Perspectives on AEC

John T. Baldwin

Abstract Elementar Classes

Eventual Behavior

Connection with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Perspectives on AEC

John T. Baldwin

April 7, 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two Directions in Model Theory

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connection with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Eventual Behavior

2 'The Lower Infinite'

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Two Directions after Morley

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

 Classify the countable models of ℵ₁-categorical theory. (Baldwin-Lachlan, Zilber, geometric stability theory)

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Two Directions after Morley

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

- Connections with Set Theory
- The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

- Classify the countable models of ℵ₁-categorical theory. (Baldwin-Lachlan, Zilber, geometric stability theory)
- 2 Stability theory developed
 - 1 abstractly with the stability classification
 - 2 concretely by finding the stability class of important mathematical theories and using the techniques of the abstract theory.

The absoluteness of fundamental notions such as \aleph_1 -categoricity and stability liberated first order model theory from set theory.

Two Directions for AEC

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

AEC??? Kueker's work on definability in infinitary logic.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Two Directions for AEC

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connection with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

AEC??? Kueker's work on definability in infinitary logic.

1 There is much more to do below the Hanf number for categoricity if such exists. (the lower infinite)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Two Directions for AEC

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

- Connection with Set Theory
- The Weak Continuum Hypothesis
- Model Theoretic Background
- Is WCH is necessary?
- Connections with Algebra and analysis
- Classification

AEC??? Kueker's work on definability in infinitary logic.

- **1** There is much more to do below the Hanf number for categoricity if such exists. (the lower infinite)
- Superstability, stability spectrum, and applications are open.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Acknowledgements

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connection with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Thanks to those who organized the meeting: Dave, Alice, Fred's. And to those who came.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Acknowledgements

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Thanks to those who organized the meeting: Dave, Alice, Fred's. And to those who came.

I will interpret or misinterpret the works of many people with only vague and non-uniform specific acknowledgments.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Working with Shelah

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Always ask:

(日) (國) (国) (国) (国)

Working with Shelah

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Always ask:

Rule 1

What is the theorem?

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ● ◆

Working with Shelah

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Always ask:

Rule 1

What is the theorem?

Rule 2

What is the main idea of the proof?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Hanf's Argument

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Theorem

If there is a set of classes of given kind (e.g. aec's) of a given similarity type then for any property $P(\mathbf{K}, \lambda)$ there is a cardinal κ such that if $P(\mathbf{K}, \lambda)$ holds for some $\lambda > \kappa$ then $P(\mathbf{K}, \lambda)$ holds for arbitrarily large λ .

Proof:

 $\mu_{\mathbf{K}} = \sup\{\lambda : P(\mathbf{K}, \lambda) \text{holds if there is such a max}\}$

 $\kappa = \sup \mu_{\mathbf{K}}$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

as ${\bf K}$ ranges over the set of all classes of the given type.

AEC modification

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Since there are a proper class of sentences in $L_{\infty,\omega}$, there are a proper class of aec with a given similarity type.

Notation

For any aec K, let
$$\kappa_{\mathbf{K}} = \sup(|\tau_{\mathbf{K}}|, \operatorname{LS}(\mathbf{K})).$$

Remark

For any cardinal κ , there are only a set aec **K** with $\kappa_{\mathbf{K}} = \kappa$.

Proof sketch: We know (next slide) that the aec is determined by its restriction to models in the Lówenheim number. There are only a set of such restrictions.

Background Trivia

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

If $(\mathbf{K}_{\leq\kappa},\prec_{\mathbf{K}})$ is an AEC (but with the union axioms restricted to 'short' unions), there is a unique AEC that restricts to $(\mathbf{K}_{\leq\kappa},\prec_{\mathbf{K}})$.

Close under arbitrary unions.

AP yields a strong HN for categoricity

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Definition

P is downward closed if there is a κ_0 such that if $P(\mathbf{K}, \lambda)$ holds with $\lambda > \kappa_0$, then $P(\mathbf{K}, \mu)$ holds if $\kappa_0 < \mu \le \lambda$.

Theorem (Shelah 394)

The property **K** is λ -categorical is downward closed from successor cardinals for aec with amalgamation and joint embedding.

