What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Ston Space?

Tameness

What is the right type-space? Humboldt University July 5, 2007

John T. Baldwin

July 5, 2007

Goals

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

The fundamental notion of a Stone space is delicate for infinitary logic.

I will describe several possibilities.

There will be a quiz.

Infinitary Logic and Omitting Types

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Key Insight

(Chang, Lopez-Escobar) Any sentence ϕ of $L_{\omega_1,\omega}$ can be coded by omitting a set of types in a countable first order theory.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Reduction

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

(Shelah) Any κ -categorical sentence of $L_{\omega_1,\omega}$ can be replaced (for categoricity purposes) by considering the atomic models of a first order theory, T.

A model $A \subset M \models T$ is atomic if every finite sequence from A realizes a principal (isolated) type over the empty set.

Our Context

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

 ${\cal T}$ is a countable first order theory that admits quantifier elimination.

K is the class of atomic models of T.

 $\prec_{\mathbf{K}}$ is elementary submodel.

AMALGAMATION PROPERTY

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

The class **K** satisfies the *amalgamation property* if for any situation with $A, M, N \in \mathbf{K}$:

there exists an N_1 such that

ZILBER'S PROGRAM FOR ($C, +, \cdot, exp$)

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Goal: Realize $(C, +, \cdot, exp)$ as a model of an $L_{\omega_1,\omega}$ -sentence discovered by the Hrushovski construction.

Objective A

Expand $(\mathcal{C}, +, \cdot)$ by a unary function f which behaves like exponentiation using a Hrushovski-like dimension function. Prove some $L_{\omega_1,\omega}$ -sentence Σ satisfied by $(\mathcal{C}, +, \cdot, f)$ is categorical and has quantifier elimination.

Objective B

Prove $(\mathcal{C},+,\cdot,exp)$ is a model of the sentence Σ found in Objective A.

Assumption

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Fameness

K has the amalgamation property over models and the joint embeddding property.

This is a highly nontrivial assumption; it follows from categoricity up to \aleph_{ω} and the WGCH.

Amalgamation over arbitrary subsets is a still stronger hypothesis which misses mathematically important examples.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The Monster Model

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

If **K** has the amalgamation property and the joint embedding property then we can work inside a monster model (universal domain) \mathcal{M} that is $|\mathcal{M}|$ -model homegeneous. That is,

If $N \prec_{\mathbf{K}} \mathcal{M}$ and $N \prec_{\mathbf{K}} M \in \mathbf{K}$ and $|M| < |\mathcal{M}|$ there is embedding of M into \mathcal{M} over N.

Stone Space I

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Ordinary S(A)

Let $A \subset M \in \mathbf{K}$. A syntactic 1-type is an ultrafilter in the Boolean algebra of 1-ary formulas with parameters from A. S(A) is the set of types over A.

Since T eliminates quantifiers there is no dependence on the choice of M.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Stone Space II

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

$S^*(A)$

Let $p \in S(A)$ where A is atomic.

Definition

 $p \in S^*(A)$ means there is an atomic model M of T with $A \subseteq M$ such that p is realized in M.

Stone Space III

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

$S_{at}(A)$

Let $p \in S(A)$ where A is atomic.

Definition

 $p \in S_{at}(A)$ means Aa is atomic if a realizes p.

Simple Example

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Wake up!

T is the theory of an infinite set under equality. $M \models T$. *p* asserts $x \neq m$ for every $m \in M$. Then $p \in S_{at}(M)$.

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Fact

(Marcus): There is a model M which is atomic, minimal and contains an infinite indiscernible set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Fact

(Marcus): There is a model M which is atomic, minimal and contains an infinite indiscernible set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Consequences

What is the monster model for K?

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Fact

(Marcus): There is a model M which is atomic, minimal and contains an infinite indiscernible set.

Consequences

What is the monster model for **K**? Every $p \in S_{at}(M)$ is realized in M.

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Fact

(Marcus): There is a model M which is atomic, minimal and contains an infinite indiscernible set.

Consequences

What is the monster model for **K**? Every $p \in S_{at}(M)$ is realized in M.

This does not mean: For any $A \subset M$, every $p \in S_{at}(A)$ is realized in M.

