Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Necessity of the VWGCH ?

John T. Baldwin

April 5, 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

\cap		L	
\cup	ut	lır	۱e

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

1 The Weak Continuum Hypothesis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

2 Model Theoretic Background

3 Is WCH is necessary?

The Weak Generalized Continuum Hypothesis

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Setting

ZFC is the base theory throughout.

Axiom: WGCH Weak GCH

For every cardinal λ , $2^{\lambda} < 2^{\lambda^+}$.

Axiom: VWGCH Very Weak GCH

For every cardinal λ with $\lambda < \aleph_{\omega}$, $2^{\lambda} < 2^{\lambda^+}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Acknowledgements

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

This is primarily an exposition of work of Shelah followed by a series of problems.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Detailed proof of most of the results here are given in my monograph: Categoricity (available on line).

Definition: Devlin-Shelah Weak Diamond

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Φ_{λ} is the proposition:

For any function $F: 2^{<\lambda} \to 2$ there exists $g \in 2^{\lambda}$ such that for every $f \in 2^{\lambda}$ the set

$$\{\delta < \lambda : F(f \restriction \delta) = g(\delta)\}$$

is stationary.

For every $X \subset \lambda$ and $\alpha < \lambda$, Weak- \diamond predicts whether $X \cap \alpha$ is in one side or another of a partition of $\mathcal{P}(\alpha)$.

Crucial Fact Necessity of the VWGCH ? The Weak Continuum Hypothesis Weak diamond is the operative form of WGCH. $2^{\lambda} < 2^{\lambda^+}$ if and only if Weak- \diamond on λ^+

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Model Theoretic Context

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

ls WCH is necessary? In this talk, **K** is the class of models of a sentence ψ in $L_{\omega_1,\omega}$.

We write $M \prec_{\mathbf{K}} N$ where $\prec_{\mathbf{K}}$ is elementary submodel in the smallest fragment L^* containing ψ .

We will sketch how to study this situation as the class of atomic models of a first order theory.

More Background

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

A model is *small* if it realizes only countably many $L_{\omega_1,\omega}$ -types over the empty set.

M is small if and only M is Karp-equivalent to a countable model.

 ϕ is complete for $L_{\omega_1,\omega}$ if for every sentence ψ of $L_{\omega_1,\omega}$, either $\phi \to \psi$ or $\phi \to \neg \psi$.

Note that a sentence is complete if and only if it is a Scott sentence; so every model of a complete sentence is small.

Passing to Atomic

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary? A model is atomic if every finite sequence realizes a principal type over \emptyset .

Theorem

Let ψ be a complete sentence in $L_{\omega_1,\omega}$ in a countable vocabulary τ . Then there is a countable vocabulary τ' extending τ and a complete first order τ' -theory T such that reduct is a 1-1 map from the *atomic* models of T onto the models of ψ .

AMALGAMATION PROPERTY

Necessity of the VWGCH ?

John T. Baldwin

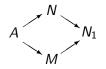
The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

The class **K** satisfies the *amalgamation property* if for any situation with $A, M, N \in \mathbf{K}$:

there exists an N_1 such that



Failure of amalgamation yields many models

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Theorem (WGCH: Shelah)

If **K** is λ -categorical and amalgamation fails in λ there are 2^{λ^+} models in **K** of cardinality λ^+ .

Upward Löwenheim Skolem

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Definition

 \aleph_{α} is characterized by ϕ_{α} if there is a model of ϕ_{α} with cardinality \aleph_{α} but no larger model.

Known

Morley: If ϕ has a model of cardinality at least \beth_{ω_1} , ϕ has arbitrarily large models.

Hjorth: If α is countable \aleph_{α} is characterizable.

Conjecture

Shelah: If κ is characterized by $\phi,\,\phi$ has 2^λ models in some $\lambda\leq\kappa.$

Few models and smallness

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Theorem (Keisler)

If **K** has less than 2^{\aleph_1} models of cardinality \aleph_1 then every model of **K** realizes only countably many types over the empty set in the countable fragment L^* .

Few models in \aleph_1 implies completeness

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Theorem (Shelah)

If the $L_{\omega_1,\omega}$ - τ -sentence ψ has a model of cardinality \aleph_1 which is L^* -small for every countable τ -fragment L^* of $L_{\omega_1,\omega}$, then ψ has a small model of cardinality \aleph_1 .

κ -Categoricity implies completeness ????