So Shelah proved but didn't say:

Corollary

For aec with amalgamation and joint embedding, there is a cardinal $\lambda = H(|\kappa_{\mathbf{K}})|$ such that if an aec **K** is categorical in some successor cardinal greater than λ then it is categorical in all larger cardinals.

So what

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connection with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

This falls short of Shelah's categoricity conjecture in two ways:

- 1 amalgamation and joint embedding are assumed
- 2 categoricity is only transferred downward from successor.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

3 There is no computation of the Hanf number.

Grossberg's question

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Hanf's argument also reduces Grossberg's question about the existence of a Hanf number for amalgamation to:

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Question

Is amalgamation closed down?

More History

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

In the late 60's model theory and set theory seemed inextricably intertwined.

And results like Chang's two cardinal theorem seemed to imply that model and axiomatic set theory were inextricably intertwined.

But the stability classification allowed the study of specific classes of theories where notions became absolute and theorems provable in ZFC.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

More History

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

In the late 60's model theory and set theory seemed inextricably intertwined.

And results like Chang's two cardinal theorem seemed to imply that model and axiomatic set theory were inextricably intertwined.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

But the stability classification allowed the study of specific classes of theories where notions became absolute and theorems provable in ZFC.

Tameness, excellence, etc. may play a similar role now.

The goal of Frames

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Shelah wants:

If there is a sufficiently strong 'stability theory' on K_{κ} then the generated AEC is 'controlled' in a strong way by K_{κ} .

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

He proposes to deduce the existence of such classes from categoricity. $% \left({{{\left[{{{c_{{\rm{c}}}}} \right]}_{{\rm{c}}}}} \right)$

Can we find them 'in nature'?

Three approaches to eventual categoricity

Perspectives on AEC

John T. Baldwin

Abstract Elementar Classes

Eventual Behavior

- Connection with Set Theory
- The Weak Continuum Hypothesis
- Model Theoretic Background
- Is WCH is necessary?
- Connections with Algebra and analysis
- Classification

- 1 Work from the bottom up. Existence of models must be earned. 87a, 87b, Zilber (WGCH) Beginning at ω is crucial.
- 2 Begin above the Hanf number for existence. Ehrehfeucht-Mostowski models are a powerful tool.
 - **1** (*ap*)⁺ -394,
 - 2 (with tameness Grossberg-VanDieren and Lessmann)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3 the frame approach: combine the two.

The stability spectrum

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

For a countable T there are six functions $f_i(\kappa)$ which give all the possible stability spectra.

This might appear 'combinatorial' but stable (i.e. cofinally stable) implies the existence of a well-behaved dependence relation.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The saturation spectrum

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

The same functions compute the cardinals in which a first order theory has a saturated model.

This can be viewed a property of the group of automorphisms of a monster model.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Some Problems

Perspectives on AEC

John T. Baldwin

Abstract Elementar<u>;</u> Classes

Eventual Behavior

- Connection with Set Theory
- The Weak Continuum Hypothesis
- Model Theoretic Background
- Is WCH is necessary?
- Connections with Algebra and analysis
- Classification

- **1** For eventually categorical classes, what happens below.
- 2 What exactly is the Hanf number for categoricity?
- 3 Is there one, without assuming ap?
- 4 Are there Hanf numbers for amalgamation, tameness, compactness ...??
- Use the technology of finitary classes to investigate e.g. Vaught's conjecture.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Some Problems

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

- **1** For eventually categorical classes, what happens below.
- 2 What exactly is the Hanf number for categoricity?
- 3 Is there one, without assuming ap?
- 4 Are there Hanf numbers for amalgamation, tameness, compactness ...??
- Use the technology of finitary classes to investigate e.g. Vaught's conjecture.

What model theoretic of infinitary logic properties are absolute?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Weak Generalized Continuum Hypothesis

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Setting

ZFC is the base theory throughout.

Axiom WGCH: Weak GCH

For every cardinal λ , $2^{\lambda} < 2^{\lambda^+}$.

Axiom VWGCH: Very Weak GCH

For every cardinal λ with $\lambda < \aleph_{\omega}$, $2^{\lambda} < 2^{\lambda^+}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Crucial Fact

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connection with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Weak diamond is the operative form of WGCH.

