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Two Directions in AEC

1 Eventual Behavior Assume there are arbitrarily large
models (and often ap,jep and even tameness)

2 Work from the bottom up
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Work from the bottom up

1 Frames: Place very strong (superstability) conditions in
a fixed cardinal and bootstrap your way up. So ap and
jep are assumed (with more) in a single cardinal.

2 Explore Can we fill in the white spaces on the map that
are nearby?
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Methods

1 Set theoretic methods as in Larson (Friday) and
Laskowski or Kolesnikov talks

2 extending Fraissé style arguments
1 looking for atomic models
2 the importance of (strong) disjoint amalgamation

3 excellence
4 combinatorics
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Three lines of research

1 Understand the models in the Löwenheim number.
2 What are the spectra of existence, jep, ap, tameness ?

Need to parameterize notions: e.g. (κ, λ)-tame

3 Are syntactic hypotheses such as ‘complete sentence
in Lω1,ω ’ significantly stronger than abstract AEC
hypotheses?
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Models in the Löwenheim number

Fact

An AEC (K ,≺K ) is completely determined by its restriction
up to the Lowenheim number.

What does this mean?

Theorem. B-Boney

(K ,≺K ) has a witnessing sequence (a specified directed
system of countable structures) in LS(K ) = ℵ0 if and only if
there are arbitrarily large models.
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Analytically Presented AEC

Definition {apres}
An abstract elementary class K with Löwenheim number ℵ0
is analytically presented if the set of countable models in K,
and the corresponding strong submodel relation ≺K, are
both analytic.

Theorem. (B-Larson)

Analytically presented K is the same as a PCΓ(ℵ0,ℵ0)
class:

reducts of models a countable first order theory in an
expanded vocabulary which omit a countable family of types

crux: We recognize the type of presentation by looking only
at countable models.
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Almost Galois stability

Definition

1 The abstract elementary class (K,≺) is said to be
Galois ω-stable if for each countable M ∈ K, there are
countably many Galois types over any countable model.

2 The abstract elementary class (K,≺) is
almost Galois ω-stable if for each countable M ∈ K, no
countable model has a perfect set of distinct Galois
types.
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Properties of Analytic AEc

A (B-Larson) (2ℵ0 < 2ℵ1) Few models in ℵ1 implies almost
Galois ω-stability.

B (B-Larson-Shelah) Countably many models in ℵ1 implies:

Almost Galois ω-stable implies Galois ω-stable.
C (B-Larson-Shelah/B-Larson) ℵ1-categoricity absolute for

Almost Galois ω-stable with amalgamation.

tools: forcing, stationary towers, descriptive set theory,
Morley-Shelah trees for analyzing Lω1,ω
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Absolute Indiscernibles

Definition

I is a set of absolute indiscernibles in M if every permutation
of I extends to an automorphism of M.

The complete sentence φ with countable model M
homogenously characterizes κ if

1 PM is a set of absolute indiscernibles.
2 φ has no model of cardinality greater than κ.
3 There is a model N with |PN | = κ.

Theorem (Gao)

If countable structure has a set of absolute indiscernibles,
there is an Lω1,ω equivalent model in ℵ1.
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Fraissé style arguments

Crucial idea: to build atomic models, require local
finiteness but not uniform local finiteness.
The class K 0 of finite models is not closed under
substructure.
Laskowski-Shelah (1992); Hjorth (2002)

Theorem Hjorth

For every countable α, ℵα+1 is homogenously
characterizable.
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Fraissé style arguments + excellence

Theorem: (B- Koerwien-Laskowski)

There are a family of complete sentences φr such that φr :

1 homogeneously characterizes ℵr .
2 φr

1 has ap up to ℵr−1,
2 fails ap in ℵr−1,
3 trivially has ap in ℵr .

crux: K satisfies (< ℵ0, r + 1) disjoint amalgamation – i.e.
r + 1-excellence in the finite.
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Contrasts

Excellence is sufficient

If K is excellent then it has arbitrarily large models and the
amalgamation property.

