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Introduction to Tropical Geometry

Introduction to Tropical Geometry is the title of a forthcoming book of
Diane Maclagan and Bernd Sturmfels.

The web page
http://homepages.warwick.ac.uk/staff/D.Maclagan/

papers/TropicalBook.html

offers the pdf file of the first five chapters (23 August 2013).

Tropical islands is the title of the first chapter,
which promises a friendly welcome to tropical mathematics.

Today we look at section 1.5.
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overview of the book
The titles of the five chapters with some important sections:

1 Tropical Islands
◮ amoebas and their tentacles
◮ implicitization

2 Building Blocks
◮ polyhedral geometry
◮ Gröbner bases
◮ tropical bases

3 Tropical Varieties
◮ the fundamental theorem
◮ the structure theorem
◮ multiplicities and balancing
◮ connectivity and fans
◮ stable intersection

4 Tropical Rain Forest
5 Linear Algebra
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the implicitization problem

Definition
An unirational algebraic variety can be represented

either as the image of a rational map;

or as the zero set of some multivariate polynomials.

Both representations have their specific applications, e.g.:

The first representation as image of rational map is convenient
for plotting the coordinates of the solutions.

The second representation as the zero set of multivariate
polynomials is needed for the ideal membership problem.

Definition
In Computer Algebra, implicitization is the problem of passing from the
image as a rational map representation of a variety to the prime ideal of all
polynomials that vanish on the image of the map.

Jan Verschelde (UIC) Tropical Implicitization 6 February 2014 7 / 22



using resultants in sympy

Φ(t) =

(

t3 + 4t2 + 4t
t2 − 1

,
t3 − t2 − t + 1

t2

)

.

Running the script

import sympy as sp
t, x, y = sp.var(’t, x, y’)
px = t ** 3 + 4* t ** 2 + 4* t - (t ** 2 - 1) * x
py = t ** 3 - t ** 2 - t + 1 - t ** 2* y
r = sp.resultant(px, py, t)
print r

produces

x** 3* y** 2 - x ** 2* y** 3 - 5 * x** 2* y** 2 - 2 * x** 2* y \
- 4 * x* y** 2 - 33 * x* y + 16 * y** 2 + 72 * y + 81
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the Newton polygon

Definition

Given a polynomial f (x , y) = ck ,ℓxkyℓ, the Newton polygon P of f
is the convex hull of the set { (k , ℓ) : ck ,ℓ 6= 0 }.

Example:
f (x , y) = x3y2 −x2y3 −5x2y2 −2x2y −4xy2 −33xy +16y2 +72y +81.
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Given the parametrization Φ and the Newton polygon P, what is f ?
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defining a linear system

A sympy script to setup a linear system:

import sympy as sp
from fractions import Fraction
t, x, y = sp.var(’t, x, y’)
fx = lambda t: Fraction(t ** 3 + 4* t ** 2 + 4* t)/(t ** 2 - 1)
fy = lambda t: Fraction(t ** 3 - t ** 2 - t + 1)/t ** 2
samples = []
for t in range(-5, -1):

samples.append((fx(t), fy(t)))
for t in range(2, 6):

samples.append((fx(t), fy(t)))
polygon = [(3, 2), (2, 3), (2, 2), (2, 1), (1, 2), \

(1, 1), (0, 2), (0, 1), (0, 0)]

The list samples contains points for t = ±2,±3,±4,±5:
eight points to determine nine coefficients.
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the sympy script continued

L = []
for point in samples:

(a, b) = (point[0], point[1])
values = []
for monomial in polygon:

values.append(a ** monomial[0] * b** monomial[1])
L.append(values)

M = sp.Matrix(L)
print M
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the matrix of evaluated monomials
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the kernel of the matrix

The sympy script continues as

N = M.nullspace()
print sp.Matrix(N).transpose()
equ = 0
for k in range(len(polygon)):

mon = polygon[k]
equ = equ + N[0][k] * x** mon[0] * y** mon[1]

print equ

and prints

[1/81, -1/81, -5/81, -2/81, -4/81, -11/27, 16/81, 8/9, 1]
x** 3* y** 2/81 - x ** 2* y** 3/81 - 5 * x** 2* y** 2/81 - 2 * x** 2* y/81
- 4 * x* y** 2/81 - 11 * x* y/27 + 16 * y** 2/81 + 8 * y/9 + 1
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the condition number

Normalizing the implicit equation to be monic:

x3y2 − x2y3 − 5x2y2 − 2x2y − 4xy2 − 33xy + 16y2 + 72y + 81.