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

ls WCH is necessary?

Thus, any \aleph_1 -categorical sentence of $L_{\omega_1,\omega}$ can be replaced (for categoricity purposes) by considering the atomic models of a first order theory. (*EC*(*T*, *Atomic*)-class) But this result uses properties of \aleph_1 heavily.

Question

If the $L_{\omega_1,\omega}$ - τ -sentence ψ has a model of cardinality κ which is L^* -small for every countable τ -fragment L^* of $L_{\omega_1,\omega}$, must ψ have a τ -small model of cardinality κ ?

Categoricity Transfer in $L_{\omega_1,\omega}$

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary? An atomic class **K** is excellent if it is ω -stable and satisfies certain amalgamation properties for finite systems of models.

ZFC: Shelah 1983

If **K** is an excellent EC(T, Atomic)-class then if it is categorical in one uncountable cardinal, it is categorical in all uncountable cardinals.

VWGCH: Shelah 1983

If an EC(T, Atomic)-class **K** is categorical in \aleph_n for all $n < \omega$, then it is excellent.

Excellence gained: more precisley

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

VWGCH: Shelah 1983

An atomic class **K** that has at least one uncountable model and with $I(\mathbf{K}, \aleph_n) \leq 2^{\aleph_{n-1}}$ for each $n < \omega$ is excellent.

Context

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

K is the class of atomic models (realize only principal types) of a first order theory. We study $S_{at}(A)$ where $A \subset M \in \mathbf{K}$ and $p \in S_{at}(A)$ means Aa is atomic if a realizes p.

reprise: Few models and smallness

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Theorem (Keisler)

If **K** has less than 2^{\aleph_1} models of cardinality \aleph_1 then every model of **K** realizes only countably many types over the empty set in the countable fragment L^* .

ω -stability I

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Definition

The atomic class **K** is λ -stable if for every $M \in \mathbf{K}$ of cardinality λ , $|S_{\mathrm{at}}(M)| = \lambda$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Corollary (Shelah) CH

If **K** is \aleph_1 -categorical and $2^{\aleph_0} < 2^{\aleph_1}$ then **K** is ω -stable.

ω -stability II

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Consequences

- 1 This gets ω -stability without assuming arbitrarily large models.
- 2 We only demand few types over models, not arbitrary sets; this is crucial.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

But, apparently uses CH twice! (for amalgamation and type counting)

$\omega\text{-stability III}$

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Getting $\omega\text{-stability}$

 Assume arbitrarily large models; use Ehrenfeucht-Mostowski models

- 2 Keisler-Shelah using CH.
- **3** Diverse classes (Shelah)

Fundamental question

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Let ϕ be a sentence of $L_{\omega_1,\omega}$ Are the properties:

 ϕ is \aleph_1 -categorical, and

 ϕ is $\omega\text{-stable}$

absolute for cardinal-preserving forcing?

Is WCH is necessary?

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Does MA $+ \neg$ CH imply there is a sentence of $L_{\omega_1,\omega}$ that is \aleph_1 categorical but

a is not ω -stable

b does not satisfy amalgamation even for countable models.

There is such an example in $L_{\omega_1,\omega}(Q)$ but Laskowski showed the example proposed for $L_{\omega_1,\omega}$ by Shelah (and me) fails.

Towards Counterexamples

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

For any model $M \in \mathbf{K}$,

1 P and Q partition M.

- **2** E is an equivalence relation on Q.
- **3** P and each equivalence class of E is denumerably infinite.
- A relation on P × Q that is extensional on P. That is, thinking of R as the 'element' relation, each member of Q denotes a subset of P.
- **5** For every set X of n elements X from P and every subset X_0 of X and each equivalence class in Q, there is an element of that equivalence class that is R-related to every element of X_0 and not to any element of $X X_0$.
- **6** Similarly, for every set of *n* elements *Y* from *Q* and every subset Y_0 of *Y*, there is an element of *P* that is *R*-related to every element of Y_0 and not to any element of $Y Y_0$.

An AEC counterexample

Necessity of the VWGCH ?

John T. Baldwin

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Fix the class **K** as above and for $M, N \in \mathbf{K}$, define $M \prec_{\mathbf{K}} N$ if $P^M = P^N$ and for each $m \in Q^M$,

 ${n \in N : mEn} = {n \in M : mEn}$ (equivalence classes don't expand).

This class does not have finite character (Trlifaj's talk).