 $2^{\lambda} < 2^{\lambda^+}$ if and only if Weak- \diamond on λ^+

・ロト・雪ト・雪ト・雪・ 今日・

Model Theoretic Context

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

For the next section, ${\bf K}$ is the class of models of a sentence ψ in ${\cal L}_{\omega_1,\omega}.$

We write $M \prec_{\mathbf{K}} N$ where $\prec_{\mathbf{K}}$ is elementary submodel in the smallest fragment L^* containing ψ .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We will sketch how to study this situation as the class of atomic models of a first order theory.

More Background

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

A model *M* is *small* if it realizes only countably many $L_{\omega_1,\omega}$ -types over the empty set.

M is small if and only M is Karp-equivalent to a countable model.

 ϕ is complete for $L_{\omega_1,\omega}$ if for every sentence ψ of $L_{\omega_1,\omega}$, either $\phi \to \psi$ or $\phi \to \neg \psi$.

Note that a sentence is complete if and only if it is a Scott sentence; so every model of a complete sentence is small.

Passing to Atomic

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

A model *M* is atomic if every finite sequence from *M* realizes a principal type over \emptyset .

Theorem

Let ψ be a complete sentence in $L_{\omega_1,\omega}$ in a countable vocabulary τ . Then there is a countable vocabulary τ' extending τ and a complete first order τ' -theory T such that reduct is a 1-1 map from the *atomic* models of T onto the models of ψ .

AMALGAMATION PROPERTY

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

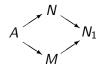
Is WCH is necessary?

Connections with Algebra and analysis

Classification

The class **K** satisfies the *amalgamation property* if for any situation with $A, M, N \in \mathbf{K}$:

there exists an N_1 such that



イロト 不得 トイヨト イヨト

3

Failure of amalgamation yields many models

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Theorem (WGCH: Shelah)

If **K** is λ -categorical and amalgamation fails in λ there are 2^{λ^+} models in **K** of cardinality λ^+ .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Upward Löwenheim Skolem

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Definition

 \aleph_{α} is characterized by ϕ_{α} if there is a model of ϕ_{α} with cardinality \aleph_{α} but no larger model.

Known

Morley: If ϕ has a model of cardinality at least \beth_{ω_1} , ϕ has arbitrarily large models.

Hjorth: If α is countable \aleph_{α} is characterizable.

Conjecture

Shelah: If κ is characterized by ϕ , ϕ has 2^{λ} models in some $\lambda \leq \kappa$.

Few models and smallness

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Theorem (Keisler)

If **K** has less than 2^{\aleph_1} models of cardinality \aleph_1 then every model of **K** realizes only countably many types over the empty set in the countable fragment L^* .

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Few models in \aleph_1 implies completeness

Perspectives on AEC

John T. Baldwin

Abstract Elementar Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Theorem (Shelah)

If the $L_{\omega_1,\omega}$ - τ -sentence ψ has a model of cardinality \aleph_1 which is L^* -small for every countable τ -fragment L^* of $L_{\omega_1,\omega}$, then ψ has a small model of cardinality \aleph_1 .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

κ -Categoricity implies completeness ????

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Thus, any \aleph_1 -categorical sentence of $L_{\omega_1,\omega}$ can be replaced (for categoricity purposes) by considering the atomic models of a first order theory. (*EC*(*T*, *Atomic*)-class) But this result uses properties of \aleph_1 heavily.

Question

If the $L_{\omega_1,\omega}$ -sentence ψ is κ -categorical, must the model in cardinality κ be small?

Categoricity Transfer in $L_{\omega_1,\omega}$

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

An atomic class **K** is excellent if it is ω -stable and satisfies certain amalgamation properties for finite systems of models.

ZFC: Shelah 1983

If **K** is an excellent EC(T, Atomic)-class then if it is categorical in one uncountable cardinal, it is categorical in all uncountable cardinals.

VWGCH: Shelah 1983

If an EC(T, Atomic)-class **K** is categorical in \aleph_n for all $n < \omega$, then it is excellent.

Excellence gained: more precisley

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

VWGCH: Shelah 1983

An atomic class **K** that has at least one uncountable model and with $I(\mathbf{K}, \aleph_n) \leq 2^{\aleph_{n-1}}$ for each $n < \omega$ is excellent.