The sympy script continued

A = M[0:8, 1:9]
print A.det()
L = sp.Matrix.tolist(A)
import numpy as np
B = np.matrix([[float(x) for x in e] for e in L])
print np.linalg.norm(B) * np.linalg.norm(np.linalg.inv(B))

prints
3674636522691897/2000000
255962.285173

The numerical conditioning of this problem gets bad very quickly.
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computing the Newton polygon

Tropical Implicitization Problem:
Given two rational functions x = φ1(t) and y = φ2(t),
compute the Newton polygon of the implicit equation f (x , y) = 0.

Rewrite

Φ(t) =

(

t3 + 4t2 + 4t
t2 − 1

,
t3 − t2 − t + 1

t2

)

.

in factored form:

x = φ1(t) = (t − 1)−1 t1 (t + 1)−1 (t + 2)2

y = φ2(t) = (t − 1)2 t−2 (t + 1)1 (t + 2)0.

Recall from the amoebas: edges of the Newton polygon are where the
algebraic curve meets the coordinate axis and/or infinity.

We see that x and y go to 0 or ∞ when t goes to a root.
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collecting exponents

Considering the logarithms of the absolute values of

φ1(t) = (t − 1)−1 t1 (t + 1)−1 (t + 2)2

φ2(t) = (t − 1)2 t−2 (t + 1)1 (t + 2)0

gives

log |φ1(t)| = −1 log |t − 1| +1 log |t | −1 log |t + 1| +2 log |t + 2|
log |φ2(t)| = 2 log |t − 1| −2 log |t | +1 log |t + 1| +0 log |t + 2|.

So we collect the exponents of Φ:
(

−1
2

)

,

(

1
−2

)

,

(

−1
1

)

,

(

2
0

)

.

The exponents correspond to the rays in the tropical plot.

Jan Verschelde (UIC) Tropical Implicitization 6 February 2014 17 / 22



the balancing condition

The exponents need to add up to zero:
(

−1
2

)

+

(

1
−2

)

+

(

−1
1

)

+

(

2
0

)

=

(

1
1

)

So we add (−1,−1)T as another ray. Below is a plot of the rays.
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vector rotation over 90 degrees

The rays are perpendicular to the edges of the Newton polygon.

The given vectors
(

−1
−1

)

,

(

−1
2

)

,

(

1
−2

)

,

(

−1
1

)

,

(

2
0

)

are rotated over 90 degrees clockwise:
(

−1
1

)

,

(

2
1

)

,

(

2
−1

)

,

(

1
1

)

,

(

0
−2

)

.

Observe that also the rotated vectors sum up to zero.

Because of the zero sum,
there is a polygon that has those vectors as edges.
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sorting and concatenating vectors

We sort the vectors by increasing slope:
(

2
1

)

,

(

1
1

)

,

(

−1
1

)

,

(

−2
−1

)

,

(

0
−2

)

.

and concatenate them starting at the origin:

s(0,0) �����*s

(2,1)
�

���
s(3,2)@

@@I
s

(2,3)
������s(0,2)

?
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an algorithm to compute the Newton polygon

Input: Φ(t) : (x = φ1(t), y = φ2(t)), φ1 and φ2 are rational polynomials.

Output: vertex points that span the Newton polygon of f (x , y) = 0,
where f is the irreducible polynomial of the image of Φ.

0. Apply the Euclidean algorithm on φ1 and φ2 to compute the rays.
(Be aware of multiplicities when applying a root finder.)

1. Rotate the rays clockwise over 90 degrees.
2. Sort the rotated vectors by increasing slope.
3. Concatenate the sorted vectors starting at the origin.
4. The end points of the concatenated vectors are the vertex points

of the Newton polygon of the implicit equation f (x , y) = 0.
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applying the fundamental theorem of tropical geometry

Theorem
The tropical curve V (f ) defined by the unknown polynomial f coincides
with the tropical curve determined by the rays computed from Φ.

This theorem is a direct result from the fundamental theorem of
tropical geomety, proved in Chapter 3.

Corollary
The polygon P coincides with the Newton polygon of the defining
irreducible polynomial f of the curve defined by the image of Φ.
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