Stone Space IV

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

$S_{\mathbb{M}}(A)$

Fix a monster model \mathbb{M} of **K**. Let $p \in S(A)$ where $A \subset \mathbb{M}$.

Definition

 $p \in S_{\mathbb{M}}(A)$ means that p is realized in \mathbb{M} .

Question

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

$S_{\mathbb{M}}(A)$

Fix a monster model \mathbb{M} of \mathbf{K} .

What are the relations among $S_{\mathbb{M}}(A)$, $S^*(A)$, $S_{at}(A)$, S(A)? Does the cardinality of A matter?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

\subset means proper subset.

Always

$$S_{\mathbb{M}}(A) \subseteq S^*(A) \subseteq S_{at}(A) \subseteq S(A)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

\subset means proper subset.

Always

$$S_{\mathbb{M}}(A) \subseteq S^*(A) \subseteq S_{at}(A) \subseteq S(A)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Usually

 $S_{at}(A) \subset S(A)$

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

\subset means proper subset.

Always

$$S_{\mathbb{M}}(A) \subseteq S^*(A) \subseteq S_{at}(A) \subseteq S(A)$$

Usually

 $S_{at}(A) \subset S(A)$

Marcus

 $S_{\mathbb{M}}(A)\subset S^*(A)$

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

\subset means proper subset.

Always

$$S_{\mathbb{M}}(A) \subseteq S^*(A) \subseteq S_{at}(A) \subseteq S(A)$$

Usually

 $S_{at}(A) \subset S(A)$

Marcus

 $S_{\mathbb{M}}(A)\subset S^*(A)$

A-countable

 $S^*(A) = S_{at}(A)$

Stone Space V: Galois Types

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

 $\mathbb{S}(A)$

Fix a monster model \mathbb{M} of \mathbf{K} .

Definition

Let $A \subseteq M \prec_{\mathbf{K}} \mathbb{M}$ and $a \in \mathbb{M}$. The *Galois type* of a over M $(\in \mathbb{M})$ is the orbit of a under the automorphisms of \mathbb{M} which fix A. The set of Galois types over A is denoted $\mathbb{S}(A)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Stone Space V: Galois Types: Subtleties

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Over sets

Clearly, for fixed \mathbb{M} , there exists $\pi : \mathbb{S}(A) \twoheadrightarrow S_{\mathbb{M}}(A)$. But there is a choice of \mathbb{M} . In general the relation between $\mathbb{S}(A)$ and $S_{at}(A)$ is unclear.

Over models

But for models: $\pi : \mathbb{S}(M) \twoheadrightarrow S_{at}(M)$.

There is only one 'monster model'.

And Shelah's notion corresponds to the 'monster model' version.

GALOIS TYPES: General Form

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Define:

$$(M, a, N) \cong (M, a', N')$$

if there exists N'' and strong embeddings f, f' taking N, N'into N'' which agree on M and with

f(a)=f'(a').

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

GALOIS TYPES: General Form

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Define:

$$(M, a, N) \cong (M, a', N')$$

if there exists N'' and strong embeddings f, f' taking N, N'into N'' which agree on M and with

f(a)=f'(a').

'The Galois type of *a* over *M* in *N*' is the same as 'the Galois type of *a*' over *M* in *N*'' if (M, a, N) and (M, a', N') are in the same class of the equivalence relation generated by \cong .

GALOIS TYPES: Algebraic Form

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Suppose ${\bf K}$ has the amalgamation property.

Definition

Let $M \in \mathbf{K}$, $M \prec_{\mathbf{K}} \mathbb{M}$ and $a \in \mathbb{M}$. The Galois type of a over M is the orbit of a under the automorphisms of \mathbb{M} which fix M.

We say a Galois type p over M is realized in N with $M \prec_{\mathbf{K}} N \prec_{\mathbf{K}} \mathbb{M}$ if $p \cap N \neq \emptyset$.

Galois vrs Syntactic Types

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Syntactic types have certain natural locality properties.

locality Any increasing chain of types has at most one upper bound;

tameness two distinct types differ on a finite set;

compactness an increasing chain of types has a realization.

The translations of these conditions to Galois types do not hold in general.