Context

Perspectives on AEC

John T. Baldwin

Abstract Elementar Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

K is the class of atomic models (realize only principal types) of a first order theory. We study $S_{at}(A)$ where $A \subset M \in \mathbf{K}$ and $p \in S_{at}(A)$ means Aa is atomic if a realizes p.

reprise: Few models and smallness

Perspectives on AEC

John T. Baldwin

Abstract Elementar Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Theorem (Keisler)

If **K** has less than 2^{\aleph_1} models of cardinality \aleph_1 then every model of **K** realizes only countably many types over the empty set in the countable fragment L^* .

$\omega\text{-stability}\ \mathbf{I}$

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Definition

The atomic class **K** is λ -stable if for every $M \in \mathbf{K}$ of cardinality λ , $|S_{\mathrm{at}}(M)| = \lambda$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Corollary (Shelah) CH

If **K** is \aleph_1 -categorical and $2^{\aleph_0} < 2^{\aleph_1}$ then **K** is ω -stable.

$\omega\text{-stability II}$

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Consequences

- This gets ω-stability without assuming arbitrarily large models.
- 2 We only demand few types over models, not arbitrary sets; this is crucial.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

But, apparently uses CH twice! (for amalgamation and type counting)

$\omega\text{-stability III}$

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Getting $\omega\text{-stability}$

 Assume arbitrarily large models; use Ehrenfeucht-Mostowski models

- 2 Keisler-Shelah using CH.
- **3** Diverse classes (Shelah)

Fundamental question

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Let ϕ be a sentence of $L_{\omega_1,\omega}$ Are the following properties absolute for cardinal-preserving forcing? :

Almost surely true

 ϕ is ω -stable

 ϕ is excellent.

e.g. excellence is π_2^1 . 'For very configuration of n independent countable models there is a primary extension.'

Fundamental question

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Let ϕ be a sentence of $L_{\omega_1,\omega}$ Are the following properties absolute for cardinal-preserving forcing? :

Almost surely true

 ϕ is ω -stable

 ϕ is excellent.

e.g. excellence is π_2^1 . 'For very configuration of n independent countable models there is a primary extension.'

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Real question

ϕ is \aleph_1 -categorical

Is WCH is necessary?

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Does MA $+ \neg$ CH imply there is a sentence of $L_{\omega_1,\omega}$ that is \aleph_1 categorical but

a is not ω -stable

b does not satisfy amalgamation even for countable models.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

There is such an example in $L_{\omega_1,\omega}(Q)$ but Laskowski showed the example proposed for $L_{\omega_1,\omega}$ by Shelah (and me) fails.

Towards Counterexamples

Perspectives on AEC

> John T. Baldwin

- Abstract Elementary Classes
- Eventual Behavior
- Connections with Set Theory
- The Weak Continuum Hypothesis
- Model Theoretic Background

Is WCH is necessary?

- Connections with Algebra and analysis
- Classification

For any model $M \in \mathbf{K}$,

- **1** P and Q partition M.
- **2** E is an equivalence relation on Q.
- **3** P and each equivalence class of E is denumerably infinite.
- A relation on P × Q that is extensional on P. That is, thinking of R as the 'element' relation, each member of Q denotes a subset of P.
- **5** For every set X of *n* elements X from P and every subset X_0 of X and each equivalence class in Q, there is an element of that equivalence class that is *R*-related to every element of X_0 and not to any element of $X X_0$.
- **6** Similarly, for every set of *n* elements *Y* from *Q* and every subset Y_0 of *Y*, there is an element of *P* that is *R*-related to every element of Y_0 and not to any element of $Y Y_0$.

An AEC counterexample

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Fix the class **K** as above and for $M, N \in \mathbf{K}$, define $M \prec_{\mathbf{K}} N$ if $P^M = P^N$ and for each $m \in Q^M$,

 ${n \in N : mEn} = {n \in M : mEn}$ (equivalence classes don't expand).

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

This class does not have finite character.

 $L_{\omega_1,\omega}$ vrs $L_{\omega_1,\omega}(Q)$

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Without Q -transfer is proved from VWGCH. With Q, \aleph_1 -categoricity is not absolute. The most convincing example (Zilber) is with Q.

