generic has a proper atomic elementary extension and so there is an uncountable atomic model.

Prove or Disprove

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems

Theorem (Shelah technique)

If an atomic class is ω -stable and has a model in \aleph_1 it has one in \aleph_2 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Modify Hjorth's construction by replacing Fraïssé with Hrushovski to get:

An ω -stable atomic class characterizing \aleph_2 .

Downward Categoricity

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

 $^{\perp}N$

Some problems

Theorem (Shelah)

If **K** is categorical in λ^+ and satisfies amalgamation and joint embedding with $\lambda \ge H_2$ then **K** is categorical on $[H_2, \lambda)$.

What about non-successor cardinals for the hypothesis?

What is the best lower bound? Is it $\aleph_1, \aleph_{\omega}, \beth_{\omega_1}, H_2 = \beth_{(\beth_{\omega_1})^+}$?

Necessity of hypotheses

Perspectives on AEC's Colombia Model Theory Conference 2007

> John T. Baldwin

Abstract Elementary Classes

Amalgamation

Galois Types

Tameness

⊥N

Some problems Fact. If **K** has amalgamation and is categorical in κ above H_1 , then $\mathbf{K}_{\geq \kappa}$ has jep. But it is easy to construct sentences ϕ_{α} of $L_{\omega_1,\omega}$ that are

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

categorical in κ iff $\kappa \geq \beth_a lpha$.