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Grossberg and VanDieren focused on the idea of studying 'tame' abstract elementary classes:

Definition

We say **K** is (χ, μ) -tame if for any $N \in \mathbf{K}$ with $|N| = \mu$ if $p, q, \in \mathbb{S}(N)$ and for every $N_0 \leq N$ with $|N_0| \leq \chi$, $p \upharpoonright N_0 = q \upharpoonright N_0$ then q = p.

Tameness-Algebraic form

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Ston Space?

Tameness

Suppose ${\bf K}$ has the amalgamation property.

K is (χ, μ) -tame if for any model *M* of cardinality μ and any $a, b \in \mathcal{M}$:

Tameness-Algebraic form

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Suppose K has the amalgamation property.

K is (χ, μ) -tame if for any model M of cardinality μ and any $a, b \in \mathcal{M}$:

If for every $N \prec_{\mathbf{K}} M$ with $|N| \leq \chi$ there exists $\alpha \in \operatorname{aut}_{N}(\mathcal{M})$ with $\alpha(a) = b$,

then there exists $\alpha \in \operatorname{aut}_{\operatorname{M}}(\mathcal{M})$ with $\alpha(a) = b$.

Consequences of Tameness

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Suppose ${\bf K}$ has arbitrarily large models and amalgamation.

Theorem (Grossberg-Vandieren)

If $\lambda > LS(\mathbf{K})$, \mathbf{K} is λ^+ -categorical and $(\lambda, < \infty)$ -tame then \mathbf{K} is categorical in all $\theta \ge \lambda^+$.

Theorem (Lessmann)

If K with $LS(K) = \aleph_0$ is \aleph_1 -categorical and (\aleph_0, ∞) -tame then K is categorical in all uncountable cardinals

Two Examples that are not tame

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

1 'Hiding the zero'

For each $k < \omega$ a class which is (\aleph_0, \aleph_{k-3}) -tame but not $(\aleph_{k-3}, \aleph_{k-2})$ -tame. Baldwin-Kolesnikov (building on Hart-Shelah)

2 Coding EXT

A class that is not (\aleph_0, \aleph_1) -tame. A class that is not (\aleph_0, \aleph_1) -tame but is $(2^{\aleph_0}, \infty)$ -tame.

(Baldwin-Shelah)

Very Complicated Example

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Theorem. [Hart-Shelah / Baldwin-Kolesnikov] For each $3 \le k < \omega$ there is an $L_{\omega_1,\omega}$ sentence ϕ_k such that:

- **1** ϕ_k has the disjoint amalgamation property;
- 2 Syntactic types determine Galois types over models of cardinality at most ℵ_{k-3};
- 3 But there are syntactic types over models of size \aleph_{k-3} that split into $2^{\aleph_{k-3}}$ -Galois types.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Very Complicated Example

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Theorem. [Hart-Shelah / Baldwin-Kolesnikov] For each $3 \le k < \omega$ there is an $L_{\omega_1,\omega}$ sentence ϕ_k such that:

- **1** ϕ_k has the disjoint amalgamation property;
- 2 Syntactic types determine Galois types over models of cardinality at most ℵ_{k-3};
- But there are syntactic types over models of size ℵ_{k-3} that split into 2^{ℵ_{k-3}}-Galois types.

- 4 ϕ_k is categorical in μ if $\mu \leq \aleph_{k-2}$;
- 5 ϕ_k is not \aleph_{k-2} -Galois stable;
- 6 But for $m \leq k 3$, ϕ_k is \aleph_m -Galois stable;
- 7 ϕ_k is not categorical in any μ with $\mu > \aleph_{k-2}$.

Some further consequences

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Ston Space?

Tameness

In this example:

- 1 $\pi : \mathbb{S}(M) \twoheadrightarrow S_{\mathbb{M}}(A)$ is not 1-1.
- 2 There exists an independent pair of countable models M_1, M_2 over M_2 so that $|S_{at}(M_1M_2)| = 2^{\aleph_0}$

The last example exhibits the failure of 'automorphism stationarity'.

If $M_1 \approx M'_1$ over M_0 and both are independent from M_2 over M_0 then they are isomorphic over M_0 .

But in 2) they need not be automorphic over M_0 .

One more inequality

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

The Marcus example gives an uncountable atomic set A which cannot be embedded in an atomic model. In fact, $S^*(A) \neq S_{at}(A)$.