 $L_{\omega_1,\omega}$ vrs $L_{\omega_1,\omega}(Q)$

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Without Q -transfer is proved from VWGCH. With Q, \aleph_1 -categoricity is not absolute. The most convincing example (Zilber) is with Q. Does finitary capture the difference?

Finitary Classes

Perspectives on AEC

John T. Baldwin

- Abstract Elementar Classes
- Eventual Behavior
- Connection with Set Theory
- The Weak Continuum Hypothesis
- Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

- 1 an independence theory over sets
- **2** an analysis for arbitrary sentences in $L_{\omega,\omega}$ Vaught's conjecture.
- **3** warning: 'uniqueness of monster model'
- 4 simplicity?
- **5** the Hart-Shelah example; other examples of Hytinnen.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Trlifaj Every $^{\perp}N$ of pure-injective modules is finitary. Conjecturally all $^{\perp}N$'s are finitary

More restrictive classes

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Properties

Tameness, finitary, amalgamation, Galois-compactness

NEED EXAMPLES

In particular, examples connected to core mathematics:

- Banach Spaces
- 2 complex exponentiation and semi-abelian varieties

- **3** Modules and Abelian groups
- 4 locally finite groups

ZILBER'S PROGRAM FOR ($C, +, \cdot, exp$)

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Goal: Realize $(\mathcal{C}, +, \cdot, \exp)$ as a model of an $L_{\omega_1,\omega}(Q)$ -sentence discovered by the Hrushovski construction.

Done

A. Expand $(\mathcal{C}, +, \cdot)$ by a unary function which behaves like exponentiation using a Hrushovski-like dimension function. Prove some $L_{\omega_{1,\omega}}(Q)$ -sentence Σ is categorical and has quantifier elimination.

Very open

B. Prove $(\mathcal{C}, +, \cdot, exp)$ is a model of the sentence Σ found in Objective A.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Questions

Perspectives on AEC

John T. Baldwin

- Abstract Elementar Classes
- Eventual Behavior
- Connection with Set Theory
- The Weak Continuum Hypothesis
- Model Theoretic Background
- Is WCH is necessary?
- Connections with Algebra and analysis
- Classification

- **1** B is a problem in analysis and number theory
- 2 If a sentence ψ of $L_{\omega_1,\omega}(Q)$ is categorical up to \aleph_{ω} , must it be forever categorical?

UNIVERSAL COVERS

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

When is the exact sequence:

$$0 \to Z \to V \to A \to 0. \tag{1}$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

categorical where V is a \mathbb{Q} vector space and A is a semi-abelian variety.

Can be viewed as an expansion of V and there is a combinatorial geometry given by:

 $\operatorname{cl}(X) = \operatorname{ln}(\operatorname{acl}(\exp(X)))$

Contexts

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

Trivial case. A is \aleph_1 -categorical in the Abelian group languagee.g. (Q, \cdot) Interesting case. Work with 'field language' on A. Really interesting case: pseudo-exponentiation and Hrushovski construction.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Semi-abelian varieties

Perspectives on AEC

John T. Baldwin

Abstract Elementary Classes

Eventual Behavior

Connections with Set Theory

The Weak Continuum Hypothesis

Model Theoretic Background

Is WCH is necessary?

Connections with Algebra and analysis

Classification

In the Ravello volume Zilber obtains 'arithmetical conditions' on algebraic variety that are equivalent to 'excellence' Thus he is able to conclude - using Shelah's machinery that under WGCH,

Categoricity up to \aleph_{ω} implies 'arithmetical' properties of certain algebraic varieties.

This argument could be shortened if there were a direct algebraic argument for tameness.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Tameness

Perspectives on AEC

John T. Baldwin

- Abstract Elementary Classes
- Eventual Behavior
- Connections with Set Theory
- The Weak Continuum Hypothesis
- Model Theoretic Background
- Is WCH is necessary?
- Connections with Algebra and analysis
- Classification

For countable theories (\aleph_0, ∞) -tameness is incredibly powerful. It allows the categoricity transfer from a single small cardinal (Grossberg, VanDieren, Lessmann).

- **1** Find other sufficient conditions for tameness.
- 2 What is the relation between tameness and excellence

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