Excellence is not necessary

(B-Kolesnikov) Non-excellent classes with arbitrarily large
models, ap (and much more).

B-Laskowski-Koerwien measures the strength of excellence
as a sufficent condition for model existence (and ap).

Question

Is there an AEC that is categorical up to ℵn and has no
larger models?
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Mergers

Mergers

1 Let θ be a complete sentence of Lω1,ω and suppose M
is the countable model of θ and V (M) is a set of
absolute indiscernibles in M such M − V (M) projects
onto V (M). We will say θ is a receptive sentence.

2 For any sentence ψ of Lω1,ω, the merger of ψ and θ is
the sentence χ = χθ,ψ obtained by conjoining with θ,
ψ � N.

3 For any model M1 of θ and N1 of ψ we write
(M1,N1) |= χ if there is a model with such a reduct.
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Fraissé style arguments: Applying merger

Theorem: (Hjorth, B-Friedman-Koerwien-Laskowski)

There is a receptive sentence that characterizes (has only
maximal models) ℵ1.

Corollary: (B-Friedman-Koerwien-Laskowski)

If there is a counterexample to Vaught’s conjecture there is
one that has only maximal models in ℵ1.

crux: Disjoint amalgamation
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Spectrum of disjoint amalgamation in AEC

Kolesnikov and Lambie-Hanson have given a family of
AEC’s (of coloring classes) in a countable vocabulary which
satisfy the amalgamation property but have no models
above iω1 .

Specific classes fail dap for the first time arbitrarily close to
iω1 .

Hidden fear: It is easy to make AEC examples by taking
disjunctions of Lω1,ω.

B-Koerwien-Souldatos:
Define the notion of a pure AEC that avoids this problem.
Nevertheless, the disjoint embedding spectrum can be
chaotic.
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Spectrum of disjoint amalgamation in AEC

B-Koerwien-Souldatos

For any countable family of characterizable cardinals λi ,
there is an AEC that has 2λ

+
i maximal models in λi , fails AP

everywhere and has arbitrarily large models.

So maximal models can be arbitrarily close to iω1 and then
no more maximal models.

Crux: combinatorics of bipartite graphs

Open Question

Is there an Lω1,ω-sentence that has maximal models in
uncountably many cardinals but arbitrarily large models?
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Theorems and Questions



The white
space nearby

John T.
Baldwin

University of
Illinois at
Chicago

Examples

Theorems

Density

Theorem (Shelah)

If a sentence φ of Lω1,ω is ℵ1-categorical, then there is an
ℵ1-categorical complete φ′ with φ′ → φ.

Question

If an AEC K is κ-categorical, must there be a κ-categorical
K sub-AEC all of whose models are (∞, ω)-equivalent?
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Model classes are wide or tall

A hyper-strong Shelah conjecture:

If a (complete) sentence of Lω1,ω characterizes κ then it has
2κ models in κ.

Theorem: Baldwin-Laskowski-Shelah

If a complete sentence of Lω1,ω characterizes a κ for
0 < κ < 2ℵ0 then it has 2ℵ1 models in ℵ1.

Corollary to proof

The B-Koerwien-Laskowski sentences characterizing ℵn
have 2ℵ1 models in ℵ1.

Question

Is ℵ1-categoricity absolute for complete sentences of Lω1,ω?
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Hanf Numbers for JEP, AP etc

Lower bounds

The previous results show the Hanf number for JEP and
DAP is at least iω1 .

Upper bounds: B-Boney

Let κ be strongly compact and K be an AEC with
Löwenheim-Skolem number less than κ.

If K satisfies JEP(< κ) then K≥κ satisfies JEP.
If K satisfies AP(< κ) then K satisfies AP.

crux: strongly compact cardinals. Direct proof is by
ultraproducts. Proof using modification of first order
arguments and compactness of Lκ,κ leads to interesting
issues about the presentation theorem.
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The big gap

Assuming a strongly compact cardinal κ, various Hanf
numbers are that κ.

(tameness (Shelah 932), jep, dap, ap)

In ZFC, those Hanf numbers are at least iℵ1 .
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