From the Baldwin-Kolesnikov analysis there is a model M with

 $S^*(M) \neq S_{\mathrm{at}}(M).$

Locality and Tameness

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Definition

K has (κ, λ) -local galois types if for every continuous increasing chain $M = \bigcup_{i < \kappa} M_i$ of members of **K** with $|M| = \lambda$ and for any $p, q \in \mathbb{S}(M)$: if $p \upharpoonright M_i = q \upharpoonright M_i$ for every *i* then p = q.

Lemma

If $\lambda \geq \kappa$ and $cf(\kappa) > \chi$, then (χ, λ) -tame implies (κ, λ) -local. If particular, (\aleph_0, \aleph_1) -tame implies (\aleph_1, \aleph_1) -local.

Whitehead Groups

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Definition

We say A is a Whitehead group if Ext(A, Z) = 0. That is, every short exact sequence

$$0 \to \mathcal{Z} \to H \to A \to 0,$$

splits or in still another formulation, H is the direct sum of A and \mathcal{Z} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Key Example

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Shelah constructed (page 228 of Eklof-Mekler, first edition) of a group with the following properties.

Fact

There is an \aleph_1 -free group G of cardinality \aleph_1 which is not Whitehead.

Moreover, there is a countable subgroup R of G such that G/R is p-divisible for each prime p.

THE AEC EXAMPLE

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Let **K** be the class of structures $M = \langle G, Z, I, H \rangle$, where each of the listed sets is the solution set of one of the unary predicates (**G**, **Z**, **I**, **H**).

G is a torsion-free Abelian Group. *Z* is a copy of (Z, +). *I* is an index set and *H* is a family of infinite groups.

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Each model in ${\bf K}$ consists of

- **1** a torsion free group G,
- **2** a copy of \mathcal{Z}
- **3** and a family of extensions of Z by G.

Each of those extensions is coded by single element of the model so the Galois type of a point of this kind represents a specific extension. The projection and embedding maps from the short exact sequence are also there.

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

$$M_0 \prec_{\mathbf{K}} M_1$$
 if

 M_0 is a substructure of M,

but
$$\mathbf{Z}^{\mathbf{M}_0} = \mathbf{Z}^{\mathbf{M}}$$

and $\mathbf{G}^{\mathbf{M}_0}$ is a pure subgroup of $\mathbf{G}^{\mathbf{M}_1}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

NOT LOCAL

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Lemma

 $(\mathbf{K}, \prec_{\mathbf{K}})$ is not (\aleph_1, \aleph_1) -local. That is, there is an $M^0 \in \mathbf{K}$ of cardinality \aleph_1 and a continuous increasing chain of models M_i^0 for $i < \aleph_1$ and two distinct types $p, q \in \mathbb{S}(M^0)$ with $p \upharpoonright M_i^0 = q \upharpoonright M_i$ for each *i*.

Let G be an Abelian group of cardinality \aleph_1 which is \aleph_1 -free but not a Whitehead group. There is an H such that,

$$0 \rightarrow \mathcal{Z} \rightarrow H \rightarrow G \rightarrow 0$$

is exact but does not split.

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Let $M_0 = \langle G, \mathcal{Z}, a, G \oplus Z \rangle$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Let
$$M_0 = \langle G, \mathcal{Z}, a, G \oplus Z \rangle$$

 $M_1 = \langle G, \mathcal{Z}, \{a, t_1\}, \{G \oplus Z, H\} \rangle$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Let $M_0 = \langle G, \mathcal{Z}, a, G \oplus Z \rangle$ $M_1 = \langle G, \mathcal{Z}, \{a, t_1\}, \{G \oplus Z, H\} \rangle$ $M_2 = \langle G, \mathcal{Z}, \{a, t_2\}, \{G \oplus Z, G \oplus Z\} \rangle$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Let $M_0 = \langle G, \mathcal{Z}, a, G \oplus Z \rangle$ $M_1 = \langle G, \mathcal{Z}, \{a, t_1\}, \{G \oplus Z, H\} \rangle$ $M_2 = \langle G, \mathcal{Z}, \{a, t_2\}, \{G \oplus Z, G \oplus Z\} \rangle$ Let $p = \operatorname{tp}(t_1/M^0, M^1)$ and $q = \operatorname{tp}(t_2/M^0, M^2)$. Since the exact sequence for $\mathbf{H}^{\mathbf{M}^2}$ splits and that for $\mathbf{H}^{\mathbf{M}^1}$ does not, $p \neq q$.

NOT ℵ₁-LOCAL

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

But for any countable $M'_0 \prec_{\mathbf{K}} M_0$, $p \upharpoonright M'_0 = q \upharpoonright M'_0$, as

$$0 \to Z \to H'_i \to G' \to 0.$$
 (1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

splits. $G' = \mathbf{G}(\mathbf{M}'_{\mathbf{0}}), \ H' = \pi^{-1}(t_i, G').$

NOT ℵ₀-TAME

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

It is easy to see that if $(\mathbf{K}, \prec_{\mathbf{K}})$ is (\aleph_0, \aleph_0) -tame then it is (\aleph_1, \aleph_1) -local, so $(\mathbf{K}, \prec_{\mathbf{K}})$ is not (\aleph_0, \aleph_0) -tame. So in fact, $(\mathbf{K}, \prec_{\mathbf{K}})$ is not (\aleph_0, χ) -tame for any χ .

	Question
What is the right type-space? Humboldt University July 5, 2007 John T. Baldwin	
Which Stone Space? Tameness	Could this example be formulated more naturally as $\{Ext(G, Z) : G \text{ is torsion-free }\}$ (with projection and injection maps?

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Incompactness

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Theorem

Assume $2^{\aleph_0} = \aleph_1$, and $\diamondsuit_{\aleph_1}, \diamondsuit_{S_1^2}$ where

$$S_1^2 = \{\delta < \aleph_2 : \operatorname{cf}(\delta) = \aleph_1\}.$$

Then, the last example fails either (\aleph_1, \aleph_1) or (\aleph_2, \aleph_2) -compactness.

BECOMING TAME ??

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Grossberg and Van Dieren asked for $(\mathbf{K}, \prec_{\mathbf{K}})$, and $\mu_1 < \mu_2$ so that $(\mathbf{K}, \prec_{\mathbf{K}})$ is not (μ_1, ∞) -tame but is (μ_2, ∞) -tame.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Admits intersection

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Ston Space?

Tameness

We say the AEC $(\mathbf{K}, \prec_{\mathbf{K}})$ admits intersections if for every $X \subseteq M \in \mathbf{K}$, there is a minimal closure of X in M. That is, $M \upharpoonright \bigcap \{N : X \subseteq N \prec_{\mathbf{K}} M\} = \operatorname{cl}_{M}(X) \prec_{\mathbf{K}} M$.

Tameness gained

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Theorem

There is an AEC in a countable language that admits intersections with Löwenheim-Skolem number \aleph_0 which is not (\aleph_0, \aleph_1) -tame but is $(2^{\aleph_0}, \infty)$ -tame.

Proof Sketch: Repeat the previous example but instead of letting the quotient be any torsion free group

1 insist that the quotient is an \aleph_1 -free group;

add a predicate R for the group R G/R is divisible by every prime p where G is Shelah's example of a non-Whitehead group.

This forces $|G| \le 2^{\aleph_0}$ and then we get $(2^{\aleph_0}, \infty)$ -tame. But \aleph_1 -free groups fail amalgamation ?? What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

Lemma

For any AEC $(\mathbf{K}, \prec_{\mathbf{K}})$ which admits intersections there is an associated AEC $(\mathbf{K}', \prec_{\mathbf{K}})$ with the same (non) locality properties that has the amalgamation property.

Theorem

There is an AEC with the amalgamation property in a countable language with Löwenheim-Skolem number \aleph_0 which is not (\aleph_0, \aleph_1) -tame but is $(2^{\aleph_0}, \infty)$ -tame.

Conclusion

What is the right type-space? Humboldt University July 5, 2007

> John T. Baldwin

Which Stone Space?

Tameness

- $\mathbb{S}(M)$ is the natural tool for Abstract elementary classes.
- S_{at}(M) is Shelah's tool for L_{ω1,ω}.
 Excellence implies they agree.
- But Hytinnen and Kesala have interesting results with $S_{\mathbb{M}}(A)$ for finitary AEC.